Abstract

Multi-wavelength en face photoacoustic microscopy (PAM) was integrated with a spectral domain optical coherence tomography (SD-OCT) to evaluate optical properties of retinal vein occlusion (RVO) and retinal neovascularization (RNV) in living rabbits. The multi-wavelength PAM of the RVO and RNV were performed at several wavelengths ranging from 510 to 600 nm. Rose Bengal-induced RVO and RNV were performed and evaluated on eight rabbits using color fundus photography, fluorescein angiography, OCT, and spectroscopic en face PAM. In vivo experiment demonstrates that the spectral variation of photoacoustic response was achieved. The location and the treatment margins of the occluded vasculature as well as the morphology of individual RNV were obtained with high contrast at a laser energy of 80 nJ, which was only half of the American National Standards Institute safety limit. In addition, dynamic changes in the retinal morphology and retinal neovascularization were administered using PA spectroscopy at numerous time points: 0, 3, 7, 14, 21, 28, and 35 days after photocoagulation. The proposed multi-wavelength spectroscopic PAM imaging may provide a potential imaging platform to differentiate occluded retinal vasculature and to improve characterization of microvasculature in a safe and efficient manner.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography

Chao Tian, Wei Zhang, Aghapi Mordovanakis, Xueding Wang, and Yannis M. Paulus
Opt. Express 25(14) 15947-15955 (2017)

Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation

Brian T. Soetikno, Xiao Shu, Qi Liu, Wenzhong Liu, Siyu Chen, Lisa Beckmann, Amani A. Fawzi, and Hao F. Zhang
Biomed. Opt. Express 8(8) 3571-3582 (2017)

Simultaneous optical coherence tomography angiography and fluorescein angiography in rodents with normal retina and laser-induced choroidal neovascularization

Wenzhong Liu, Hao Li, Ronil S. Shah, Xiao Shu, Robert A. Linsenmeier, Amani A. Fawzi, and Hao F. Zhang
Opt. Lett. 40(24) 5782-5785 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
    [Crossref] [PubMed]
  2. J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
    [Crossref] [PubMed]
  3. S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
    [Crossref] [PubMed]
  4. B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
    [Crossref] [PubMed]
  5. F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
    [Crossref] [PubMed]
  6. P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
    [Crossref] [PubMed]
  7. I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
    [Crossref] [PubMed]
  8. M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
    [Crossref] [PubMed]
  9. X. X. Li and Y. M. Paulus, “Novel Retinal Imaging Technologies,” Int. J. Opthalmol. Eye Sci. 7, 1–5 (2017).
  10. R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
    [Crossref] [PubMed]
  11. L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
    [Crossref] [PubMed]
  12. M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
    [Crossref] [PubMed]
  13. A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett. 35(3), 270–272 (2010).
    [Crossref] [PubMed]
  14. W. X. Hu, Q. Liu, and Y. M. Paulus, “Photoacoustic Imaging in Ophthalmology,” Int. J. Opthalmol. Eye Sci. 8, 126–132 (2015).
  15. S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
    [Crossref] [PubMed]
  16. R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
    [Crossref] [PubMed]
  17. S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
    [Crossref] [PubMed]
  18. H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
    [Crossref] [PubMed]
  19. A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
    [Crossref] [PubMed]
  20. X. Liu, T. Liu, R. Wen, Y. Li, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging,” Opt. Lett. 40(7), 1370–1373 (2015).
    [Crossref] [PubMed]
  21. W. Song, Q. Wei, S. Jiao, and H. F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography,” J. Vis. Exp. 71, e4390 (2013).
    [Crossref] [PubMed]
  22. C. Tian, W. Zhang, A. Mordovanakis, X. Wang, and Y. M. Paulus, “Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography,” Opt. Express 25(14), 15947–15955 (2017).
    [Crossref] [PubMed]
  23. C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
    [Crossref] [PubMed]
  24. A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
    [Crossref] [PubMed]
  25. M. Oncel, G. A. Peyman, and B. Khoobehi, “Tissue plasminogen activator in the treatment of experimental retinal vein occlusion,” Retina 9(1), 1–7 (1989).
    [Crossref] [PubMed]
  26. H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
    [Crossref] [PubMed]
  27. V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
    [Crossref] [PubMed]
  28. G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
    [Crossref] [PubMed]
  29. V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
    [PubMed]
  30. S. A. Prahl, “ http://omlc.org/spectra/hemoglobin/ A compendium of tissue optical properties,” (2012).
  31. J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
    [Crossref] [PubMed]
  32. T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
    [Crossref] [PubMed]
  33. L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
    [Crossref] [PubMed]
  34. W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
    [Crossref] [PubMed]
  35. S. Prahl, “A compendium of tissue optical properties,” (2012).
  36. T. Liu, H. Li, W. Song, S. Jiao, and H. F. Zhang, “Fundus Camera Guided Photoacoustic Ophthalmoscopy,” Curr. Eye Res. 38(12), 1229–1234 (2013).
    [Crossref] [PubMed]
  37. A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
    [Crossref] [PubMed]
  38. L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).
  39. M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
    [Crossref] [PubMed]
  40. T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
    [Crossref] [PubMed]
  41. D. T. Organisciak and D. K. Vaughan, “Retinal light damage: Mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
    [Crossref] [PubMed]

