Abstract

Swept source optical coherence tomography (SS-OCT) is being used more widely in clinical studies to investigate the choroid due to its deeper penetration under the retinal pigment epithelium and improved image quality compared with spectral domain OCT. However, automatic methods to reliably assess choroidal thickness and vasculature are still limited. This paper reports an approach that applies attenuation correction on SS-OCT structural scans to facilitate accurate automatic segmentation of the choroid and provides visualization of the choroidal vasculature without the necessity of OCT angiography. After attenuation correction, enhanced interlayer contrast at the choroidal-scleral interface was observed (from 0.13 ± 0.05 to 0.29 ± 0.10; P < 0.001). An algorithm that segmented the choroid from attenuation compensated B-scans achieved significantly higher accuracy when compared with an automated segmentation performed on regular OCT scans (91.8 ± 3.7% vs.74.5 ± 8.0%; P < 0.01). After attenuation correction, en face images of choroidal vessels were achieved with fewer artifacts from retinal vessels. Measurements of mean choroidal thickness and vessel density showed high repeatability. The attenuation correction assisted segmentation of the choroid and visualization of the choroidal vasculature will be helpful in studying the quantitative changes that occur in a myriad of diseases involving the choroid such as age-related macular degeneration, polypoidal choroidal vasculopathy, pathologic myopia, central serous chorioretinopathy, and inflammatory eye conditions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography

Lian Duan, Young-Joo Hong, and Yoshiaki Yasuno
Opt. Express 21(13) 15787-15808 (2013)

Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography

Youngjoo Hong, Shuichi Makita, Masahiro Yamanari, Masahiro Miura, Soohyun Kim, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 15(12) 7538-7550 (2007)

In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography

Yoshiaki Yasuno, Youngjoo Hong, Shuichi Makita, Masahiro Yamanari, Masahiro Akiba, Masahiro Miura, and Toyohiko Yatagai
Opt. Express 15(10) 6121-6139 (2007)

References

  • View by:
  • |
  • |
  • |

  1. F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
    [Crossref] [PubMed]
  2. R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41(10), 3117–3123 (2000).
    [PubMed]
  3. S. S. Hayreh, “Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc,” Br. J. Ophthalmol. 53(11), 721–748 (1969).
    [Crossref] [PubMed]
  4. L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal Blood Flow as a Heat Dissipating Mechanism in the Macula,” Am. J. Ophthalmol. 89(5), 641–646 (1980).
    [Crossref] [PubMed]
  5. P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
    [Crossref] [PubMed]
  6. S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
    [Crossref] [PubMed]
  7. I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
    [Crossref] [PubMed]
  8. Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
    [Crossref] [PubMed]
  9. I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
    [Crossref] [PubMed]
  10. R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
    [Crossref] [PubMed]
  11. H. Ohsugi, Y. Ikuno, K. Oshima, and H. Tabuchi, “3-D Choroidal Thickness Maps from EDI-OCT in Highly Myopic Eyes,” Optom. Vis. Sci. 90(6), 599–606 (2013).
    [Crossref] [PubMed]
  12. S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
    [Crossref] [PubMed]
  13. M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
    [Crossref] [PubMed]
  14. J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
    [Crossref] [PubMed]
  15. A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
    [Crossref] [PubMed]
  16. A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
    [Crossref] [PubMed]
  17. L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
    [Crossref] [PubMed]
  18. M. A. Bloome, “Fluorescein angiography: risks,” Vision Res. 20(12), 1083–1097 (1980).
    [Crossref] [PubMed]
  19. R. Margolis and R. F. Spaide, “A Pilot Study of Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Normal Eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
    [Crossref] [PubMed]
  20. R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
    [Crossref] [PubMed]
  21. K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).
  22. L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
    [Crossref] [PubMed]
  23. V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data,” Biomed. Opt. Express 4(1), 134–150 (2013).
    [Crossref] [PubMed]
  24. V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
    [Crossref] [PubMed]
  25. G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
    [Crossref] [PubMed]
  26. E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
    [Crossref] [PubMed]
  27. L. Beaton, J. Mazzaferri, F. Lalonde, M. Hidalgo-Aguirre, D. Descovich, M. R. Lesk, and S. Costantino, “Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging,” Biomed. Opt. Express 6(5), 1694–1706 (2015).
    [Crossref] [PubMed]
  28. Q. Chen, W. Fan, S. Niu, J. Shi, H. Shen, and S. Yuan, “Automated choroid segmentation based on gradual intensity distance in HD-OCT images,” Opt. Express 23(7), 8974–8994 (2015).
    [Crossref] [PubMed]
  29. L. Duan, Y. J. Hong, and Y. Yasuno, “Automated segmentation and characterization of choroidal vessels in high-penetration optical coherence tomography,” Opt. Express 21(13), 15787–15808 (2013).
    [Crossref] [PubMed]
  30. J. Mazzaferri, L. Beaton, G. Hounye, D. N. Sayah, and S. Costantino, “Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions,” Sci. Rep. 7, 42112 (2017).
  31. D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
    [Crossref] [PubMed]
  32. R. K. K. Wang, “Signal degradation by coherence tomography multiple scattering in optical of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47, 2281–2299 (2002).
    [Crossref] [PubMed]
  33. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
    [Crossref] [PubMed]
  34. L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).
    [Crossref] [PubMed]
  35. E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
    [Crossref] [PubMed]
  36. U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
    [Crossref] [PubMed]
  37. U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
    [Crossref] [PubMed]
  38. U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).
  39. M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
    [Crossref] [PubMed]
  40. M. A. Kirby, C. Li, W. J. Choi, G. Gregori, P. Rosenfeld, and R. Wang, “Why choroid vessels appear dark in clinical OCT images,” in Ophthalmic Technologies XXVIII, (International Society for Optics and Photonics, 2018), 1047428.
  41. R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).
  42. L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [Crossref] [PubMed]
  43. C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref] [PubMed]
  44. A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
    [Crossref] [PubMed]
  45. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
    [Crossref]
  46. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  47. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
    [Crossref] [PubMed]
  48. R. W. Knighton and G. Gregori, “The Shape of the Ganglion Cell plus Inner Plexiform Layers of the Normal Human Macula,” Invest. Ophthalmol. Vis. Sci. 53(11), 7412–7420 (2012).
    [Crossref] [PubMed]
  49. P. H. C. Eilers, I. D. Currie, and M. Durban, “Fast and compact smoothing on large multidimensional grids,” Comput. Stat. Data Anal. 50(1), 61–76 (2006).
    [Crossref]
  50. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
    [Crossref]
  51. L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
    [Crossref] [PubMed]
  52. Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

