Abstract

In this study, we investigated the relationship between the biomechanical properties of the crystalline lens and intraocular pressure (IOP) using a confocal acoustic radiation force (ARF) and phase-sensitive optical coherence elastography (OCE) system. ARF induced a small displacement at the apex of porcine lenses in situ at various artificially controlled IOPs. Maximum displacement, relaxation rate, and Young’s modulus were utilized to assess the stiffness of the crystalline lens. The results showed that the stiffness of the crystalline increased as IOP increased, but the lens stiffening was not as significant as the stiffening of other ocular tissues such as the cornea and the sclera. A mechanical hysteresis in the lens was also observed while cycling IOP, indicating that the viscoelastic response of the lens is crucial to fully understanding its biomechanical properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography

Manmohan Singh, Jiasong Li, Zhaolong Han, Raksha Raghunathan, Achuth Nair, Chen Wu, Chih-Hao Liu, Salavat Aglyamov, Michael D. Twa, and Kirill V. Larin
Biomed. Opt. Express 8(1) 349-366 (2017)

Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second

Manmohan Singh, Chen Wu, Chih-Hao Liu, Jiasong Li, Alexander Schill, Achuth Nair, and Kirill V. Larin
Opt. Lett. 40(11) 2588-2591 (2015)

Optical coherence elastography – OCT at work in tissue biomechanics [Invited]

Kirill V. Larin and David D. Sampson
Biomed. Opt. Express 8(2) 1172-1202 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis. 10, 956–963 (2004).
    [PubMed]
  2. H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
    [Crossref] [PubMed]
  3. A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
    [Crossref] [PubMed]
  4. A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
    [Crossref] [PubMed]
  5. H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
    [Crossref] [PubMed]
  6. D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
    [Crossref] [PubMed]
  7. A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
    [Crossref] [PubMed]
  8. M. Detry-Morel, J. Jamart, and S. Pourjavan, “Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer,” Eur. J. Ophthalmol. 21(2), 138–148 (2011).
    [Crossref] [PubMed]
  9. M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
    [Crossref] [PubMed]
  10. D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
    [Crossref] [PubMed]
  11. M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
    [Crossref] [PubMed]
  12. H. J. Burd, G. S. Wilde, and S. J. Judge, “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye Res. 92(1), 28–39 (2011).
    [Crossref] [PubMed]
  13. H. Baradia, N. Nikahd, and A. Glasser, “Mouse lens stiffness measurements,” Exp. Eye Res. 91(2), 300–307 (2010).
    [Crossref] [PubMed]
  14. T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84(2), 332–341 (2007).
    [Crossref] [PubMed]
  15. K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 85(6), 890–893 (2007).
    [Crossref] [PubMed]
  16. S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
    [Crossref] [PubMed]
  17. S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
    [Crossref] [PubMed]
  18. E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
    [Crossref] [PubMed]
  19. X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
    [Crossref] [PubMed]
  20. S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
    [Crossref] [PubMed]
  21. S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett. 23(11), 879–881 (1998).
    [Crossref] [PubMed]
  22. C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
    [Crossref] [PubMed]
  23. C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
    [Crossref] [PubMed]
  24. K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express 20(17), 18887–18897 (2012).
    [Crossref] [PubMed]
  25. G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
    [Crossref] [PubMed]
  26. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  27. G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
    [Crossref] [PubMed]
  28. G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
    [Crossref] [PubMed]
  29. J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
    [Crossref] [PubMed]
  30. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
    [Crossref] [PubMed]
  31. R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
    [Crossref]
  32. S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
    [Crossref] [PubMed]
  33. C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
    [Crossref] [PubMed]
  34. J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
    [Crossref] [PubMed]
  35. T. M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett. 39(4), 838–841 (2014).
    [Crossref] [PubMed]
  36. C. Li, G. Guan, F. Zhang, S. Song, R. K. Wang, Z. Huang, and G. Nabi, “Quantitative elasticity measurement of urinary bladder wall using laser-induced surface acoustic waves,” Biomed. Opt. Express 5(12), 4313–4328 (2014).
    [Crossref] [PubMed]
  37. P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
    [Crossref] [PubMed]
  38. C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
    [Crossref] [PubMed]
  39. S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
    [Crossref] [PubMed]
  40. B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
    [Crossref] [PubMed]
  41. S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
    [Crossref] [PubMed]
  42. S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
    [Crossref] [PubMed]
  43. A. S. Vilupuru and A. Glasser, “Optical and biometric relationships of the isolated pig crystalline lens,” Ophthalmic Physiol. Opt. 21(4), 296–311 (2001).
    [Crossref] [PubMed]
  44. J. Liu and X. He, “Corneal stiffness affects IOP elevation during rapid volume change in the eye,” Invest. Ophthalmol. Vis. Sci. 50(5), 2224–2229 (2009).
    [Crossref] [PubMed]
  45. I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
    [Crossref] [PubMed]
  46. M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
    [Crossref] [PubMed]