2018 (3)

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

2017 (9)

V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
[PubMed]

C. Tian, W. Zhang, A. Mordovanakis, X. Wang, and Y. M. Paulus, “Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography,” Opt. Express 25(14), 15947–15955 (2017).
[Crossref] [PubMed]

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref] [PubMed]

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

X. X. Li and Y. M. Paulus, “Novel Retinal Imaging Technologies,” Int. J. Opthalmol. Eye Sci. 7, 1–5 (2017).

M. Salas, M. Augustin, L. Ginner, A. Kumar, B. Baumann, R. Leitgeb, W. Drexler, S. Prager, J. Hafner, U. Schmidt-Erfurth, and M. Pircher, “Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics,” Biomed. Opt. Express 8(1), 207–222 (2017).
[Crossref] [PubMed]

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

2016 (2)

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

2015 (6)

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

X. Liu, T. Liu, R. Wen, Y. Li, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging,” Opt. Lett. 40(7), 1370–1373 (2015).
[Crossref] [PubMed]

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

W. X. Hu, Q. Liu, and Y. M. Paulus, “Photoacoustic Imaging in Ophthalmology,” Int. J. Opthalmol. Eye Sci. 8, 126–132 (2015).

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref] [PubMed]

L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
[Crossref] [PubMed]

2014 (1)

S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
[Crossref] [PubMed]

2013 (3)

W. Song, Q. Wei, S. Jiao, and H. F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography,” J. Vis. Exp. 71, e4390 (2013).
[Crossref] [PubMed]

T. Liu, H. Li, W. Song, S. Jiao, and H. F. Zhang, “Fundus Camera Guided Photoacoustic Ophthalmoscopy,” Curr. Eye Res. 38(12), 1229–1234 (2013).
[Crossref] [PubMed]

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

2012 (1)

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

2010 (7)

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett. 35(3), 270–272 (2010).
[Crossref] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[Crossref] [PubMed]

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: Mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

2008 (1)

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

2004 (1)

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

1999 (1)

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

1998 (1)

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

1992 (1)

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

1989 (1)

M. Oncel, G. A. Peyman, and B. Khoobehi, “Tissue plasminogen activator in the treatment of experimental retinal vein occlusion,” Retina 9(1), 1–7 (1989).
[Crossref] [PubMed]

1972 (1)

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[Crossref] [PubMed]

Ahn, Y. C.

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

Ameri, H.

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

An, L.

L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
[Crossref] [PubMed]

Andrews-Kaminsky, L. B.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Augustin, M.

Baeza, A.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Baeza, M. L.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Barry, C.

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

Baumann, B.

Beckmann, L.

Beebe, D. C.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Blumenkranz, M. S.

Bodapati, S.

Caillaux, V.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Cannata, J. M.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Chader, G. J.

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

Chao, D. L.

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

Chao, S.-L.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Chao, Y.-C.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Chen, C.-C.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Chen, S.

Chen, Y. C.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Cheung, N.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Chiang, S.-J.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Coffee, R. E.

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

Coleman, D. J.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Constable, I.

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

Coscas, F.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Coscas, G.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Cui, Q.

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

de la Zerda, A.

Dollberg, Y.

Dong, C.-Y.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Drexler, W.

Durbin, M. K.