2018 (1)

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

2017 (8)

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

J. Mazzaferri, L. Beaton, G. Hounye, D. N. Sayah, and S. Costantino, “Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions,” Sci. Rep. 7, 42112 (2017).

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

2016 (7)

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

2015 (6)

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Q. Chen, W. Fan, S. Niu, J. Shi, H. Shen, and S. Yuan, “Automated choroid segmentation based on gradual intensity distance in HD-OCT images,” Opt. Express 23(7), 8974–8994 (2015).
[Crossref] [PubMed]

L. Beaton, J. Mazzaferri, F. Lalonde, M. Hidalgo-Aguirre, D. Descovich, M. R. Lesk, and S. Costantino, “Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging,” Biomed. Opt. Express 6(5), 1694–1706 (2015).
[Crossref] [PubMed]

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref] [PubMed]

2014 (3)

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (3)

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

R. W. Knighton and G. Gregori, “The Shape of the Ganglion Cell plus Inner Plexiform Layers of the Normal Human Macula,” Invest. Ophthalmol. Vis. Sci. 53(11), 7412–7420 (2012).
[Crossref] [PubMed]

2011 (2)

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
[Crossref] [PubMed]

S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
[Crossref] [PubMed]

2010 (2)

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

2009 (2)

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A Pilot Study of Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Normal Eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

2008 (3)

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref] [PubMed]

2006 (1)

P. H. C. Eilers, I. D. Currie, and M. Durban, “Fast and compact smoothing on large multidimensional grids,” Comput. Stat. Data Anal. 50(1), 61–76 (2006).
[Crossref]

2005 (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

2003 (1)

2002 (1)

R. K. K. Wang, “Signal degradation by coherence tomography multiple scattering in optical of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47, 2281–2299 (2002).
[Crossref] [PubMed]

2000 (1)

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41(10), 3117–3123 (2000).
[PubMed]

1987 (1)

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

1986 (1)

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

1980 (2)

M. A. Bloome, “Fluorescein angiography: risks,” Vision Res. 20(12), 1083–1097 (1980).
[Crossref] [PubMed]

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal Blood Flow as a Heat Dissipating Mechanism in the Macula,” Am. J. Ophthalmol. 89(5), 641–646 (1980).
[Crossref] [PubMed]

1969 (1)

S. S. Hayreh, “Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc,” Br. J. Ophthalmol. 53(11), 721–748 (1969).
[Crossref] [PubMed]

Abbey, A. M.

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Abràmoff, M. D.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Alkayed, N. J.

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

Alonso-Caneiro, D.

Amburn, E. P.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

An, L.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref] [PubMed]

Ansari-Shahrezaei, S.

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

Armstrong, G. W.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Auker, C.

