Abstract

Cerenkov luminescence imaging offers a new diagnostic alternative to radiation imaging, but lacks intensity and penetration. In this study, a Cerenkov luminescence signal and its image quality were enhanced using rare earth oxide nanoparticles as a basis for Cerenkov luminescence excited fluorescence imaging and Cerenkov luminescence excited fluorescence tomography. The results also provided 3D-imaging and quantitative information. The approach was evaluated using phantom and mice models and 3D reconstruction and quantitative studies were performed in vitro, showing improved optical signal intensity, similarity, accuracy, signal-to-noise ratio, and spatial distribution information. The method offers benefits for both optical imaging research and radiopharmaceutical development.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In vivo pentamodal tomographic imaging for small animals

Muhan Liu, Hongbo Guo, Hongbo Liu, Zeyu Zhang, Chongwei Chi, Hui Hui, Di Dong, Zhenhua Hu, and Jie Tian
Biomed. Opt. Express 8(3) 1356-1371 (2017)

Cerenkov luminescence tomography for small-animal imaging

Changqing Li, Gregory S. Mitchell, and Simon R. Cherry
Opt. Lett. 35(7) 1109-1111 (2010)

Endoscopic imaging of Cerenkov luminescence

Sri-Rajasekhar Kothapalli, Hongguang Liu, Joseph C. Liao, Zhen Cheng, and Sanjiv Sam Gambhir
Biomed. Opt. Express 3(6) 1215-1225 (2012)

References

  • View by:
  • |
  • |
  • |

  1. Y. Xu, H. Liu, and Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging,” J. Nucl. Med. 52(12), 2009–2018 (2011).
    [Crossref] [PubMed]
  2. Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
    [Crossref] [PubMed]
  3. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
    [Crossref] [PubMed]
  4. C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
    [Crossref] [PubMed]
  5. H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
    [Crossref] [PubMed]
  6. X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
    [Crossref] [PubMed]
  7. Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
    [Crossref] [PubMed]
  8. A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
    [Crossref] [PubMed]
  9. A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
    [Crossref] [PubMed]
  10. D. L. Thorek, C. C. Riedl, and J. Grimm, “Clinical Cerenkov luminescence imaging of (18)F-FDG,” J. Nucl. Med. 55(1), 95–98 (2014).
    [Crossref] [PubMed]
  11. D. L. Thorek, S. Das, and J. Grimm, “Molecular imaging using nanoparticle quenchers of Cerenkov luminescence,” Small 10(18), 3729–3734 (2014).
    [Crossref] [PubMed]
  12. J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
    [Crossref] [PubMed]
  13. C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
    [Crossref] [PubMed]
  14. A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
    [Crossref] [PubMed]
  15. X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for Cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
    [Crossref] [PubMed]
  16. J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
    [Crossref] [PubMed]
  17. X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
    [Crossref] [PubMed]
  18. M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
    [Crossref] [PubMed]
  19. D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
    [Crossref] [PubMed]
  20. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
    [Crossref] [PubMed]
  21. J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
    [Crossref] [PubMed]
  22. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
    [Crossref]
  23. R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
    [Crossref] [PubMed]
  24. W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
    [Crossref] [PubMed]
  25. T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
    [Crossref] [PubMed]
  26. Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
    [Crossref] [PubMed]
  27. A. Darafsheh, S. Najmr, T. Paik, M. E. Tenuto, C. B. Murray, J. C. Finlay, and J. s. Friedberg, “Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams,” Proc. SPIE 9308, 930812 (2015).
  28. J. L. Demers, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Cerenkov excited fluorescence tomography using external beam radiation,” Opt. Lett. 38(8), 1364–1366 (2013).
    [Crossref] [PubMed]
  29. R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
    [Crossref] [PubMed]
  30. A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
    [Crossref] [PubMed]

2018 (1)

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

2015 (4)

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

2014 (8)

D. L. Thorek, C. C. Riedl, and J. Grimm, “Clinical Cerenkov luminescence imaging of (18)F-FDG,” J. Nucl. Med. 55(1), 95–98 (2014).
[Crossref] [PubMed]

D. L. Thorek, S. Das, and J. Grimm, “Molecular imaging using nanoparticle quenchers of Cerenkov luminescence,” Small 10(18), 3729–3734 (2014).
[Crossref] [PubMed]

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for Cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

2013 (4)

J. L. Demers, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Cerenkov excited fluorescence tomography using external beam radiation,” Opt. Lett. 38(8), 1364–1366 (2013).
[Crossref] [PubMed]

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

2012 (1)

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

2011 (4)

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

Y. Xu, H. Liu, and Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging,” J. Nucl. Med. 52(12), 2009–2018 (2011).
[Crossref] [PubMed]

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (1)

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

2007 (1)

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

2001 (2)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Abastado, J. P.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Arridge, S. R.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Bao, C.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Beattie, B. J.