2018 (1)

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

2017 (2)

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

2016 (6)

C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

2015 (4)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

J. Zhu, Y. Qu, T. Ma, R. Li, Y. Du, S. Huang, K. K. Shung, Q. Zhou, and Z. Chen, “Imaging and characterizing shear wave and shear modulus under orthogonal acoustic radiation force excitation using OCT Doppler variance method,” Opt. Lett. 40(9), 2099–2102 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
[Crossref] [PubMed]

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

2012 (5)

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
[Crossref] [PubMed]

K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express 20(17), 18887–18897 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

2011 (5)

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

H. J. Burd, G. S. Wilde, and S. J. Judge, “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye Res. 92(1), 28–39 (2011).
[Crossref] [PubMed]

M. Detry-Morel, J. Jamart, and S. Pourjavan, “Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer,” Eur. J. Ophthalmol. 21(2), 138–148 (2011).
[Crossref] [PubMed]

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

2010 (2)

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

H. Baradia, N. Nikahd, and A. Glasser, “Mouse lens stiffness measurements,” Exp. Eye Res. 91(2), 300–307 (2010).
[Crossref] [PubMed]

2009 (2)

J. Liu and X. He, “Corneal stiffness affects IOP elevation during rapid volume change in the eye,” Invest. Ophthalmol. Vis. Sci. 50(5), 2224–2229 (2009).
[Crossref] [PubMed]

I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
[Crossref] [PubMed]

2008 (1)

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
[Crossref] [PubMed]

2007 (4)

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[Crossref] [PubMed]

T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84(2), 332–341 (2007).
[Crossref] [PubMed]

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 85(6), 890–893 (2007).
[Crossref] [PubMed]

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

2004 (2)

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis. 10, 956–963 (2004).
[PubMed]

H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
[Crossref] [PubMed]

2001 (2)

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[Crossref] [PubMed]

A. S. Vilupuru and A. Glasser, “Optical and biometric relationships of the isolated pig crystalline lens,” Ophthalmic Physiol. Opt. 21(4), 296–311 (2001).
[Crossref] [PubMed]

1998 (1)

1995 (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

1991 (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Abitbol, O.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

Aglyamov, S.

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
[Crossref] [PubMed]

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Aglyamov, S. R.

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

Ahmad, A.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Alexander, J.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Ansari, H.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Arnal, B.

Azan, E.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

Baradia, H.

H. Baradia, N. Nikahd, and A. Glasser, “Mouse lens stiffness measurements,” Exp. Eye Res. 91(2), 300–307 (2010).
[Crossref] [PubMed]

Baranov, S.

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Boppart, S. A.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Bottlang, M.

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

Burd, H. J.

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

H. J. Burd, G. S. Wilde, and S. J. Judge, “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye Res. 92(1), 28–39 (2011).
[Crossref] [PubMed]

Burgoyne, C. F.