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal Blood Flow as a Heat Dissipating Mechanism in the Macula,” Am. J. Ophthalmol. 89(5), 641–646 (1980).
[Crossref] [PubMed]

Austin, J. D.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Baran, U.

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref] [PubMed]

Beaton, L.

Binder, S.

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data,” Biomed. Opt. Express 4(1), 134–150 (2013).
[Crossref] [PubMed]

Bloome, M. A.

M. A. Bloome, “Fluorescein angiography: risks,” Vision Res. 20(12), 1083–1097 (1980).
[Crossref] [PubMed]

Bousquet, E.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Brezin, A.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Buitendijk, G. H. S.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

Bukowska, D.

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Carpenter, D. O.

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal Blood Flow as a Heat Dissipating Mechanism in the Macula,” Am. J. Ophthalmol. 89(5), 641–646 (1980).
[Crossref] [PubMed]

Cauberg, E. C. C.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

Chandrasekera, E.

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Chao, J.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Chen, C. L.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Chen, F. K.

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Chen, Q.

Chhablani, J.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Chiu, S. J.

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Choi, W. J.

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

Choma, M.

Chu, Z.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

Chung, S. E.

S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
[Crossref] [PubMed]

Collins, M. J.

Costantino, S.

Costanza, M. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Cromartie, R.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Cunefare, D.

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

Currie, I. D.

P. H. C. Eilers, I. D. Currie, and M. Durban, “Fast and compact smoothing on large multidimensional grids,” Comput. Stat. Data Anal. 50(1), 61–76 (2006).
[Crossref]

Dansingani, K. K.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Dastiridou, A. I.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

de Amorim Garcia Filho, C. A.

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

de Boer, J. F.

de Bruin, D. M.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

de la Rosette, J. J. M. C. H.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

de Reijke, T. M.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

Descovich, D.

Drexler, W.

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data,” Biomed. Opt. Express 4(1), 134–150 (2013).
[Crossref] [PubMed]

Duan, L.

Durban, M.

P. H. C. Eilers, I. D. Currie, and M. Durban, “Fast and compact smoothing on large multidimensional grids,” Comput. Stat. Data Anal. 50(1), 61–76 (2006).
[Crossref]

Durbin, M. K.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

Eilers, P. H. C.

P. H. C. Eilers, I. D. Currie, and M. Durban, “Fast and compact smoothing on large multidimensional grids,” Comput. Stat. Data Anal. 50(1), 61–76 (2006).
[Crossref]

Endo, H.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Esmaeelpour, M.

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data,” Biomed. Opt. Express 4(1), 134–150 (2013).
[Crossref] [PubMed]

Ethier, C. R.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
[Crossref] [PubMed]

Faber, D. J.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

Fan, W.

Farsiu, S.

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Feuer, W.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

Feuer, W. J.

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

Figueira, J.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Freund, B. K.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Fujimoto, J. G.

Fujiwara, T.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
[Crossref] [PubMed]

Gahm, J. K.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

Geselowitz, A.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Gil, J.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Gil, P.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Girard, M. J. A.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
[Crossref] [PubMed]

Glittenberg, C.

Go, S.

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

Goldhardt, R.

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Goud, A.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Greer, T.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Gregori, G.

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

R. W. Knighton and G. Gregori, “The Shape of the Ganglion Cell plus Inner Plexiform Layers of the Normal Human Macula,” Invest. Ophthalmol. Vis. Sci. 53(11), 7412–7420 (2012).
[Crossref] [PubMed]

Haas, P.

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

Hayreh, S. S.

S. S. Hayreh, “Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc,” Br. J. Ophthalmol. 53(11), 721–748 (1969).
[Crossref] [PubMed]

Hidalgo-Aguirre, M.

Hofman, A.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

Honegger, J.

Hong, Y. J.

Hounye, G.

J. Mazzaferri, L. Beaton, G. Hounye, D. N. Sayah, and S. Costantino, “Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions,” Sci. Rep. 7, 42112 (2017).

Husain, D.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Huynh, E.

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Iida, T.

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Ikuno, Y.

H. Ohsugi, Y. Ikuno, K. Oshima, and H. Tabuchi, “3-D Choroidal Thickness Maps from EDI-OCT in Highly Myopic Eyes,” Optom. Vis. Sci. 90(6), 599–606 (2013).
[Crossref] [PubMed]

Imamura, Y.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
[Crossref] [PubMed]

Izatt, J.

Jacques, S. L.

Jana, S.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Jawed, F.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Johnstone, M.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Kajic, V.

Kalkan, G.

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

Kang, S. W.

S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
[Crossref] [PubMed]

Kase, M.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Kase, S.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Kashani, A. H.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

Katsuta, S.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Kim, I. K.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Kim, Y. T.