L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
[Crossref] [PubMed]

Emelianov, S. Y.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Fang, W.

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

Fawzi, A.

Fawzi, A. A.

Fujimoto, J. G.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref] [PubMed]

Gambhir, S. S.

Ginner, L.

Glacet-Bernard, A.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Hafner, J.

Hariri, A.

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

Hayreh, S. S.

S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
[Crossref] [PubMed]

Hennen, S. N.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Honoré, B.

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Hovhannisyan, V. A.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Hu, J.

Hu, W. X.

W. X. Hu, Q. Liu, and Y. M. Paulus, “Photoacoustic Imaging in Ophthalmology,” Int. J. Opthalmol. Eye Sci. 8, 126–132 (2015).

Hubbard, L. D.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Hubschman, J.-P.

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

Hughes, A.

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[Crossref] [PubMed]

Humayun, M. S.

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

Izatt, J. A.

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

Jayagopal, A.

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

Jeevarathinam, A. S.

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

Jhunjhunwala, A.

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

Jiang, M.

Jiao, S.

X. Liu, T. Liu, R. Wen, Y. Li, C. A. Puliafito, H. F. Zhang, and S. Jiao, “Optical coherence photoacoustic microscopy for in vivo multimodal retinal imaging,” Opt. Lett. 40(7), 1370–1373 (2015).
[Crossref] [PubMed]

W. Song, Q. Wei, S. Jiao, and H. F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography,” J. Vis. Exp. 71, e4390 (2013).
[Crossref] [PubMed]

T. Liu, H. Li, W. Song, S. Jiao, and H. F. Zhang, “Fundus Camera Guided Photoacoustic Ophthalmoscopy,” Curr. Eye Res. 38(12), 1229–1234 (2013).
[Crossref] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[Crossref] [PubMed]

Jokerst, J. V.

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

Jørgensen Cehofski, L.

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Jung, M. J.

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

Kalishman, J.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Kang, H. W.

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

Kass, M. A.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Kehlet Barton, J.

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

Khoobehi, B.

M. Oncel, G. A. Peyman, and B. Khoobehi, “Tissue plasminogen activator in the treatment of experimental retinal vein occlusion,” Retina 9(1), 1–7 (1989).
[Crossref] [PubMed]

Khuri-Yakub, B. T.

Kim, H.

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

Kim, H. H.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Kim, S. W.

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

Kim, Y.

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

Kjærgaard, B.

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Klein, B. E. K.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Klein, R.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Knudtson, M. D.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Kong, F.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Kowalski, J. W.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Kruse, A.

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Kuehlewein, L.

L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
[Crossref] [PubMed]

Kulkarni, M. D.

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

Kumar, A.

Kuo, T.-R.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Leitgeb, R.

Lemaster, J.

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

Li, H.

T. Liu, H. Li, W. Song, S. Jiao, and H. F. Zhang, “Fundus Camera Guided Photoacoustic Ophthalmoscopy,” Curr. Eye Res. 38(12), 1229–1234 (2013).
[Crossref] [PubMed]

Li, J.

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

Li, X. X.

X. X. Li and Y. M. Paulus, “Novel Retinal Imaging Technologies,” Int. J. Opthalmol. Eye Sci. 7, 1–5 (2017).

Li, Y.

Lim, L.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Lin, S.-J.

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

Liu, Q.

B. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, and H. F. Zhang, “Optical coherence tomography angiography of retinal vascular occlusions produced by imaging-guided laser photocoagulation,” Biomed. Opt. Express 8(8), 3571–3582 (2017).
[Crossref] [PubMed]

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

W. X. Hu, Q. Liu, and Y. M. Paulus, “Photoacoustic Imaging in Ophthalmology,” Int. J. Opthalmol. Eye Sci. 8, 126–132 (2015).

Liu, T.

Liu, W.

Liu, X.

Liu, Z.

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

Lloyd, H. O.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

López-Sáez, M. P.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Luke, G. P.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Lupidi, M.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Manivasagan, P.

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

Maslov, K. I.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

McAllister, I. L.

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

McCollum, G. W.

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

McIntosh, R. L.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Meuer, S. M.

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Miere, A.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Mitchell, P.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Mordovanakis, A.

Moshfeghi, D. M.

Nguyen, H.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Nguyen, V. P.

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
[PubMed]

Oh, J.