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

Burke, A.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Céspedes, I.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Chen, S.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Chen, X.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Chen, Z.

Cram, S. L.

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis. 10, 956–963 (2004).
[PubMed]

Croft, M. A.

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[Crossref] [PubMed]

Detorakis, E. T.

E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
[Crossref] [PubMed]

Detry-Morel, M.

M. Detry-Morel, J. Jamart, and S. Pourjavan, “Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer,” Eur. J. Ophthalmol. 21(2), 138–148 (2011).
[Crossref] [PubMed]

Downs, J. C.

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

Drakonaki, E. E.

E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
[Crossref] [PubMed]

Du, Y.

Dupps, W. J.

I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
[Crossref] [PubMed]

Eckert, G.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[Crossref] [PubMed]

Ehman, R. L.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Emelianov, S.

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
[Crossref] [PubMed]

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Emelianov, S. Y.

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

Erpelding, T. N.

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 85(6), 890–893 (2007).
[Crossref] [PubMed]

T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84(2), 332–341 (2007).
[Crossref] [PubMed]

Febbraro, J. L.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

Friedman, D. S.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Gao, X.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Gatinel, D.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

George, S. C.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Ginis, H.

E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
[Crossref] [PubMed]

Girard, M. J.

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

Glaser, K. J.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

Glasser, A.

H. Baradia, N. Nikahd, and A. Glasser, “Mouse lens stiffness measurements,” Exp. Eye Res. 91(2), 300–307 (2010).
[Crossref] [PubMed]

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
[Crossref] [PubMed]

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[Crossref] [PubMed]

A. S. Vilupuru and A. Glasser, “Optical and biometric relationships of the isolated pig crystalline lens,” Ophthalmic Physiol. Opt. 21(4), 296–311 (2001).
[Crossref] [PubMed]

Greenleaf, J. F.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Grise-Dulac, A.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

Guan, G.

Guo, Y.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Han, Z.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

He, X.

J. Liu and X. He, “Corneal stiffness affects IOP elevation during rapid volume change in the eye,” Invest. Ophthalmol. Vis. Sci. 50(5), 2224–2229 (2009).
[Crossref] [PubMed]

Herbert, H. M.

H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
[Crossref] [PubMed]

Heys, K. R.

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis. 10, 956–963 (2004).
[PubMed]

Holbrook, J. T.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Hollman, K. W.

T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84(2), 332–341 (2007).
[Crossref] [PubMed]

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 85(6), 890–893 (2007).
[Crossref] [PubMed]

Hsieh, B. Y.

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

Huang, P. C.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Huang, S.

Huang, Z.

Jackson, H.

H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
[Crossref] [PubMed]

Jacques, S. L.

Jamart, J.

M. Detry-Morel, J. Jamart, and S. Pourjavan, “Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer,” Eur. J. Ophthalmol. 21(2), 138–148 (2011).
[Crossref] [PubMed]

Judge, S. J.

H. J. Burd, G. S. Wilde, and S. J. Judge, “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye Res. 92(1), 28–39 (2011).
[Crossref] [PubMed]

Karpiouk, A.

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
[Crossref] [PubMed]

Karpiouk, A. B.

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

Karyotakis, N.

E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
[Crossref] [PubMed]

Katz, J.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Kaufman, P. L.

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[Crossref] [PubMed]

Kempen, J. H.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Kim, P.

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Kirkpatrick, S. J.

Kolipaka, A.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

Krasieva, T.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Krueger, R. R.

I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
[Crossref] [PubMed]

Kumar, S.

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

Larin, K.

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Larin, K. V.

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
[Crossref] [PubMed]

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

Lee, S. J.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

Li, C.

Li, J.

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

Li, R.

Li, X.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Lightman, S. L.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
[Crossref] [PubMed]

Lin, H.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Litwiller, D. V.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

Liu, C. H.

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

Liu, J.