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Boschi, F.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

Buchner, M.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Calandrino, R.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

Cao, F.

Cao, X.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Carminati, R.

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Carpenter, C. M.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Cavedon, C.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

Chacko, A. M.

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Chandrasekharan, P.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Chang, J.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Chen, X.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Cheng, Z.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Y. Xu, H. Liu, and Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging,” J. Nucl. Med. 52(12), 2009–2018 (2011).
[Crossref] [PubMed]

Cherry, S. R.

D’Souza, D.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Das, S.

D. L. Thorek, S. Das, and J. Grimm, “Molecular imaging using nanoparticle quenchers of Cerenkov luminescence,” Small 10(18), 3729–3734 (2014).
[Crossref] [PubMed]

Davis, S. C.

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Demers, J. L.

Deshantri, A. K.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Ding, X.

Ecker, V.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Esipova, T. V.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

Fan, W.

Feng, A.

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Fens, M. H. A. M.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Fenzi, A.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

Ferdeghini, M.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

Friedberg, J. S.

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Gambhir, S. S.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Gibson, A.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Gilbert, A. C.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

Gladstone, D. J.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

J. L. Demers, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Cerenkov excited fluorescence tomography using external beam radiation,” Opt. Lett. 38(8), 1364–1366 (2013).
[Crossref] [PubMed]

Glaser, A. K.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

Grimm, J.

D. L. Thorek, S. Das, and J. Grimm, “Molecular imaging using nanoparticle quenchers of Cerenkov luminescence,” Small 10(18), 3729–3734 (2014).
[Crossref] [PubMed]

D. L. Thorek, C. C. Riedl, and J. Grimm, “Clinical Cerenkov luminescence imaging of (18)F-FDG,” J. Nucl. Med. 55(1), 95–98 (2014).
[Crossref] [PubMed]

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Guo, W.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Helo, Y.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Holt, R. W.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

Hu, H.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Hu, Z.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for Cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Jacobson, O.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Jie, B.

Kamimura, M.

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

Kang, F.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Khoo, K.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Kiesewetter, D. O.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Kuo, C.

Li, C.

Li, S.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

Li, X.

Liang, J.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Lin, M.

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Lin, Y.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Liu, H.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Y. Xu, H. Liu, and Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging,” J. Nucl. Med. 52(12), 2009–2018 (2011).
[Crossref] [PubMed]

Liu, M.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Lo Meo, S.

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

Lu, T.

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Luo, Y.

Ma, X.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Macdonald, L.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Mandhane, S. N.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Marzola, P.

Mikitsh, J. L.

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Min, K.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Mitchell, G. S.

Miyamoto, D.

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

Murray, C. B.

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Nagasaki, Y.

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

Nie, Y.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Niu, G.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Ntziachristos, V.

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Ogirala, A.

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Paik, T.

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Pogue, B. W.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

J. L. Demers, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Cerenkov excited fluorescence tomography using external beam radiation,” Opt. Lett. 38(8), 1364–1366 (2013).
[Crossref] [PubMed]

Pratx, G.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Pryma, D. A.

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Qin, C.

J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
[Crossref] [PubMed]

Qu, X.

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Qu, Y.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Raju, A.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Rice, B. W.

Riedl, C. C.

D. L. Thorek, C. C. Riedl, and J. Grimm, “Clinical Cerenkov luminescence imaging of (18)F-FDG,” J. Nucl. Med. 55(1), 95–98 (2014).
[Crossref] [PubMed]

Ripoll, J.

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

Robins, E. G.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Rosenberg, I.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Royle, G.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Saito, Y.

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

Sbarbati, A.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

Schiffelers, R. M.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Schweiger, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Soga, K.

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

Song, T.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Speller, R.

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Spinelli, A. E.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati, and F. Boschi, “Multispectral Cerenkov luminescence tomography for small animal optical imaging,” Opt. Express 19(13), 12605–12618 (2011).
[Crossref] [PubMed]

Srivatsan, A.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Steinberg, J. D.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Sun, C.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Sun, X.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Thorek, D. L.