S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
[Crossref] [PubMed]

Kinyoun, J.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Kirby, M.

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

Klaver, C. C. W.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

Klyen, B. R.

Knighton, R. W.

R. W. Knighton and G. Gregori, “The Shape of the Ganglion Cell plus Inner Plexiform Layers of the Normal Human Macula,” Invest. Ophthalmol. Vis. Sci. 53(11), 7412–7420 (2012).
[Crossref] [PubMed]

Koizumi, H.

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Kotani, M.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Kraus, M. F.

Kubach, S.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

Kuehlewein, L.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Kuriyan, A. E.

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

Laíns, I.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Lalonde, F.

Lee, C. S.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Lee, J. H.

S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
[Crossref] [PubMed]

Lee, K.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Legarreta, A. D.

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

Lemij, H. G.

Lesk, M. R.

Li, C. X.

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

Li, Y.

Linsenmeier, R. A.

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41(10), 3117–3123 (2000).
[PubMed]

Liu, J.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Mackey, D. A.

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Margolis, R.

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A Pilot Study of Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Normal Eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

Mari, J. M.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
[Crossref] [PubMed]

Marques, J. H.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Maruko, I.

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Mazzaferri, J.

McLaughlin, R. A.

McLenachan, S.

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Miller, A. R.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

Miller, J. B.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Miller, J. W.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Mo, J.

Modi, Y. S.

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Moisseiev, E.

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

Monnet, D.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Moshiri, A.

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

Mruthyunjaya, P.

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Mullins, R. F.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Munsen, R.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Niemeijer, M.

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Niu, S.

Nunes, R. P.

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

Ogasawara, M.

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Ohsugi, H.

H. Ohsugi, Y. Ikuno, K. Oshima, and H. Tabuchi, “3-D Choroidal Thickness Maps from EDI-OCT in Highly Myopic Eyes,” Optom. Vis. Sci. 90(6), 599–606 (2013).
[Crossref] [PubMed]

Ojima, A.

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Omori, M.

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

Oshima, K.

H. Ohsugi, Y. Ikuno, K. Oshima, and H. Tabuchi, “3-D Choroidal Thickness Maps from EDI-OCT in Highly Myopic Eyes,” Optom. Vis. Sci. 90(6), 599–606 (2013).
[Crossref] [PubMed]

Othara, R.

Padnick-Silver, L.

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41(10), 3117–3123 (2000).
[PubMed]

Parver, L. M.

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal Blood Flow as a Heat Dissipating Mechanism in the Macula,” Am. J. Ophthalmol. 89(5), 641–646 (1980).
[Crossref] [PubMed]

Pecen, P.

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Pepple, K. L.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Pizer, S. M.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Pozzoni, M. C.

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Providência, J.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Qi, X. L.

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

Qin, W.

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

Rafael de Oliveira Dias, J.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

Rasheed, M. A.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Read, S. A.

Rezaei, K.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Richhariya, A.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Richter, G. M.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

Robbins, P. D.

Rohrer, K. T.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Roisman, L.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

Rosenfeld, P. J.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Sadda, S.

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Sadda, S. R.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Salah, S.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Sampson, D. D.

Santos, A. R.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Sarin, N.

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Sarunic, M.

Saunders, C. M.

Sayah, D. N.

J. Mazzaferri, L. Beaton, G. Hounye, D. N. Sayah, and S. Costantino, “Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions,” Sci. Rep. 7, 42112 (2017).

Schaal, K. B.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Scolaro, L.

Sekiryu, T.

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

Shah, M.

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

Sharma, U.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Shen, H.

Shi, J.

Shi, Y.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

Shields, W.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Silva, R.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Sobel, R. S.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Sonka, M.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Spaide, R. F.

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A Pilot Study of Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Normal Eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

Springelkamp, H.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

Stetson, P. F.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

Strouthidis, N. G.

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
[Crossref] [PubMed]

Sugano, Y.

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Tabuchi, H.

H. Ohsugi, Y. Ikuno, K. Oshima, and H. Tabuchi, “3-D Choroidal Thickness Maps from EDI-OCT in Highly Myopic Eyes,” Optom. Vis. Sci. 90(6), 599–606 (2013).
[Crossref] [PubMed]

Takahashi, M.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Talcott, K. E.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Tepelus, T.

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

Terhaarromeny, B.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Thorell, M. R.

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

Tindel, L. J.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Toth, C. A.

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Van Gelder, R. N.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

van Leeuwen, T. G.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

Vavvas, D. G.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Vermeer, K. A.

Vingerling, J. R.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Visser, M.

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

Vuong, V. S.

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

Vupparaboina, K. K.

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

Wang, J. C.

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

Wang, R. K.