J. Liu and X. He, “Corneal stiffness affects IOP elevation during rapid volume change in the eye,” Invest. Ophthalmol. Vis. Sci. 50(5), 2224–2229 (2009).
[Crossref] [PubMed]

Lomas, D. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Lyu, Z.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Lyubovitsky, J.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Ma, T.

Manapuram, R.

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Manduca, A.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Manne, V.

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Manns, F.

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

Mariappan, Y. K.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

Marjanovic, M.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Martius, P.

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

Mashiatulla, M.

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Mih, J. D.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Mohan, K. D.

Moulin-Tyrode, C.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

Muthupillai, R.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Nabi, G.

Nguyen, T. M.

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

T. M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett. 39(4), 838–841 (2014).
[Crossref] [PubMed]

Nikahd, N.

H. Baradia, N. Nikahd, and A. Glasser, “Mouse lens stiffness measurements,” Exp. Eye Res. 91(2), 300–307 (2010).
[Crossref] [PubMed]

O’Donnell, M.

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

T. M. Nguyen, S. Song, B. Arnal, Z. Huang, M. O’Donnell, and R. K. Wang, “Visualizing ultrasonically induced shear wave propagation using phase-sensitive optical coherence tomography for dynamic elastography,” Opt. Lett. 39(4), 838–841 (2014).
[Crossref] [PubMed]

T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84(2), 332–341 (2007).
[Crossref] [PubMed]

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 85(6), 890–893 (2007).
[Crossref] [PubMed]

Odintsov, B.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Oldenburg, A. L.

Ophir, J.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Pallikaris, I. G.

E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
[Crossref] [PubMed]

Pande, P.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Park, S.

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

Pechhold, W.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[Crossref] [PubMed]

Pineda, R.

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

Ponnekanti, H.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Pourjavan, S.

M. Detry-Morel, J. Jamart, and S. Pourjavan, “Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer,” Eur. J. Ophthalmol. 21(2), 138–148 (2011).
[Crossref] [PubMed]

Pulido, J. S.

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

Putnam, A. J.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Qu, Y.

Raghunathan, R.

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

Raub, C. B.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Reed, S. B.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Reilly, M. A.

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

Rossman, P. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Saad, A.

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

Sampson, D. D.

Scarcelli, G.

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Schill, A.

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
[Crossref] [PubMed]

Shen, T. T.

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

Shung, K. K.

Singh, M.

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
[Crossref] [PubMed]

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

Sinha Roy, A.

I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
[Crossref] [PubMed]

Song, S.

Spillman, D. R.

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Stachs, O.

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

Sudheendran, N.

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Suh, J. K.

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

Suresh, V.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Thorne, J. E.

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Thornton, I. L.

I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
[Crossref] [PubMed]

Tromberg, B. J.

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

Truscott, R. J.

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis. 10, 956–963 (2004).
[PubMed]

Twa, M.

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

Twa, M. D.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

van der Heijde, R. G.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[Crossref] [PubMed]

Vilupuru, A. S.

A. S. Vilupuru and A. Glasser, “Optical and biometric relationships of the isolated pig crystalline lens,” Ophthalmic Physiol. Opt. 21(4), 296–311 (2001).
[Crossref] [PubMed]

Viswanathan, A.

H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
[Crossref] [PubMed]

Wang, Q.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Wang, R. K.

Wang, S.

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. Opt. Express 5(11), 3807–3821 (2014).
[Crossref] [PubMed]

S. Wang and K. V. Larin, “Shear wave imaging optical coherence tomography (SWI-OCT) for ocular tissue biomechanics,” Opt. Lett. 39(1), 41–44 (2014).
[Crossref] [PubMed]

Wang, T.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Weeber, H. A.

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[Crossref] [PubMed]

Wilde, G. S.

H. J. Burd, G. S. Wilde, and S. J. Judge, “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye Res. 92(1), 28–39 (2011).
[Crossref] [PubMed]

Wu, C.

