Abstract

The Simultaneous Vision simulator (SimVis) is a visual demonstrator of multifocal lens designs for prospective intraocular lens replacement surgery patients and contact lens wearers. This programmable device employs a fast tunable lens and works on the principle of temporal multiplexing. The SimVis input signal is tailored to mimic the optical quality of the multifocal lens using the theoretical SimVis temporal profile, which is evaluated from the through-focus Visual Strehl ratio metric of the multifocal lens. In this paper, for the first time, focimeter-verified on-bench validations of multifocal simulations using SimVis are presented. Two steps are identified as being critical to accurate SimVis simulations. Firstly, a new iterative approach is presented that improves the accuracy of the theoretical SimVis temporal profile for three different multifocal intraocular lens designs – diffractive trifocal, refractive segmented bifocal, and refractive extended depth of focus, while retaining a low sampling. Secondly, a fast focimeter is used to measure the step response of the tunable lens, and the input signal is corrected to include the effects of the transient behavior of the tunable lens. It was found that the root-mean-square of the difference between the estimated through-focus Visual Strehl ratio of the multifocal lens and SimVis is not greater than 0.02 for all the tested multifocal designs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations

Vyas Akondi, Carlos Dorronsoro, Enrique Gambra, and Susana Marcos
Biomed. Opt. Express 8(7) 3410-3425 (2017)

Pre-operative simulation of post-operative multifocal vision

Maria Vinas, Sara Aissati, Mercedes Romero, Clara Benedi-Garcia, Nuria Garzon, Francisco Poyales, Carlos Dorronsoro, and Susana Marcos
Biomed. Opt. Express 10(11) 5801-5817 (2019)

Portable simultaneous vision device to simulate multifocal corrections

Carlos Dorronsoro, Aiswaryah Radhakrishnan, Jose Ramon Alonso-Sanz, Daniel Pascual, Miriam Velasco-Ocana, Pablo Perez-Merino, and Susana Marcos
Optica 3(8) 918-924 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Simpson, “The diffractive multifocal intraocular lens,” J. Cataract Refract. Surg.,  1(2), 115–121 (1989).
  2. A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res.,  38(2), 209–229 (1998).
    [Crossref] [PubMed]
  3. D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
    [Crossref] [PubMed]
  4. E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom.,  91(3), 265–278 (2008).
    [Crossref] [PubMed]
  5. T. A. Aller, M. Liu, and C. F. Wildsoet, “Myopia Control with Bifocal Contact Lenses: A Randomized Clinical Trial,” Optom. Vis. Sci. 93(4), 344–352 (2016).
    [Crossref] [PubMed]
  6. N. E. de Vries and M. M. A. N. Rudy, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
    [Crossref] [PubMed]
  7. R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
    [Crossref] [PubMed]
  8. M. A. Woodward, J. B. Randleman, and R. D. Stulting, “Dissatisfaction after multifocal intraocular lens implantation,” J. Cataract Refract. Surg.,  35(6), 992–997 (2009).
    [Crossref] [PubMed]
  9. J. F. Bille, “Preoperative simulation of outcomes using adaptive optics,” J. Refract. Surg.,  16(5), S608–S610 (2000).
    [PubMed]
  10. P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
    [Crossref]
  11. K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
    [Crossref] [PubMed]
  12. S. Manzanera, P. M. Prieto, D. B. Ayala, and J. M. Lindacher, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
    [Crossref] [PubMed]
  13. P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
    [Crossref]
  14. C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
    [Crossref]
  15. V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
    [Crossref] [PubMed]
  16. V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
    [Crossref] [PubMed]
  17. A. J. D. Águila-Carrasco, D. Monsálvez-Romín, and E. Papadatou, “Optical quality of rotationally symmetrical contact lenses derived from their power profiles,” Contact Lens and Anterior Eye 40(5), 346–350 (2017).
    [Crossref] [PubMed]
  18. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [Crossref] [PubMed]
  19. C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”
  20. M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
    [Crossref] [PubMed]
  21. H. Zhang, H. Ren, S. Xu, and S. Wu, “Temperature effects on dielectric liquid lenses,” Opt. Express 22(2), 1930–1939 (2014).
    [Crossref] [PubMed]

2017 (4)

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref] [PubMed]

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

A. J. D. Águila-Carrasco, D. Monsálvez-Romín, and E. Papadatou, “Optical quality of rotationally symmetrical contact lenses derived from their power profiles,” Contact Lens and Anterior Eye 40(5), 346–350 (2017).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