C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

U. Baran, Y. Li, and R. K. Wang, “In vivo tissue injury mapping using optical coherence tomography based methods,” Appl. Opt. 54(21), 6448–6453 (2015).
[Crossref] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

Wang, R. K. K.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

L. An and R. K. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[Crossref] [PubMed]

R. K. K. Wang, “Signal degradation by coherence tomography multiple scattering in optical of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47, 2281–2299 (2002).
[Crossref] [PubMed]

Weda, J. J. A.

Wood, B. A.

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

Yang, C.

Yannuzzi, L. A.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Yasuno, Y.

Yehoshua, Z.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Yiu, G.

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Yokoi, M.

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Yuan, S.

Zang, E.

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

Zhang, A. Q.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Zhang, L.

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

Zhang, Q.

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

Zhang, Q. Q.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Zhang, T.

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Zhang, W.

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

Zheng, F.

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

Zhu, W.

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

Zimmerman, J. B.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Zuiderveld, K.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Am. J. Ophthalmol. (5)

L. M. Parver, C. Auker, and D. O. Carpenter, “Choroidal Blood Flow as a Heat Dissipating Mechanism in the Macula,” Am. J. Ophthalmol. 89(5), 641–646 (1980).
[Crossref] [PubMed]

J. C. Wang, I. Laíns, J. Providência, G. W. Armstrong, A. R. Santos, P. Gil, J. Gil, K. E. Talcott, J. H. Marques, J. Figueira, D. G. Vavvas, I. K. Kim, J. W. Miller, D. Husain, R. Silva, and J. B. Miller, “Diabetic Choroidopathy: Choroidal Vascular Density and Volume in Diabetic Retinopathy With Swept-Source Optical Coherence Tomography,” Am. J. Ophthalmol. 184, 75–83 (2017).
[Crossref] [PubMed]

R. Margolis and R. F. Spaide, “A Pilot Study of Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Normal Eyes,” Am. J. Ophthalmol. 147(5), 811–815 (2009).
[Crossref] [PubMed]

R. F. Spaide, H. Koizumi, and M. C. Pozzoni, “Enhanced depth imaging spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 146(4), 496–500 (2008).
[Crossref] [PubMed]

V. S. Vuong, E. Moisseiev, D. Cunefare, S. Farsiu, A. Moshiri, and G. Yiu, “Repeatability of Choroidal Thickness Measurements on Enhanced Depth Imaging Optical Coherence Tomography Using Different Posterior Boundaries,” Am. J. Ophthalmol. 169, 104–112 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

Asia Pac. J. Ophthalmol. (Phila.) (1)

E. Huynh, E. Chandrasekera, D. Bukowska, S. McLenachan, D. A. Mackey, and F. K. Chen, “Past, Present, and Future Concepts of the Choroidal Scleral Interface Morphology on Optical Coherence Tomography,” Asia Pac. J. Ophthalmol. (Phila.) 6(1), 94–103 (2017).
[Crossref] [PubMed]

Biomed. Opt. Express (6)

L. Beaton, J. Mazzaferri, F. Lalonde, M. Hidalgo-Aguirre, D. Descovich, M. R. Lesk, and S. Costantino, “Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging,” Biomed. Opt. Express 6(5), 1694–1706 (2015).
[Crossref] [PubMed]

L. Scolaro, R. A. McLaughlin, B. R. Klyen, B. A. Wood, P. D. Robbins, C. M. Saunders, S. L. Jacques, and D. D. Sampson, “Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography,” Biomed. Opt. Express 3(2), 366–379 (2012).
[Crossref] [PubMed]

D. Alonso-Caneiro, S. A. Read, and M. J. Collins, “Automatic segmentation of choroidal thickness in optical coherence tomography,” Biomed. Opt. Express 4(12), 2795–2812 (2013).
[Crossref] [PubMed]

V. Kajić, M. Esmaeelpour, C. Glittenberg, M. F. Kraus, J. Honegger, R. Othara, S. Binder, J. G. Fujimoto, and W. Drexler, “Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data,” Biomed. Opt. Express 4(1), 134–150 (2013).
[Crossref] [PubMed]

C. L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5(1), 322–337 (2014).
[Crossref] [PubMed]

Br. J. Ophthalmol. (1)

S. S. Hayreh, “Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc,” Br. J. Ophthalmol. 53(11), 721–748 (1969).
[Crossref] [PubMed]

Comput Vision Graph (1)

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. Terhaarromeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive Histogram Equalization and Its Variations,” Comput Vision Graph 39(3), 355–368 (1987).
[Crossref]

Comput. Stat. Data Anal. (1)

P. H. C. Eilers, I. D. Currie, and M. Durban, “Fast and compact smoothing on large multidimensional grids,” Comput. Stat. Data Anal. 50(1), 61–76 (2006).
[Crossref]