V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
[PubMed]

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

Oliver, S. C.

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

Oncel, M.

M. Oncel, G. A. Peyman, and B. Khoobehi, “Tissue plasminogen activator in the treatment of experimental retinal vein occlusion,” Retina 9(1), 1–7 (1989).
[Crossref] [PubMed]

Ordoqui, E.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Organisciak, D. T.

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: Mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

Park, S.

V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
[PubMed]

Paulus, Y. M.

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

C. Tian, W. Zhang, A. Mordovanakis, X. Wang, and Y. M. Paulus, “Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography,” Opt. Express 25(14), 15947–15955 (2017).
[Crossref] [PubMed]

X. X. Li and Y. M. Paulus, “Novel Retinal Imaging Technologies,” Int. J. Opthalmol. Eye Sci. 7, 1–5 (2017).

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

W. X. Hu, Q. Liu, and Y. M. Paulus, “Photoacoustic Imaging in Ophthalmology,” Int. J. Opthalmol. Eye Sci. 8, 126–132 (2015).

A. de la Zerda, Y. M. Paulus, R. Teed, S. Bodapati, Y. Dollberg, B. T. Khuri-Yakub, M. S. Blumenkranz, D. M. Moshfeghi, and S. S. Gambhir, “Photoacoustic ocular imaging,” Opt. Lett. 35(3), 270–272 (2010).
[Crossref] [PubMed]

Penn, J. S.

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

Peyman, G. A.

M. Oncel, G. A. Peyman, and B. Khoobehi, “Tissue plasminogen activator in the treatment of experimental retinal vein occlusion,” Retina 9(1), 1–7 (1989).
[Crossref] [PubMed]

Pircher, M.

Prager, S.

Prahl, S.

S. Prahl, “A compendium of tissue optical properties,” (2012).

Prasad, P. S.

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

Puliafito, C. A.

Qian, X.

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

Rao, N. A.

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

Ratanapakorn, T.

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

Rogers, S.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Sadda, S. R.

L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
[Crossref] [PubMed]

Sainza, T.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Salas, M.

Schmidt-Erfurth, U.

Schwartz, S. D.

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

Seok, K. H.

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

Shu, X.

Shuai, Y.

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

Shui, Y.-B.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Shung, K. K.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

S. Jiao, M. Jiang, J. Hu, A. Fawzi, Q. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, “Photoacoustic ophthalmoscopy for in vivo retinal imaging,” Opt. Express 18(4), 3967–3972 (2010).
[Crossref] [PubMed]

Silverman, R. H.

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Soetikno, B. T.

Song, W.

W. Song, Q. Wei, S. Jiao, and H. F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography,” J. Vis. Exp. 71, e4390 (2013).
[Crossref] [PubMed]

T. Liu, H. Li, W. Song, S. Jiao, and H. F. Zhang, “Fundus Camera Guided Photoacoustic Ophthalmoscopy,” Curr. Eye Res. 38(12), 1229–1234 (2013).
[Crossref] [PubMed]

Souied, E. H.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref] [PubMed]

Stensballe, A.

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Teed, R.

Tian, C.

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

C. Tian, W. Zhang, A. Mordovanakis, X. Wang, and Y. M. Paulus, “Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography,” Opt. Express 25(14), 15947–15955 (2017).
[Crossref] [PubMed]

Tornero, P.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Uddin, M. I.

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

Uzzan, J.

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

Vaughan, D. K.

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: Mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

Vijayasekaran, S.

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

Vorum, H.

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Waheed, N. K.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref] [PubMed]

Wang, J.

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

Wang, J. J.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

Wang, L. V.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Wang, X.

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

C. Tian, W. Zhang, A. Mordovanakis, X. Wang, and Y. M. Paulus, “Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography,” Opt. Express 25(14), 15947–15955 (2017).
[Crossref] [PubMed]

Wei, Q.

W. Song, Q. Wei, S. Jiao, and H. F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography,” J. Vis. Exp. 71, e4390 (2013).
[Crossref] [PubMed]

Welch, A. J.

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

Wen, R.

Wong, T. Y.

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Wook Kang, H.

V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
[PubMed]

Xing, W.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Yang, R.

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

Yazdanfar, S.

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

Yeager, D.

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Yu, D.-Y.

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

Yuan, S.

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

Zhang, H. F.