2016 (2)

2014 (2)

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

H. Zhang, H. Ren, S. Xu, and S. Wu, “Temperature effects on dielectric liquid lenses,” Opt. Express 22(2), 1930–1939 (2014).
[Crossref] [PubMed]

2013 (2)

N. E. de Vries and M. M. A. N. Rudy, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

2011 (1)

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
[Crossref] [PubMed]

2009 (2)

M. A. Woodward, J. B. Randleman, and R. D. Stulting, “Dissatisfaction after multifocal intraocular lens implantation,” J. Cataract Refract. Surg.,  35(6), 992–997 (2009).
[Crossref] [PubMed]

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref] [PubMed]

2008 (1)

E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom.,  91(3), 265–278 (2008).
[Crossref] [PubMed]

2007 (1)

2004 (2)

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

2000 (1)

J. F. Bille, “Preoperative simulation of outcomes using adaptive optics,” J. Refract. Surg.,  16(5), S608–S610 (2000).
[PubMed]

1998 (1)

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res.,  38(2), 209–229 (1998).
[Crossref] [PubMed]

1989 (1)

M. J. Simpson, “The diffractive multifocal intraocular lens,” J. Cataract Refract. Surg.,  1(2), 115–121 (1989).

Águila-Carrasco, A. J. D.

A. J. D. Águila-Carrasco, D. Monsálvez-Romín, and E. Papadatou, “Optical quality of rotationally symmetrical contact lenses derived from their power profiles,” Contact Lens and Anterior Eye 40(5), 346–350 (2017).
[Crossref] [PubMed]

Akondi, V.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref] [PubMed]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Alejandre, N.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Aller, T. A.

T. A. Aller, M. Liu, and C. F. Wildsoet, “Myopia Control with Bifocal Contact Lenses: A Randomized Clinical Trial,” Optom. Vis. Sci. 93(4), 344–352 (2016).
[Crossref] [PubMed]

Alonso-Sanz, J. R.

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Artal, P.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

Audrey,

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Ayala, D. B.

Barcala, X.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Benedi-Garcia, C.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Bennett, E. S.

E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom.,  91(3), 265–278 (2008).
[Crossref] [PubMed]

Bille, J. F.

J. F. Bille, “Preoperative simulation of outcomes using adaptive optics,” J. Refract. Surg.,  16(5), S608–S610 (2000).
[PubMed]

Bradley, A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Braga-Mele, R.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Campbell, M. C.

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res.,  38(2), 209–229 (1998).
[Crossref] [PubMed]

Chang, D.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Chateau, N.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref] [PubMed]

de Gracia, P.

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

de Vries, N. E.

N. E. de Vries and M. M. A. N. Rudy, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

Dewey, S.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Dorronsoro, C.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref] [PubMed]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Fernandez, E. J.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

Foster, G.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Gambra, E.

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref] [PubMed]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Garzon, N.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Gatinel, D.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
[Crossref] [PubMed]

Glasser, A.

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res.,  38(2), 209–229 (1998).
[Crossref] [PubMed]

Gobin, L.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
[Crossref] [PubMed]

Gonzalez-Ramos, A.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Henderson, B. A.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Hill, W.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Hoffman, R.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Houbrechts, Y.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
[Crossref] [PubMed]

Jiménez-Alfaro, I.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Krueger, R. R.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref] [PubMed]

Lage, E.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Lindacher, J. M.

Little, B.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Liu, M.

T. A. Aller, M. Liu, and C. F. Wildsoet, “Myopia Control with Bifocal Contact Lenses: A Randomized Clinical Trial,” Optom. Vis. Sci. 93(4), 344–352 (2016).
[Crossref] [PubMed]

Mamalis, N.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Manzanera, S.

S. Manzanera, P. M. Prieto, D. B. Ayala, and J. M. Lindacher, “Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements,” Opt. Express 15(24), 16177–16188 (2007).
[Crossref] [PubMed]

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

Marcos, S.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

V. Akondi, C. Dorronsoro, E. Gambra, and S. Marcos, “Temporal multiplexing to simulate multifocal intraocular lenses: theoretical considerations,” Biomed. Opt. Express 8(7), 3410–3425 (2017).
[Crossref] [PubMed]

C. Dorronsoro, A. Radhakrishnan, J. R. Alonso-Sanz, D. Pascual, M. Velasco-Ocana, P. Perez-Merino, and S. Marcos, “Portable simultaneous vision device to simulate multifocal corrections,” Optica 3(8), 918–924 (2016).
[Crossref]

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Marrakchi, Y.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Martinez-Enriquez, E.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Monsálvez-Romín, D.