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

C. H. Liu, A. Schill, C. Wu, M. Singh, and K. V. Larin, “Non-contact single shot elastography using line field low coherence holography,” Biomed. Opt. Express 7(8), 3021–3031 (2016).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

Yazdi, Y.

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Yoon, H.

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

Yoon, S.

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
[Crossref] [PubMed]

Yoon, S. J.

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

Yun, S. H.

G. Scarcelli and S. H. Yun, “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20(8), 9197–9202 (2012).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Zhang, F.

Zhang, P.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Zhou, Q.

Zhu, J.

Acta Med. (Hradec Kralove) (1)

E. T. Detorakis, E. E. Drakonaki, H. Ginis, N. Karyotakis, and I. G. Pallikaris, “Evaluation of iridociliary and lenticular elasticity using shear-wave elastography in rabbit eyes,” Acta Med. (Hradec Kralove) 57(1), 9–14 (2014).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

X. Zhang, Q. Wang, Z. Lyu, X. Gao, P. Zhang, H. Lin, Y. Guo, T. Wang, S. Chen, and X. Chen, “Noninvasive assessment of age-related stiffness of crystalline lenses in a rabbit model using ultrasound elastography,” Biomed. Eng. Online 17(1), 75 (2018).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Biophys. J. (2)

C. B. Raub, V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, B. J. Tromberg, and S. C. George, “Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy,” Biophys. J. 92(6), 2212–2222 (2007).
[Crossref] [PubMed]

G. Scarcelli, P. Kim, and S. H. Yun, “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101(6), 1539–1545 (2011).
[Crossref] [PubMed]

Clin. Exp. Optom. (1)

A. Glasser, “Restoration of accommodation: surgical options for correction of presbyopia,” Clin. Exp. Optom. 91(3), 279–295 (2008).
[Crossref] [PubMed]

Eur. J. Ophthalmol. (1)

M. Detry-Morel, J. Jamart, and S. Pourjavan, “Evaluation of corneal biomechanical properties with the Reichert Ocular Response Analyzer,” Eur. J. Ophthalmol. 21(2), 138–148 (2011).
[Crossref] [PubMed]

Exp. Eye Res. (4)

H. J. Burd, G. S. Wilde, and S. J. Judge, “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye Res. 92(1), 28–39 (2011).
[Crossref] [PubMed]

H. Baradia, N. Nikahd, and A. Glasser, “Mouse lens stiffness measurements,” Exp. Eye Res. 91(2), 300–307 (2010).
[Crossref] [PubMed]

T. N. Erpelding, K. W. Hollman, and M. O’Donnell, “Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84(2), 332–341 (2007).
[Crossref] [PubMed]

K. W. Hollman, M. O’Donnell, and T. N. Erpelding, “Mapping elasticity in human lenses using bubble-based acoustic radiation force,” Exp. Eye Res. 85(6), 890–893 (2007).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

H. A. Weeber, G. Eckert, W. Pechhold, and R. G. van der Heijde, “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245(9), 1357–1366 (2007).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

P. C. Huang, P. Pande, A. Ahmad, M. Marjanovic, D. R. Spillman, B. Odintsov, and S. A. Boppart, “Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics,” IEEE J. Sel. Top. Quantum Electron. 22(4), 6802816 (2016).
[Crossref] [PubMed]

Int. Ophthalmol. Clin. (1)

A. Glasser, M. A. Croft, and P. L. Kaufman, “Aging of the human crystalline lens and presbyopia,” Int. Ophthalmol. Clin. 41(2), 1–15 (2001).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

M. J. Girard, J. K. Suh, M. Bottlang, C. F. Burgoyne, and J. C. Downs, “Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations,” Invest. Ophthalmol. Vis. Sci. 52(8), 5656–5669 (2011).
[Crossref] [PubMed]

G. Scarcelli, R. Pineda, and S. H. Yun, “Brillouin optical microscopy for corneal biomechanics,” Invest. Ophthalmol. Vis. Sci. 53(1), 185–190 (2012).
[Crossref] [PubMed]