Zhang, K.

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

Zhang, W.

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

C. Tian, W. Zhang, A. Mordovanakis, X. Wang, and Y. M. Paulus, “Noninvasive chorioretinal imaging in living rabbits using integrated photoacoustic microscopy and optical coherence tomography,” Opt. Express 25(14), 15947–15955 (2017).
[Crossref] [PubMed]

Zhao, Q.

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

Zhou, Q.

Zhou, Y.

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Zubeldia, J. M.

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Am. J. Ophthalmol. (2)

F. Coscas, A. Glacet-Bernard, A. Miere, V. Caillaux, J. Uzzan, M. Lupidi, G. Coscas, and E. H. Souied, “Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa,” Am. J. Ophthalmol. 161, 160 (2016).
[Crossref] [PubMed]

L. Jørgensen Cehofski, A. Kruse, B. Kjærgaard, A. Stensballe, B. Honoré, and H. Vorum, “Dye-free porcine model of experimental branch retinal vein occlusion: a suitable approach for retinal proteomics,” Am. J. Ophthalmol. 2015, 839137 (2015).

Ann. Allergy Asthma Immunol. (1)

M. P. López-Sáez, E. Ordoqui, P. Tornero, A. Baeza, T. Sainza, J. M. Zubeldia, and M. L. Baeza, “Fluorescein-induced allergic reaction,” Ann. Allergy Asthma Immunol. 81(5), 428–430 (1998).
[Crossref] [PubMed]

Ann. Biomed. Eng. (1)

G. P. Luke, D. Yeager, and S. Y. Emelianov, “Biomedical applications of photoacoustic imaging with exogenous contrast agents,” Ann. Biomed. Eng. 40(2), 422–437 (2012).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

L. Zhang, X. Qian, K. Zhang, Q. Cui, Q. Zhao, and Z. Liu, “Three-dimensional reconstruction of blood vessels in the rabbit eye by X-ray phase contrast imaging,” Biomed. Eng. Online 12(1), 30 (2013).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

I. L. McAllister, D.-Y. Yu, S. Vijayasekaran, C. Barry, and I. Constable, “Induced chorioretinal venous anastomosis in experimental retinal branch vein occlusion,” Br. J. Ophthalmol. 76(10), 615–620 (1992).
[Crossref] [PubMed]

Curr. Eye Res. (1)

T. Liu, H. Li, W. Song, S. Jiao, and H. F. Zhang, “Fundus Camera Guided Photoacoustic Ophthalmoscopy,” Curr. Eye Res. 38(12), 1229–1234 (2013).
[Crossref] [PubMed]

Dermatology (Basel) (1)

J. Kehlet Barton, J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, and A. J. Welch, “Three-dimensional reconstruction of blood vessels from in vivo color Doppler optical coherence tomography images,” Dermatology (Basel) 198(4), 355–361 (1999).
[Crossref] [PubMed]

Exp. Eye Res. (1)

S. N. Hennen, W. Xing, Y.-B. Shui, Y. Zhou, J. Kalishman, L. B. Andrews-Kaminsky, M. A. Kass, D. C. Beebe, K. I. Maslov, and L. V. Wang, “Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits,” Exp. Eye Res. 138, 153–158 (2015).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

H. Ameri, T. Ratanapakorn, N. A. Rao, G. J. Chader, and M. S. Humayun, “Natural course of experimental retinal vein occlusion in rabbit; arterial occlusion following venous photothrombosis,” Graefes Arch. Clin. Exp. Ophthalmol. 246(10), 1429–1439 (2008).
[Crossref] [PubMed]

Int. J. Opthalmol. Eye Sci. (2)

W. X. Hu, Q. Liu, and Y. M. Paulus, “Photoacoustic Imaging in Ophthalmology,” Int. J. Opthalmol. Eye Sci. 8, 126–132 (2015).