D. L. Thorek, S. Das, and J. Grimm, “Molecular imaging using nanoparticle quenchers of Cerenkov luminescence,” Small 10(18), 3729–3734 (2014).
[Crossref] [PubMed]

D. L. Thorek, C. C. Riedl, and J. Grimm, “Clinical Cerenkov luminescence imaging of (18)F-FDG,” J. Nucl. Med. 55(1), 95–98 (2014).
[Crossref] [PubMed]

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Tian, J.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for Cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Townsend, D. W.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Tropp, J. A.

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

Varela Moreira, A.

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

Vinogradov, S. A.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

Wang, J.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Wang, K.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

X. Ding, K. Wang, B. Jie, Y. Luo, Z. Hu, and J. Tian, “Probability method for Cerenkov luminescence tomography based on conformance error minimization,” Biomed. Opt. Express 5(7), 2091–2112 (2014).
[Crossref] [PubMed]

Wang, M.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

Wang, Z.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Weissleder, R.

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Wu, K.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

X. Cao, X. Chen, F. Kang, Y. Lin, M. Liu, H. Hu, Y. Nie, K. Wu, J. Wang, J. Liang, and J. Tian, “Performance evaluation of endoscopic Cerenkov luminescence imaging system: in vitro and pseudotumor studies,” Biomed. Opt. Express 5(10), 3660–3670 (2014).
[Crossref] [PubMed]

Xing, L.

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Xu, F.

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, H. Liu, and Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging,” J. Nucl. Med. 52(12), 2009–2018 (2011).
[Crossref] [PubMed]

Yan, X.

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

Yang, C. T.

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Yang, W.

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[Crossref] [PubMed]

Yang, X.

J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
[Crossref] [PubMed]

Yao, L.

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

Zha, J.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Zhang, R.

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

J. L. Demers, S. C. Davis, R. Zhang, D. J. Gladstone, and B. W. Pogue, “Cerenkov excited fluorescence tomography using external beam radiation,” Opt. Lett. 38(8), 1364–1366 (2013).
[Crossref] [PubMed]

Zhang, X.

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Zhao, Y.

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Zhong, J.

J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
[Crossref] [PubMed]

Zivelonghi, E.

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

ACS Nano (2)

W. Guo, X. Sun, O. Jacobson, X. Yan, K. Min, A. Srivatsan, G. Niu, D. O. Kiesewetter, J. Chang, and X. Chen, “Intrinsically radioactive [64Cu]CuInS/ZnS quantum dots for PET and optical imaging: improved radiochemical stability and controllable Cerenkov luminescence,” ACS Nano 9(1), 488–495 (2015).
[Crossref] [PubMed]

T. Paik, A. M. Chacko, J. L. Mikitsh, J. S. Friedberg, D. A. Pryma, and C. B. Murray, “Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging,” ACS Nano 9(9), 8718–8728 (2015).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

J. Zhong, J. Tian, X. Yang, and C. Qin, “Whole-body Cerenkov luminescence tomography with the finite element SP(3) method,” Ann. Biomed. Eng. 39(6), 1728–1735 (2011).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

EJNMMI Res. (1)

J. D. Steinberg, A. Raju, P. Chandrasekharan, C. T. Yang, K. Khoo, J. P. Abastado, E. G. Robins, and D. W. Townsend, “Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [68Ga]gallium chloride,” EJNMMI Res. 4(1), 15 (2014).
[Crossref] [PubMed]

Eur. Radiol. (1)

H. Hu, X. Cao, F. Kang, M. Wang, Y. Lin, M. Liu, S. Li, L. Yao, J. Liang, J. Liang, Y. Nie, X. Chen, J. Wang, and K. Wu, “Feasibility study of novel endoscopic Cerenkov luminescence imaging system in detecting and quantifying gastrointestinal disease: first human results,” Eur. Radiol. 25(6), 1814–1822 (2015).
[Crossref] [PubMed]

IEEE Trans. Inf. Theory (1)

J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).
[Crossref]

J. Biomed. Opt. (2)

A. E. Spinelli, M. Ferdeghini, C. Cavedon, E. Zivelonghi, R. Calandrino, A. Fenzi, A. Sbarbati, and F. Boschi, “First human Cerenkography,” J. Biomed. Opt. 18(2), 020502 (2013).
[Crossref] [PubMed]

A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati, and F. Boschi, “Optical imaging of Tc-99m-based tracers: in vitro and in vivo results,” J. Biomed. Opt. 16(11), 116023 (2011).
[Crossref] [PubMed]

J. Control. Release (1)

A. K. Deshantri, A. Varela Moreira, V. Ecker, S. N. Mandhane, R. M. Schiffelers, M. Buchner, and M. H. A. M. Fens, “Nanomedicines for the treatment of hematological malignancies,” J. Control. Release 287, 194–215 (2018).
[Crossref] [PubMed]