A. J. D. Águila-Carrasco, D. Monsálvez-Romín, and E. Papadatou, “Optical quality of rotationally symmetrical contact lenses derived from their power profiles,” Contact Lens and Anterior Eye 40(5), 346–350 (2017).
[Crossref] [PubMed]

Norrby, S.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

Oetting, T.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Pagnoulle, C.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
[Crossref] [PubMed]

Papadatou, E.

A. J. D. Águila-Carrasco, D. Monsálvez-Romín, and E. Papadatou, “Optical quality of rotationally symmetrical contact lenses derived from their power profiles,” Contact Lens and Anterior Eye 40(5), 346–350 (2017).
[Crossref] [PubMed]

Pascual, D.

Perez-Merino, P.

Pérez-Merino, P.

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

Piers, P. A.

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

Poyales, F.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

Prieto, P. M.

Radhakrishnan, A.

Randleman, J. B.

M. A. Woodward, J. B. Randleman, and R. D. Stulting, “Dissatisfaction after multifocal intraocular lens implantation,” J. Cataract Refract. Surg.,  35(6), 992–997 (2009).
[Crossref] [PubMed]

Ren, H.

Rocha, K. M.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref] [PubMed]

Rodriguez-Lopez, V.

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Rudy, M. M. A. N.

N. E. de Vries and M. M. A. N. Rudy, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

Sánchez-González, A.

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

Sawides, L.

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Serafano, D.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Simpson, M. J.

M. J. Simpson, “The diffractive multifocal intraocular lens,” J. Cataract Refract. Surg.,  1(2), 115–121 (1989).

Stulting, R. D.

M. A. Woodward, J. B. Randleman, and R. D. Stulting, “Dissatisfaction after multifocal intraocular lens implantation,” J. Cataract Refract. Surg.,  35(6), 992–997 (2009).
[Crossref] [PubMed]

Talley-Rostov, A.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Thibos, L. N.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Vabre, L.

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref] [PubMed]

Vasavada, A.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Velasco-Ocana, M.

Vinas, M.

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Wildsoet, C. F.

T. A. Aller, M. Liu, and C. F. Wildsoet, “Myopia Control with Bifocal Contact Lenses: A Randomized Clinical Trial,” Optom. Vis. Sci. 93(4), 344–352 (2016).
[Crossref] [PubMed]

Woodward, M. A.

M. A. Woodward, J. B. Randleman, and R. D. Stulting, “Dissatisfaction after multifocal intraocular lens implantation,” J. Cataract Refract. Surg.,  35(6), 992–997 (2009).
[Crossref] [PubMed]

Wu, S.

Xu, S.

Yoo, S.

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

Zhang, H.

Biomed. Opt. Express (1)

Clin. Exp. Optom. (1)

E. S. Bennett, “Contact lens correction of presbyopia,” Clin. Exp. Optom.,  91(3), 265–278 (2008).
[Crossref] [PubMed]

Contact Lens and Anterior Eye (1)

A. J. D. Águila-Carrasco, D. Monsálvez-Romín, and E. Papadatou, “Optical quality of rotationally symmetrical contact lenses derived from their power profiles,” Contact Lens and Anterior Eye 40(5), 346–350 (2017).
[Crossref] [PubMed]

Invest. Ophth. Vis. Sci. (1)

P. A. Piers, E. J. Fernandez, S. Manzanera, S. Norrby, and P. Artal, “Adaptive optics simulation of intraocular lenses with modified spherical aberration,” Invest. Ophth. Vis. Sci. 45(12), 4601–4610 (2004).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

P. de Gracia, C. Dorronsoro, A. Sánchez-González, L. Sawides, and S. Marcos, “Experimental Simulation of Simultaneous Vision,” Invest. Ophthalmol. Vis. Sci. 54(1), 415–422 (2013).
[Crossref]

J. Cataract Refract. Surg. (6)

K. M. Rocha, L. Vabre, N. Chateau, and R. R. Krueger, “Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator,” J. Cataract Refract. Surg. 35(11), 1885–1892 (2009).
[Crossref] [PubMed]