X. X. Li and Y. M. Paulus, “Novel Retinal Imaging Technologies,” Int. J. Opthalmol. Eye Sci. 7, 1–5 (2017).

Invest. Ophthalmol. Vis. Sci. (1)

M. I. Uddin, A. Jayagopal, G. W. McCollum, R. Yang, and J. S. Penn, “In vivo imaging of retinal hypoxia using hypox-4-dependent fluorescence in a mouse model of laser-induced retinal vein occlusion (RVO),” Invest. Ophthalmol. Vis. Sci. 58(9), 3818–3824 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

T.-R. Kuo, V. A. Hovhannisyan, Y.-C. Chao, S.-L. Chao, S.-J. Chiang, S.-J. Lin, C.-Y. Dong, and C.-C. Chen, “Multiple release kinetics of targeted drug from gold nanorod embedded polyelectrolyte conjugates induced by near-infrared laser irradiation,” J. Am. Chem. Soc. 132(40), 14163–14171 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

A. Hariri, J. Wang, Y. Kim, A. Jhunjhunwala, D. L. Chao, and J. V. Jokerst, “In vivo photoacoustic imaging of chorioretinal oxygen gradients,” J. Biomed. Opt. 23(3), 1–8 (2018).
[Crossref] [PubMed]

J. Biophotonics (1)

V. P. Nguyen, J. Oh, S. Park, and H. Wook Kang, “Feasibility of photoacoustic evaluations on dual-thermal treatment of ex vivo bladder tumors,” J. Biophotonics 10(4), 577–588 (2017).
[PubMed]

J. Ophthalmol. (1)

J. Li, Y. M. Paulus, Y. Shuai, W. Fang, Q. Liu, and S. Yuan, “New developments in the classification, pathogenesis, risk factors, natural history, and treatment of branch retinal vein occlusion,” J. Ophthalmol. 2017, 4936924 (2017).
[Crossref] [PubMed]

J. Vis. Exp. (2)

W. Song, Q. Wei, S. Jiao, and H. F. Zhang, “Integrated Photoacoustic Ophthalmoscopy and Spectral-Domain Optical Coherence Tomography,” J. Vis. Exp. 71, e4390 (2013).
[Crossref] [PubMed]

C. Tian, W. Zhang, V. P. Nguyen, X. Wang, and Y. M. Paulus, “Novel Photoacoustic Microscopy and Optical Coherence Tomography Dual-modality Chorioretinal Imaging in Living Rabbit Eyes,” J. Vis. Exp. 132, e57135 (2018).
[Crossref] [PubMed]

Oncotarget (1)

H. Kim, V. P. Nguyen, P. Manivasagan, M. J. Jung, S. W. Kim, J. Oh, and H. W. Kang, “Doxorubicin-fucoidan-gold nanoparticles composite for dual-chemo-photothermal treatment on eye tumors,” Oncotarget 8(69), 113719 (2017).
[Crossref] [PubMed]

Ophthalmic Surg. Lasers Imaging Retina (1)

L. Kuehlewein, L. An, M. K. Durbin, and S. R. Sadda, “Imaging areas of retinal nonperfusion in ischemic branch retinal vein occlusion with swept-source OCT microangiography,” Ophthalmic Surg. Lasers Imaging Retina 46(2), 249–252 (2015).
[Crossref] [PubMed]

Ophthalmology (3)

S. Rogers, R. L. McIntosh, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong, “The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia,” Ophthalmology 117(2), 313 (2010).
[Crossref] [PubMed]

P. S. Prasad, S. C. Oliver, R. E. Coffee, J.-P. Hubschman, and S. D. Schwartz, “Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion,” Ophthalmology 117(4), 780–784 (2010).
[Crossref] [PubMed]

T. Y. Wong, M. D. Knudtson, R. Klein, B. E. K. Klein, S. M. Meuer, and L. D. Hubbard, “Computer-assisted measurement of retinal vessel diameters in the Beaver Dam Eye Study: methodology, correlation between eyes, and effect of refractive errors,” Ophthalmology 111(6), 1183–1190 (2004).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Photoacoustics (2)

A. Hariri, J. Lemaster, J. Wang, A. S. Jeevarathinam, D. L. Chao, and J. V. Jokerst, “The characterization of an economic and portable LED-based photoacoustic imaging system to facilitate molecular imaging,” Photoacoustics 9, 10–20 (2018).
[Crossref] [PubMed]

W. Liu and H. F. Zhang, “Photoacoustic imaging of the eye: A mini review,” Photoacoustics 4(3), 112–123 (2016).
[Crossref] [PubMed]

PLoS One (1)

V. P. Nguyen, S. W. Kim, H. Kim, H. Kim, K. H. Seok, M. J. Jung, Y. C. Ahn, and H. W. Kang, “Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy,” PLoS One 12(4), e0174687 (2017).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (2)