Eur. J. Ophthalmol. (1)

S. Kase, H. Endo, M. Yokoi, M. Kotani, S. Katsuta, M. Takahashi, and M. Kase, “Choroidal thickness in diabetic retinopathy in relation to long-term systemic treatments for diabetes mellitus,” Eur. J. Ophthalmol. 26(2), 158–162 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (9)

A. R. Miller, L. Roisman, Q. Zhang, F. Zheng, J. Rafael de Oliveira Dias, Z. Yehoshua, K. B. Schaal, W. Feuer, G. Gregori, Z. Chu, C. L. Chen, S. Kubach, L. An, P. F. Stetson, M. K. Durbin, R. K. K. Wang, and P. J. Rosenfeld, “Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization,” Invest. Ophthalmol. Vis. Sci. 58(3), 1499–1505 (2017).
[Crossref] [PubMed]

P. Haas, M. Esmaeelpour, S. Ansari-Shahrezaei, W. Drexler, and S. Binder, “Choroidal thickness in patients with reticular pseudodrusen using 3D 1060-nm OCT maps,” Invest. Ophthalmol. Vis. Sci. 55(4), 2674–2681 (2014).
[Crossref] [PubMed]

F. Zheng, G. Gregori, K. B. Schaal, A. D. Legarreta, A. R. Miller, L. Roisman, W. J. Feuer, and P. J. Rosenfeld, “Choroidal thickness and choroidal vessel density in nonexudative age-related macular degeneration using swept-source optical coherence tomography imaging,” Invest. Ophthalmol. Vis. Sci. 57(14), 6256–6264 (2016).
[Crossref] [PubMed]

R. A. Linsenmeier and L. Padnick-Silver, “Metabolic dependence of photoreceptors on the choroid in the normal and detached retina,” Invest. Ophthalmol. Vis. Sci. 41(10), 3117–3123 (2000).
[PubMed]

L. Zhang, K. Lee, M. Niemeijer, R. F. Mullins, M. Sonka, and M. D. Abràmoff, “Automated Segmentation of the Choroid from Clinical SD-OCT,” Invest. Ophthalmol. Vis. Sci. 53(12), 7510–7519 (2012).
[Crossref] [PubMed]

L. Zhang, G. H. S. Buitendijk, K. Lee, M. Sonka, H. Springelkamp, A. Hofman, J. R. Vingerling, R. F. Mullins, C. C. W. Klaver, and M. D. Abràmoff, “Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT,” Invest. Ophthalmol. Vis. Sci. 56(5), 3202–3211 (2015).
[Crossref] [PubMed]

R. W. Knighton and G. Gregori, “The Shape of the Ganglion Cell plus Inner Plexiform Layers of the Normal Human Macula,” Invest. Ophthalmol. Vis. Sci. 53(11), 7412–7420 (2012).
[Crossref] [PubMed]

M. J. A. Girard, N. G. Strouthidis, C. R. Ethier, and J. M. Mari, “Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head,” Invest. Ophthalmol. Vis. Sci. 52(10), 7738–7748 (2011).
[Crossref] [PubMed]

R. K. K. Wang, M. Kirby, C. X. Li, W. J. Choi, G. Gregori, and P. J. Rosenfeld, “An explanation for why choroidal blood vessels appear dark on clinical OCT images,” Invest. Ophthalmol. Vis. Sci. 58, 4754 (2017).

J. Biomed. Opt. (2)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[Crossref] [PubMed]

E. C. C. Cauberg, D. M. de Bruin, D. J. Faber, T. M. de Reijke, M. Visser, J. J. M. C. H. de la Rosette, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of bladder biopsies using optical coherence tomography for grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6), 066013 (2010).
[Crossref] [PubMed]

J. Neurosci. Methods (1)

U. Baran, W. Zhu, W. J. Choi, M. Omori, W. Zhang, N. J. Alkayed, and R. K. K. Wang, “Automated segmentation and enhancement of optical coherence tomography-acquired images of rodent brain,” J. Neurosci. Methods 270, 132–137 (2016).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys. 38(15), 2519–2535 (2005).
[Crossref]

JAMA Ophthalmol. (1)

G. Yiu, P. Pecen, N. Sarin, S. J. Chiu, S. Farsiu, P. Mruthyunjaya, and C. A. Toth, “Characterization of the Choroid-Scleral Junction and Suprachoroidal Layer in Healthy Individuals on Enhanced-Depth Imaging Optical Coherence Tomography,” JAMA Ophthalmol. 132(2), 174–181 (2014).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging Retina (2)