C. Wu, Z. Han, S. Wang, J. Li, M. Singh, C. H. Liu, S. Aglyamov, S. Emelianov, F. Manns, and K. V. Larin, “Assessing age-related changes in the biomechanical properties of rabbit lens using a coaligned ultrasound and optical coherence elastography system,” Invest. Ophthalmol. Vis. Sci. 56(2), 1292–1300 (2015).
[Crossref] [PubMed]

J. Liu and X. He, “Corneal stiffness affects IOP elevation during rapid volume change in the eye,” Invest. Ophthalmol. Vis. Sci. 50(5), 2224–2229 (2009).
[Crossref] [PubMed]

I. L. Thornton, W. J. Dupps, A. Sinha Roy, and R. R. Krueger, “Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking,” Invest. Ophthalmol. Vis. Sci. 50(3), 1227–1233 (2009).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

B. Y. Hsieh, S. Song, T. M. Nguyen, S. J. Yoon, T. T. Shen, R. K. Wang, and M. O’Donnell, “Moving-source elastic wave reconstruction for high-resolution optical coherence elastography,” J. Biomed. Opt. 21(11), 116006 (2016).
[Crossref] [PubMed]

C. Wu, M. Singh, Z. Han, R. Raghunathan, C. H. Liu, J. Li, A. Schill, and K. V. Larin, “Lorentz force optical coherence elastography,” J. Biomed. Opt. 21(9), 090502 (2016).
[Crossref] [PubMed]

J. Biophotonics (1)

S. Wang and K. V. Larin, “Optical coherence elastography for tissue characterization: a review,” J. Biophotonics 8(4), 279–302 (2015).
[Crossref] [PubMed]

J. Glaucoma (2)

H. M. Herbert, A. Viswanathan, H. Jackson, and S. L. Lightman, “Risk factors for elevated intraocular pressure in uveitis,” J. Glaucoma 13(2), 96–99 (2004).
[Crossref] [PubMed]

A. Grise-Dulac, A. Saad, O. Abitbol, J. L. Febbraro, E. Azan, C. Moulin-Tyrode, and D. Gatinel, “Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes,” J. Glaucoma 21(7), 486–489 (2012).
[Crossref] [PubMed]

J. Magn. Reson. Imaging (1)

D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S. Pulido, and R. L. Ehman, “MR elastography of the ex vivo bovine globe,” J. Magn. Reson. Imaging 32(1), 44–51 (2010).
[Crossref] [PubMed]

J. Refract. Surg. (1)

M. Singh, J. Li, Z. Han, C. Wu, S. R. Aglyamov, M. D. Twa, and K. V. Larin, “Investigating Elastic Anisotropy of the Porcine Cornea as a Function of Intraocular Pressure With Optical Coherence Elastography,” J. Refract. Surg. 32(8), 562–567 (2016).
[Crossref] [PubMed]

Laser Phys. Lett. (1)

R. Manapuram, S. Baranov, V. Manne, N. Sudheendran, M. Mashiatulla, S. Aglyamov, S. Emelianov, and K. Larin, “Assessment of wave propagation on surfaces of crystalline lens with phase sensitive optical coherence tomography,” Laser Phys. Lett. 8(2), 164–168 (2011).
[Crossref]

Mol. Vis. (1)

K. R. Heys, S. L. Cram, and R. J. Truscott, “Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia?” Mol. Vis. 10, 956–963 (2004).
[PubMed]

Ophthalmic Physiol. Opt. (1)

A. S. Vilupuru and A. Glasser, “Optical and biometric relationships of the isolated pig crystalline lens,” Ophthalmic Physiol. Opt. 21(4), 296–311 (2001).
[Crossref] [PubMed]

Ophthalmology (1)