M. J. Simpson, “The diffractive multifocal intraocular lens,” J. Cataract Refract. Surg.,  1(2), 115–121 (1989).

N. E. de Vries and M. M. A. N. Rudy, “Multifocal intraocular lenses in cataract surgery: literature review of benefits and side effects,” J. Cataract Refract. Surg. 39(2), 268–278 (2013).
[Crossref] [PubMed]

R. Braga-Mele, D. Chang, S. Dewey, G. Foster, B. A. Henderson, W. Hill, R. Hoffman, B. Little, N. Mamalis, T. Oetting, D. Serafano, A. Talley-Rostov, Audrey, A. Vasavada, and S. Yoo, “Multifocal intraocular lenses: relative indications and contraindications for implantation,” J. Cataract Refract. Surg.,  40(2), 313–322 (2014).
[Crossref] [PubMed]

M. A. Woodward, J. B. Randleman, and R. D. Stulting, “Dissatisfaction after multifocal intraocular lens implantation,” J. Cataract Refract. Surg.,  35(6), 992–997 (2009).
[Crossref] [PubMed]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg.,  37(11), 2060-2067 (2011).
[Crossref] [PubMed]

J. Refract. Surg. (3)

M. Vinas, A. Gonzalez-Ramos, C. Dorronsoro, V. Akondi, N. Garzon, F. Poyales, and S. Marcos, “In vivo measurement of longitudinal chromatic aberration in patients implanted with trifocal diffractive intraocular lenses,” J. Refract. Surg. 33(11), 736–742 (2017).
[Crossref] [PubMed]

J. F. Bille, “Preoperative simulation of outcomes using adaptive optics,” J. Refract. Surg.,  16(5), S608–S610 (2000).
[PubMed]

V. Akondi, P. Pérez-Merino, E. Martinez-Enriquez, C. Dorronsoro, N. Alejandre, I. Jiménez-Alfaro, and S. Marcos, “Evaluation of the true wavefront aberrations in eyes implanted with a rotationally asymmetric multifocal intraocular lens,” J. Refract. Surg. 33(4), 257–265 (2017).
[Crossref] [PubMed]

J. Vis. (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

Optom. Vis. Sci. (1)

T. A. Aller, M. Liu, and C. F. Wildsoet, “Myopia Control with Bifocal Contact Lenses: A Randomized Clinical Trial,” Optom. Vis. Sci. 93(4), 344–352 (2016).
[Crossref] [PubMed]

Vis. Res. (1)

A. Glasser and M. C. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res.,  38(2), 209–229 (1998).
[Crossref] [PubMed]

Other (1)