R. P. Nunes, R. Goldhardt, C. A. de Amorim Garcia Filho, M. R. Thorell, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, M. Shah, Z. Yehoshua, G. Gregori, W. Feuer, and P. J. Rosenfeld, “Spectral-Domain Optical Coherence Tomography Measurements of Choroidal Thickness and Outer Retinal Disruption in Macular Telangiectasia Type 2,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 162–170 (2015).
[Crossref] [PubMed]

M. R. Thorell, R. Goldhardt, R. P. Nunes, C. A. de Amorim Garcia Filho, A. M. Abbey, A. E. Kuriyan, Y. S. Modi, G. Gregori, Z. Yehoshua, W. Feuer, S. Sadda, and P. J. Rosenfeld, “Association Between Subfoveal Choroidal Thickness, Reticular Pseudodrusen, and Geographic Atrophy in Age-Related Macular Degeneration,” Ophthalmic Surg. Lasers Imaging Retina 46(5), 513–521 (2015).
[Crossref] [PubMed]

Ophthalmology (4)

A. I. Dastiridou, E. Bousquet, L. Kuehlewein, T. Tepelus, D. Monnet, S. Salah, A. Brezin, and S. R. Sadda, “Choroidal Imaging with Swept-Source Optical Coherence Tomography in Patients with Birdshot Chorioretinopathy: Choroidal Reflectivity and Thickness,” Ophthalmology 124(8), 1186–1195 (2017).
[Crossref] [PubMed]

L. A. Yannuzzi, K. T. Rohrer, L. J. Tindel, R. S. Sobel, M. A. Costanza, W. Shields, and E. Zang, “Fluorescein angiography complication survey,” Ophthalmology 93(5), 611–617 (1986).
[Crossref] [PubMed]

S. E. Chung, S. W. Kang, J. H. Lee, and Y. T. Kim, “Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-Related Macular Degeneration,” Ophthalmology 118(5), 840–845 (2011).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, A. Ojima, M. Ogasawara, and R. F. Spaide, “Subfoveal Choroidal Thickness after Treatment of Central Serous Chorioretinopathy,” Ophthalmology 117(9), 1792–1799 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Optom. Vis. Sci. (1)

H. Ohsugi, Y. Ikuno, K. Oshima, and H. Tabuchi, “3-D Choroidal Thickness Maps from EDI-OCT in Highly Myopic Eyes,” Optom. Vis. Sci. 90(6), 599–606 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

R. K. K. Wang, “Signal degradation by coherence tomography multiple scattering in optical of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47, 2281–2299 (2002).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

A. H. Kashani, C. L. Chen, J. K. Gahm, F. Zheng, G. M. Richter, P. J. Rosenfeld, Y. Shi, and R. K. K. Wang, “Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications,” Prog. Retin. Eye Res. 60, 66–100 (2017).
[Crossref] [PubMed]

Retina (2)

Y. Imamura, T. Fujiwara, R. Margolis, and R. F. Spaide, “Enhanced Depth Imaging Optical Coherence Tomography of the Choroid in Central Serous Chorioretinopathy,” Retina 29(10), 1469–1473 (2009).
[Crossref] [PubMed]

I. Maruko, T. Iida, Y. Sugano, S. Go, and T. Sekiryu, “Subfoveal Choroidal Thickness in Papillitis Type of Vogt-Koyanagi-Harada Disease and Idiopathic Optic Neuritis,” Retina 36(5), 992–999 (2016).
[Crossref] [PubMed]

Sci. Rep. (4)

K. K. Vupparaboina, K. K. Dansingani, A. Goud, M. A. Rasheed, F. Jawed, S. Jana, A. Richhariya, B. K. Freund, and J. Chhablani, “Quantitative shadow compensated optical coherence tomography of choroidal vasculature,” Sci. Rep. 8, 6461 (2018).

U. Baran, W. Qin, X. L. Qi, G. Kalkan, and R. K. Wang, “OCT-based label-free in vivo lymphangiography within human skin and areola,” Sci. Rep. 6, 21122 (2016).

J. Mazzaferri, L. Beaton, G. Hounye, D. N. Sayah, and S. Costantino, “Open-source algorithm for automatic choroid segmentation of OCT volume reconstructions,” Sci. Rep. 7, 42112 (2017).

Q. Q. Zhang, C. S. Lee, J. Chao, C. L. Chen, T. Zhang, U. Sharma, A. Q. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R. Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. K. Wang, “Wide-field optical coherence tomography based microangiography for retinal imaging,” Sci. Rep. 6, 22017 (2016).