D. S. Friedman, J. T. Holbrook, H. Ansari, J. Alexander, A. Burke, S. B. Reed, J. Katz, J. E. Thorne, S. L. Lightman, and J. H. Kempen, “Risk of elevated intraocular pressure and glaucoma in patients with uveitis: results of the multicenter uveitis steroid treatment trial,” Ophthalmology 120(8), 1571–1579 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (3)

S. R. Aglyamov, S. Wang, A. B. Karpiouk, J. Li, M. Twa, S. Y. Emelianov, and K. V. Larin, “The dynamic deformation of a layered viscoelastic medium under surface excitation,” Phys. Med. Biol. 60(11), 4295–4312 (2015).
[Crossref] [PubMed]

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “A high pulse repetition frequency ultrasound system for the ex vivo measurement of mechanical properties of crystalline lenses with laser-induced microbubbles interrogated by acoustic radiation force,” Phys. Med. Biol. 57(15), 4871–4884 (2012).
[Crossref] [PubMed]

S. Park, H. Yoon, K. V. Larin, S. Y. Emelianov, and S. R. Aglyamov, “The impact of intraocular pressure on elastic wave velocity estimates in the crystalline lens,” Phys. Med. Biol. 62(3), N45–N57 (2017).
[Crossref] [PubMed]

Science (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref] [PubMed]

Ultrason. Imaging (1)

J. Ophir, I. Céspedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrason. Imaging 13(2), 111–134 (1991).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

S. Yoon, S. Aglyamov, A. Karpiouk, and S. Emelianov, “The mechanical properties of ex vivo bovine and porcine crystalline lenses: age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39(6), 1120–1127 (2013).
[Crossref] [PubMed]

Z. Med. Phys. (1)

M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, and O. Stachs, “The mechanical response of the porcine lens to a spinning test,” Z. Med. Phys. 26(2), 127–135 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of experimental setup; (b) Typical OCT image of porcine eye schematically showing co-focused OCT and ARF beams. (cornea is shown as negative image as the lens surface was brought to the focus to maximize SNR).
Fig. 2
Fig. 2 (a) The OCE-measured displacement at the apex of the lens in response to the acoustic radiation force excitation. The maximum displacement is indicated in green, and the fitted exponential curve for relaxation rate analysis is plotted in red. (b) Maximum displacement of agar phantoms at various concentrations. (c) Relaxation rate obtained for tissue-mimicking agar phantoms at various concentrations. (d) Comparison of the Young’s modulus values obtained from mechanical compression testing and model-based reconstruction.
Fig. 3
Fig. 3 (a) The maximum displacement and (b) relaxation rate of the ARF-induced displacement at the apex of one typical porcine lens while IOP was cycled, (c) Young’s modus of the lens as a function of IOP. The data are presented as the intra-sample means, where the box is the inter-quartile range, the center horizontal line is the median, the whiskers are the standard deviation, and the small inscribed box is the mean.
Fig. 4
Fig. 4 (a) Summary of the maximum displacement and (b) relaxation rate of ARF-induced displacement at the apex of porcine lenses while IOP was cycled (c) Young’s modulus of the lens as a function of IOP. The raw data is plotted alongside the respective inter-sample (N = 8) box and whisker plots, where the box is the inter-quartile range, the central horizontal line is the median, the small inscribed box is the mean, and the whiskers are the standard deviation.

Tables (1)

Tables Icon

Table 1 Summary of the maximum displacements (MD), relaxation rates (RR), and Young’s moduli (E) from all samples (N = 8). The data are presented as the inter-sample mean ± standard deviation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d(t)= λ 0 4πn φ(t),
d(t)=A e bt ,
u z = 0 α J 0 ( αr )( ν 1 B 1 e ν 1 z + α 2 B 2 e ν 2 z )dα ,
ν 1 = α 2 k 1 2 ,   k 1 2 = ω 2 c 2 ,  ν 2 = α 2 k 2 2 ,    k 2 2 =ρ ω 2 /( μ 1 +iω μ 2 ).
p( r )= P 0 e r 2 / R 2  ,