S. S. Hayreh, “Ocular vascular occlusive disorders: natural history of visual outcome,” Prog. Retin. Eye Res. 41, 1–25 (2014).
[Crossref] [PubMed]

D. T. Organisciak and D. K. Vaughan, “Retinal light damage: Mechanisms and protection,” Prog. Retin. Eye Res. 29(2), 113–134 (2010).
[Crossref] [PubMed]

Retina (2)

M. Oncel, G. A. Peyman, and B. Khoobehi, “Tissue plasminogen activator in the treatment of experimental retinal vein occlusion,” Retina 9(1), 1–7 (1989).
[Crossref] [PubMed]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence angiography,” Retina 35(11), 2163–2180 (2015).
[Crossref] [PubMed]

Ultrasound Med. Biol. (1)

R. H. Silverman, F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, “High-Resolution Photoacoustic Imaging of Ocular Tissues,” Ultrasound Med. Biol. 36(5), 733–742 (2010).
[Crossref] [PubMed]

Vision Res. (1)

A. Hughes, “A schematic eye for the rabbit,” Vision Res. 12(1), 123–138 (1972).
[Crossref] [PubMed]

Other (2)

S. Prahl, “A compendium of tissue optical properties,” (2012).

S. A. Prahl, “ http://omlc.org/spectra/hemoglobin/ A compendium of tissue optical properties,” (2012).

Supplementary Material (3)

NameDescription
» Visualization 1       3D volumetric rendering of retinal and choroidal blood vessels before laser application
» Visualization 2       3D image reconstruction of retinal blood vessels at day 28 after laser-induced RVO
» Visualization 3       3D image reconstruction of choroidal blood vessels at day 28 after laser-induced RVO