Vision Res. (1)

M. A. Bloome, “Fluorescein angiography: risks,” Vision Res. 20(12), 1083–1097 (1980).
[Crossref] [PubMed]

Other (1)

M. A. Kirby, C. Li, W. J. Choi, G. Gregori, P. Rosenfeld, and R. Wang, “Why choroid vessels appear dark in clinical OCT images,” in Ophthalmic Technologies XXVIII, (International Society for Optics and Photonics, 2018), 1047428.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Flow chart for attenuation correction assisted automatic segmentation of choroid and visualization of choroidal vasculature. Signals in regular OCT B-scans (A) were converted to OAC (B) with enhanced contrast. The image was flattened at Bruch’s membrane that was fitted as the convex hull of the RPE bottom (C). Outer boundaries of the choroidal vessels were detected through a graph search (D) and were fitted for the choroidal-sclera interface via P-spline fitting (E). A choroidal thickness map (F) and vasculature map (G) were generated from the segmented choroidal slab. (Scale bar: 2 mm).
Fig. 2
Fig. 2 Attenuation correction significantly enhanced the contrast of the CSI and the accuracy of the automatic CSI segmentation. (A-B) Interlayer contrast (IC) was significantly increased (P < 0.001) after attenuation correction. (C) Axial pixel intensity (percentage difference from mean) were recorded along the arrows. Attenuation correction improved the percentage difference in the axial pixel intensity at the CSI. (D-I) Automatic segmentations of the CSI for three adjacent B-scans before (D-F, red line) and after (G-I, blue line) attenuation correction are shown. Nodes of the outer choroidal vessel borders with corresponding weight (error bar) were labeled in green. CSI detected from regular OCT B-scans shows variability while the CSIs detected after attenuation correction were consistent and accurate. (Scale bar: 0.5 mm).
Fig. 3
Fig. 3 Segmentations of the choroid slabs were significantly more accurate after attenuation correction. (A-C) Choroid thickness maps of manual segmentation on B-scans after attenuation correction (A), automatic segmentation on regular OCT B-scans (B), and automatic segmentation of attenuation corrected OCT B-scans (C). (D-F) Corresponding B-scans (indicated by the black line on thickness maps) with manual segmentation (white line), and automatic segmentation before (red line) and after (blue line) attenuation correction. (Scale bar: 0.5 X 0.5 mm).
Fig. 4
Fig. 4 Attenuation correction eliminated shadows from retinal vessels and largely reduced the artifacts when visualizing the choroidal vasculature. (A-B) Representative B-scan before and after attenuation correction. Shadows from retinal vessels shown with yellow arrows were markedly reduced after attenuation correction. (C) Lateral pixel intensity profiles along the shadows (indicated with red and blue arrows) showed the percentage difference from the mean intensities before and after attenuation correction. After attenuation correction, the indicated shadows were successfully eliminated. (D-E) Minimum projection of choroidal vessels of a normal eye without (D) and with (E) attenuation correction. (Scale bar: 2 mm). (F) Magnified regions (red and blue squares) of the vasculature showed the elimination of artifacts from the retina after attenuation correction. (Scale bar: 1 mm).
Fig. 5
Fig. 5 Repeatability of attenuation correction assisted segmentation of the choroid and choroidal vasculature. Choroid thickness maps (A-D) and vasculature maps (E-H) of 4 repeated scans from a normal subject. MT = mean thickness. VD = vessel density. (Scale bar: 2 mm).

Tables (1)

Tables Icon

Table 1 Accuracy, correlation coefficient, absolute boundary difference, and overlap ratios between manual segmentation and automatic segmentations before and after attenuation correction are shown. Data are represented as mean ± SD (n = 5); *, P<0.05; **, P< 0.01. Statistical analyses were conducted via paired T-test.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I i [ k m ]= ρ 2 i S[ k m ][ R R + R S +2 R R R S cos( 2 k m Δx+ φ i )]
H[ k m ]= 1 2 ρS[ k m ] R R R S cos( 2 k m Δx )
D( z )= k=1 M H( k m ) e 2 k m z
D A ( z )=D(z) e 2α 0 z D( u )du
z D A ( z )dz= z D( z ) e 2α 0 z D( u )du dz = 1 2α z 2αD( z ) e 2α 0 z D( u )du dz= 1 2α [ e 2α 0 z D( u )du ] z = e 2α 0 z D( u )du 2α
D( z )= D A ( z ) e 2α 0 z D( u )du = D A ( z ) 2α z D A ( z )dz
D( z )= D A ( z ) 2α z+1 D A ( z ) D A ( z ) 2α z+1 N D A ( z )
D Attncorr ( z )= D A 2 (z) 2 z+1 N D A 2 (z)
Z'[ x,y ]=255Z[ x,y ]
Y= Y min + 2 β 2 ln( 1 1P( Z ' ) )
Interlayer contrast ( IC )=| I 1 I 2 I 1 + I 2 |