C. Dorronsoro, X. Barcala, E. Gambra, V. Akondi, L. Sawides, Y. Marrakchi, V. Rodriguez-Lopez, C. Benedi-Garcia, M. Vinas, E. Lage, and S. Marcosare preparing a manuscript to be called “Tunable lenses: dynamic characterization and fine-tuned control for high-speed applications.”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Steps involved in the validations of the SimVis multifocal demonstrations using the fast focimeter.
Fig. 2
Fig. 2 Diffractive trifocal (D-T) intraocular lens: (a) Comparison of the TF VS ratio of the theoretical phase profile of the lens (blue squares) and the corresponding curves for the theoretical SimVis temporal profile with (black line) and without (red line) the use of iterations. (b) Difference in the theoretical TF VS ratio of the lens and SimVis with (black line) and without (red line) iterative evaluation. (c) The progression of RMS difference between the TF VS ratio of the lens and iterative theoretical SimVis temporal profile. (d) Comparison of the theoretical SimVis time coefficients in the first iteration (red circles) and at the end of 328 iterations (black crosses).
Fig. 3
Fig. 3 Refractive segmented bifocal (R-SB) intraocular lens: (a) Comparison of the TF VS ratio of the theoretical phase profile of the lens (blue squares) and the corresponding curves for the theoretical SimVis temporal profile with (black line) and without (red line) the use of iterations. (b) Difference in the theoretical TF VS ratio of the lens and SimVis with (black line) and without (red line) iterative evaluation. (c) The progression of RMS difference between the TF VS ratio of the lens and iterative theoretical SimVis temporal profile. (d) Comparison of the theoretical SimVis time coefficients in the first iteration (red circles) and at the end of 446 iterations (black crosses).
Fig. 4
Fig. 4 Refractive extended depth of focus (R-EDOF) intraocular lens: (a) Comparison of the TF VS ratio of the theoretical phase profile of the lens (blue squares) and the corresponding curves for the theoretical SimVis temporal profile with (black line) and without (red line) the use of iterations. (b) Difference in the theoretical TF VS ratio of the lens and SimVis with (black line) and without (red line) iterative evaluation. (c) The progression of RMS difference between the TF VS ratio of the lens and iterative theoretical SimVis temporal profile. (d) Comparison of the theoretical SimVis time coefficients in the first iteration (red circles) and at the end of 527 iterations (black crosses).
Fig. 5
Fig. 5 The measured data of the mean unit step response of the tunable lens is indicated using crosses (black). The standard deviation of the unit step responses for the 17 different magnitude input square waves is shown with the dotted line (red). The fitted damped oscillator is shown with the thick line (blue).
Fig. 6
Fig. 6 Diffractive trifocal (D-T) intraocular lens: (a) Comparison of the input signal generated using the theoretical SimVis temporal profile after 328 iterations (blue line, Section 2.5) and the final dynamics-corrected SimVis input signal (red line, Section 2.6). (b) The theoretically estimated transient response functions corresponding to the dynamics-corrected (red line) and uncorrected (black circles) SimVis input signals. (c) Fast focimeter measured transient response corresponding to the dynamics-corrected (red line) and uncorrected (black circles) SimVis input signals. (d) Comparison of the SimVis TF VS ratio before (black line) and after (red line) the correction of the transient response (estimated using focimeter measurements).
Fig. 7
Fig. 7 Refractive segmented bifocal (R-SB) intraocular lens: (a) Comparison of the input signal generated using the theoretical SimVis temporal profile after 446 iterations (blue line, Section 2.5) and the final dynamics-corrected SimVis input signal (red line, Section 2.6). (b) The theoretically estimated transient response functions corresponding to the dynamics-corrected (red line) and uncorrected (black circles) SimVis input signals. (c) Fast focimeter measured transient response corresponding to the dynamics-corrected (red line) and uncorrected (black circles) SimVis input signals. (d) Comparison of the SimVis TF VS ratio before (black line) and after (red line) the correction of the transient response (estimated using focimeter measurements).
Fig. 8
Fig. 8 Refractive extended depth of focus (R-EDOF) intraocular lens: (a) Comparison of the input signal generated using the theoretical SimVis temporal profile after 527 iterations (blue line, Section 2.5) and the final dynamics-corrected SimVis input signal (red line, Section 2.6). (b) The theoretically estimated transient response functions corresponding to the dynamics-corrected (red line) and uncorrected (black circles) SimVis input signals. (c) Fast focimeter measured transient response corresponding to the dynamics-corrected (red line) and uncorrected (black circles) SimVis input signals. (d) Comparison of the SimVis TF VS ratio before (black line) and after (red line) the correction of the transient response (estimated using fast focimeter measurements).

Tables (2)

Tables Icon

Table 1 Theoretical SimVis simulation error (a dimensionless quantity): a comparison of two non-iterative methods (without undersampling and with undersampling to 20 nonzero time coefficients) and an iterative (below 20 nonzero time coefficients) method of generating the theoretical SimVis temporal profile for diffractive trifocal (D-T), refractive segmented bifocal (R-SB), and refractive extended depth of focus (R-EDOF) multifocal intraocular lenses (M-IOLs).

Tables Icon

Table 2 Experimental SimVis simulation error (a dimensionless quantity) from fast focimeter measurements – before and after the compensation of the transient response characteristics of the tunable lens – for diffractive trifocal (D-T), refractive segmented bifocal (R-SB), and refractive extended depth of focus (R-EDOF) multifocal intraocular lenses (M-IOLs).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

VS ratio = C ( x , y ) . O ( x , y ) d x d y C ( x , y ) . O DL ( x , y ) d x d y .
q ( z ) = k . i = 1 n t i . Q i ( z ) .
I ( z ) = i = 1 n t i . I i ( z ) .
α i = 1 n T i = T total ( ms ) .
X ( t ) = u ( t ) h ( t ) .
h ( t ) = d d t s ( t ) .
X ^ ( t ) = u ^ ( t ) h ( t ) u ( t ) .
f ( t ) = 1 e τ ω n t 1 τ 2 cos ( ω d t θ ) .
τ = ln ( y peak 1 ) π 2 + [ ln ( y peak 1 ) ] 2 .
h ( t ) = f ( t + Δ t ) f ( t ) Δ t

Metrics