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of the integrated en face photoacoustic microscopy (PAM) and optical coherence tomography (OCT) for multimodal ocular imaging.
Fig. 2
Fig. 2 Visualization of retinal blood vessels in rabbits: (a) color fundus photography of the retina. Black arrow denotes the position of arteries, blue arrow reveals the position of the vein, white and yellow arrows represent the location of the optic nerve and choroidal vessels, respectively. White dotted lines display the selected scanning regions for OCT. (b) and (c) early phase and late phase fluorescein angiography of the eye, respectively. (a1-a4) B-scan OCT images of the retinal and choroidal vessels obtained along the selected lines from a. The OCT image showing choroidal vessels (CVs), retinal vessels (RVs), Ganglion cell layer (GCL), nerve fiber layer (NFL) and retinal layers. (d) and (e) 3D volumetric OCT images of retinal and choroidal vessels, respectively.
Fig. 3
Fig. 3 In vivo en face spectroscopic photoacoustic microscopy analysis of the retina and choroid. (a) maximum intensity projection (MIP) PAM images of retinal vessels acquired along the selected scanning area at different wavelengths ranging from 510 to 600 nm. White arrows represent the position of retinal vessels. White dotted arrows illustrate the location of retinal vessels. (b) corresponding en face PAM image of choroidal vessels. The en face PAM image demonstrates individual morphology, high resolution and high contrast of retinal microvasculature. Note that both the retinal and choroidal vessels were visualized and demonstrate higher contrast at the wavelengths of 563, 570 and 580 nm in comparison with shorter and longer wavelengths.
Fig. 4
Fig. 4 Multimodal color fundus photography, FA, and OCT imaging analysis of retinal vein occlusion immediately following RVO to 7 days afterwards. Column A shows color fundus images of the retina performed at different time (15 min after laser treatment, day 1, 3, and 7) after laser-induced RVO. White dotted arrows show the position of treated sites. Dotted lines represent the selected OCT scanning areas. Column B-C display early phase and late phase FA images. White arrows show the location of occluded vessels. Columns A1-A3 exhibit cross-sectional B-scan OCT image acquired along the dotted line in color fundus images (column A). White arrows show the position of retinal detachment after laser treatment. Note that severe retinal detachment appeared at day 1 post treastment and resolved at 3 days after laser exposure. Column D shows 3D rendering of OCT images.
Fig. 5
Fig. 5 Multimodal color fundus photography, FA, and OCT imaging analysis of retinal vein occlusion from day 14 to day 35. White arrows in column B reveal the location of retinal neovascularization. Red arrows (column C) illustrate the leakage areas at late phase FA, confirming the development of retinal neovascularization. Cross-sectional B-scan OCT images (columns A1-A3) exhibit the development of retinal neovascularization around the major retinal vessels (yellow arrows).
Fig. 6
Fig. 6 Spectroscopic photoacoustic microscopy of retinal neovascularization. The en face MIP PAM images of the retina acquired at various wavelength (510-600 nm) at different times after laser treatment: 15 min after treatment (day 0), days 3, 5, 7, 14, 21, 28, and 35. White arrows show the detected position of the retinal vein occlusion as shown on Day 0. Yellow arrows indicate the position of abnormal retinal vessels at day 7 after treatment. White dotted arrows depict the position of retinal neovascularization. The retinal neovascularization developed at day 21 after laser treatment.
Fig. 7
Fig. 7 3D volumetric rendering and image segmentation of the development retinal neovascularization for vessels density estimation: (a-c) 3D visualization of the retinal neovascularization acquired at various wavelengths (532, 570, and 580 nm) at day 28 post laser induced RVO. The 3D volumetric images show clearly morphology of individual microvasculature. (d-f) segmentation images of retinal vessels. Pseudo-colorized red, green, blue and yellow are used to mark the position of retinal artery, RNV, veins, and choroidal vessels, respectively. (g) spectroscopic evaluation on PA amplitudes. (h) vessels density quantification of RNV as a function of treatment time and optical wavelengths. (i) comparison vessel diameter measured from various techniques: fundus photography, OCT and PAM (*p < 0.001 and N = 8).
Fig. 8
Fig. 8 Spectroscopic PAM image of choroidal vessels after laser photocoagulation. (a) color fundus image of choroidal vessels after laser-induced RVO at day 35. The color fundus showing the change in structure and morphology of choroidal vessels. Due to the effect of laser, some of the choroidal vessels are absent as indicating by white arrows. White dotted line and white rectangle exhibit the selected region of interest (ROI). (b) and (c) represent the FA images at early phase and late phase. The white arrows indicate the position of development of neovascularization. (d) cross-sectional b-scan OCT images. White arrows show the location of neovascularization. (e-l) corresponding en face spectroscopic PAM imaging of abnormal choroidal vessels. The PAM images show clearly the structure of individual choroidal vessels. (m) 3D rendering PAM image.
Fig. 9
Fig. 9 Histological analysis of the rabbit retina after laser-induced RVO. (a) and (b) show the H&E-stained images of RVO achieved from control and treatment groups, respectively. Black arrows demonstrate the position of retinal vessels, whereas blue arrows illustrate the appearance of retinal capillaries. The retinal thickness of the treated groups is thinner than that of the one from control group. The RNV development were detected at: (c) × 20 and (d) × 40. Black arrows represent the location of RNV. Blue arrows show the major position of retinal vessels after treatment. (e-g) TUNEL staining assay were carried out to evaluate the potential effect of laser exposure after PAM. Figure 9(e) and Fig. 9(f) are positive and negative control, respectively. Note that brown color indicates the position of apoptotic cells. No significant pathological changes can be observed in the eye tissue (Fig. 9(f)).
Fig. 10
Fig. 10 Sequential fluorescein angiography images. The red arrow shows the position of veins, whereas blue arrow depicts the location of the artery. The time on the top right indicates the number of seconds after intravenous fluorescein dye injection.
Fig. 11
Fig. 11 OCT spectral distribution
Fig. 12
Fig. 12 Color fundus photography. White rectangles indicate the selected scanning areas for PAM
Fig. 13
Fig. 13 Color fundus photography of the retina after laser-induced RVO. White rectangles indicate the selected scanning regions for PAM
Fig. 14
Fig. 14 Fluorescein angiography (FA) images of retinal vein occlusion acquired at various time post-treatment. (a) FA images acquired at day 14, 17, 21 and 28-post laser photocoagulation. The green arrows indicate the position of the developed new retinal neovascularization (RNV). Note that the RNV increased over time and achieved peak at day 28. (b) sequential FA images. The red arrows indicate the region of retinal arteries. The blue arrows show the area of veins. The green and yellow arrows exhibit the areas of RNV and CVs, respectively. The time on the top right indicates the number of seconds after intravenous fluorescein dye injection.