J. Nucl. Med. (3)

D. L. Thorek, C. C. Riedl, and J. Grimm, “Clinical Cerenkov luminescence imaging of (18)F-FDG,” J. Nucl. Med. 55(1), 95–98 (2014).
[Crossref] [PubMed]

Y. Xu, H. Liu, and Z. Cheng, “Harnessing the power of radionuclides for optical imaging: Cerenkov luminescence imaging,” J. Nucl. Med. 52(12), 2009–2018 (2011).
[Crossref] [PubMed]

C. M. Carpenter, X. Ma, H. Liu, C. Sun, G. Pratx, J. Wang, S. S. Gambhir, L. Xing, and Z. Cheng, “Cerenkov luminescence endoscopy: improved molecular sensitivity with β--emitting radiotracers,” J. Nucl. Med. 55(11), 1905–1909 (2014).
[Crossref] [PubMed]

Langmuir (1)

M. Kamimura, D. Miyamoto, Y. Saito, K. Soga, and Y. Nagasaki, “Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling,” Langmuir 24(16), 8864–8870 (2008).
[Crossref] [PubMed]

Med. Phys. (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys. 20(2), 299–309 (1993).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

R. Weissleder, “A clearer vision for in vivo imaging,” Nat. Biotechnol. 19(4), 316–317 (2001).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Hu, Y. Qu, K. Wang, X. Zhang, J. Zha, T. Song, C. Bao, H. Liu, Z. Wang, J. Wang, Z. Liu, H. Liu, and J. Tian, “In vivo nanoparticle-mediated radiopharmaceutical-excited fluorescence molecular imaging,” Nat. Commun. 6(1), 7560 (2015).
[Crossref] [PubMed]

Nat. Med. (1)

D. L. Thorek, A. Ogirala, B. J. Beattie, and J. Grimm, “Quantitative imaging of disease signatures through radioactive decay signal conversion,” Nat. Med. 19(10), 1345–1350 (2013).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (2)

R. W. Holt, R. Zhang, T. V. Esipova, S. A. Vinogradov, A. K. Glaser, D. J. Gladstone, and B. W. Pogue, “Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies,” Phys. Med. Biol. 59(18), 5317–5328 (2014).
[Crossref] [PubMed]

Y. Helo, I. Rosenberg, D. D’Souza, L. Macdonald, R. Speller, G. Royle, and A. Gibson, “Imaging Cerenkov emission as a quality assurance tool in electron radiotherapy,” Phys. Med. Biol. 59(8), 1963–1978 (2014).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Ripoll, V. Ntziachristos, R. Carminati, and M. Nieto-Vesperinas, “Kirchhoff approximation for diffusive waves,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5), 051917 (2001).
[Crossref] [PubMed]

PLoS One (2)

X. Ma, F. Kang, F. Xu, A. Feng, Y. Zhao, T. Lu, W. Yang, Z. Wang, M. Lin, and J. Wang, “Enhancement of Cerenkov luminescence imaging by dual excitation of Er3+,Yb3+-doped rare-earth microparticles,” PLoS One 8(10), e77926 (2013).
[Crossref] [PubMed]

Z. Hu, X. Ma, X. Qu, W. Yang, J. Liang, J. Wang, and J. Tian, “Three-dimensional noninvasive monitoring iodine-131 uptake in the thyroid using a modified Cerenkov luminescence tomography approach,” PLoS One 7(5), e37623 (2012).
[Crossref] [PubMed]

Small (1)

D. L. Thorek, S. Das, and J. Grimm, “Molecular imaging using nanoparticle quenchers of Cerenkov luminescence,” Small 10(18), 3729–3734 (2014).
[Crossref] [PubMed]

Other (1)

A. Darafsheh, S. Najmr, T. Paik, M. E. Tenuto, C. B. Murray, J. C. Finlay, and J. s. Friedberg, “Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams,” Proc. SPIE 9308, 930812 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 SEM image of the Y2O3:Eu3+ RENPs (a). The absorption spectrum of the Y2O3:Eu3+ RENPs (b) and their emission spectra when excited by a 300 nm laser (c). CLFI of the Y2O3:Eu3+ RENPs excited by 68Ga and CLI of 68Ga (d). Quantitative analysis of the CLFI and CLI results (e). CLFI of the Y2O3:Eu3+ RENPs excited by 68Ga or 68Ga (blocked) (f). CLI of 68Ga with various activities (the first row), CLFI of the Y2O3:Eu3+ RENPs excited by 68Ga with various activities (the second row), CLFI of the Y2O3:Eu3+ RENPs at various concentrations excited by 68Ga (the third row) (g). Fluorescence spectrum of the Y2O3:Eu3+ RENPs excited by 68Ga and Cerenkov spectrum of 68Ga (h). The quantified relationship between the CLFI intensity and the concentration of the Y2O3:Eu3+ RENPs (i). The quantified relationship between 68Ga activities and the CLFI intensity or CLI intensity (j).
Fig. 2
Fig. 2 Diagrammatic overview of the penetration phantom (a). CLFI and CLI at various depths (b). Quantitative analysis of the relationship between various depths of tissue stimulated liquid and the optical intensity of the CLFI and CLI (c). The ratio of CLFI optical intensity to CLI optical intensity according to different depths of tissue stimulated liquid (d). CLFI and CLI of various activities of 68Ga at 4 mm depth (e). Quantitative analysis of the relationship between various activities of 68Ga and the optical intensity of the CLFI and CLI (f).
Fig. 3
Fig. 3 Diagrammatic overview of the reconstruction phantom (a). PET/CT imaging of the “68Ga” and “68Ga + RENPs” phantoms (b). Quantitative analysis of the radioactivity of the “68Ga” and “68Ga + RENPs” phantoms (c). CLI and CLFI imaging of the “68Ga” and “68Ga + RENPs” phantoms (d). Quantitative analysis of the optical intensity of the “68Ga” and “68Ga + RENPs” phantoms (e). The reconstruction results of the “68Ga” and “68Ga + RENPs” phantoms (f) and their enlargement (g). Quantitative analysis of the degree of similarity for CLT and CLFT based on a cylinder model (h).
Fig. 4
Fig. 4 PET/CT images of the phantoms implanted with only 68Ga and with 68Ga mixed with RENPs (a). Quantitative analysis of the radioactivity of the implanted models (b). CLI of the phantoms implanted with only 68Ga and CLFI of the phantoms implanted with 68Ga and RENPs (c). Quantitative analysis of the optical intensity of the implanted phantoms (d). Reconstruction results for the phantoms implanted with only 68Ga or mixed with RENPs (e). Quantitative analysis of the degree of similarity for CLT and CLFT based on the implantation models (f). PET/CT images of the mice injected with 68Ga-NGR only or with 68Ga-NGR with RENPs (g). Quantitative analysis of the radioactivity of the mice (h). CLI of the bladders of the mice injected with 68Ga-NGR only and CLFI of the bladders of the mice co-injected with 68Ga-NGR and RENPs (i). Quantitative analysis of the optical intensity of the bladder phantoms (j). Reconstruction results of the bladders of the mice injected with 68Ga-NGR or with 68Ga-NGR with RENPs (k). Quantitative analysis of the degree of similarity for CLT and CLFT based on the injected mice (l).
Fig. 5
Fig. 5 CLI and CLFI of the phantom with various activities (a). Relative quantification results based on CLFT and CLT of the phantom with various activities (b). Quantitative activity error for 68Ga (7.4 MBq) and 68Ga-RENPs (10 mg/ml, 7.4 MBq) based on CLT or CLFT (c).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

{ -[ D x (r) Φ x (r)]+ μ ax (r) Φ x (r)=S(r) rΩ Φ x (r)+2A D x (r) Φ x (r) n ^ =0 rΩ .
68 Ga ( 7.4 MBq ) calculated = 68 Ga ( 14.8 MBq ) realistic × ( 68 Ga ( 7.4 MBq ) reconstructed ÷ 68 Ga ( 14.8 MBq ) reconstructed )
RENPs 68 Ga ( 7.4 MBq ) calculated = RENPs 68 Ga ( 10 mg/mL14.8 MBq ) realistic × ( RENPs 68 Ga ( 10 mg/mL7.4 MBq ) reconstructed ÷ RENPs 68 Ga ( 10 mg/mL14.8 MBq ) reconstructed )
Activity quantitative error ( CLT ) = ( 68 Ga ( 7.4 MBq ) calculated 68 Ga ( 7.4 MBq ) realistic ) ÷ 68 Ga ( 7.4 MBq ) realistic
Activity quantitative error ( CLFT ) = ( RENPs 68 Ga ( 10 mg/mL7.4 MBq ) calculated RENPs 68 Ga ( 10 mg/mL7.4 MBq ) realistic ) ÷ RENPs 68 Ga ( 10 mg/mL7.4 MBq ) realistic