Abstract

A multipoint holographic fluorescence correlation spectroscope (MP-hFCS) was successfully developed. The validity of the MP-hFCS was demonstrated using diffusion measurements of fluorescent dye solutions and of fluorescent proteins in single cells. Furthermore, the successful detection of the nuclear transport of a green fluorescent protein-tagged glucocorticoid receptor α indicates the possibility of being able to monitor directional molecular transport using the MP-hFCS. This allows multipoint analysis of the intermolecular interactions and molecular transport in living cells. Finally, the MP-hFCS can achieve multipoint diffusion measurements with high spatial and time resolution while maintaining a high photon detection sensitivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy

Markus Burkhardt and Petra Schwille
Opt. Express 14(12) 5013-5020 (2006)

EMCCD-based spectrally resolved fluorescence correlation spectroscopy

Felix Bestvater, Zahir Seghiri, Moon Sik Kang, Nadine Gröner, Ji Young Lee, Kang-Bin Im, and Malte Wachsmuth
Opt. Express 18(23) 23818-23828 (2010)

Dual-Color Fluorescence Cross-Correlation Spectroscopy on a Single Plane Illumination Microscope (SPIM-FCCS)

Jan Wolfgang Krieger, Anand Pratap Singh, Christoph S. Garbe, Thorsten Wohland, and Jörg Langowski
Opt. Express 22(3) 2358-2375 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
    [Crossref]
  2. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
    [Crossref]
  3. C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
    [Crossref] [PubMed]
  4. R. T. Kovacic and K. E. van Holde, “Sedimentation of homogeneous double-strand DNA molecules,” Biochemistry 16(7), 1490–1498 (1977).
    [Crossref] [PubMed]
  5. S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
    [Crossref] [PubMed]
  6. S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
    [Crossref] [PubMed]
  7. M. Kinjo and R. Rigler, “Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy,” Nucleic Acids Res. 23(10), 1795–1799 (1995).
    [Crossref] [PubMed]
  8. M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
    [Crossref] [PubMed]
  9. A. P. Singh, J. W. Krieger, J. Buchholz, E. Charbon, J. Langowski, and T. Wohland, “The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy,” Opt. Express 21(7), 8652–8668 (2013).
    [Crossref] [PubMed]
  10. D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
    [Crossref] [PubMed]
  11. Y. Ohsugi and M. Kinjo, “Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope,” J. Biomed. Opt. 14(1), 014030 (2009).
    [Crossref] [PubMed]
  12. P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
    [Crossref] [PubMed]
  13. B. Kannan, J. Y. Har, P. Liu, I. Maruyama, A. Jeak Ling Ding, and Thorsten Wohland, “Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy,” (2006).
  14. F. Cardarelli and E. Gratton, “In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions,” PLoS One 5(5), e10475 (2010).
    [Crossref] [PubMed]
  15. M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).
  16. T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
    [Crossref]
  17. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).
  18. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
    [Crossref] [PubMed]
  19. J. Yamamoto and T. Iwai, “Highly Controllable Optical Tweezers Using Dynamic Electronic Holograms,” Curr. Pharm. Biotechnol. 13(14), 2655–2662 (2012).
    [Crossref] [PubMed]
  20. C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
    [Crossref]
  21. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer US, 2006).
  22. C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
    [Crossref] [PubMed]
  23. S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
    [Crossref] [PubMed]
  24. U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
    [Crossref] [PubMed]
  25. J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
    [Crossref] [PubMed]
  26. M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
    [Crossref] [PubMed]

2016 (1)

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

2015 (3)

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (1)

J. Yamamoto and T. Iwai, “Highly Controllable Optical Tweezers Using Dynamic Electronic Holograms,” Curr. Pharm. Biotechnol. 13(14), 2655–2662 (2012).
[Crossref] [PubMed]

2011 (1)

T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
[Crossref]

2010 (1)

F. Cardarelli and E. Gratton, “In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions,” PLoS One 5(5), e10475 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Ohsugi and M. Kinjo, “Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope,” J. Biomed. Opt. 14(1), 014030 (2009).
[Crossref] [PubMed]

2008 (1)

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

2007 (1)

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

2006 (2)

J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
[Crossref] [PubMed]

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
[Crossref] [PubMed]

2005 (2)

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

2000 (2)

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
[Crossref] [PubMed]

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).

1999 (2)

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

1998 (1)

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

1995 (1)

M. Kinjo and R. Rigler, “Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy,” Nucleic Acids Res. 23(10), 1795–1799 (1995).
[Crossref] [PubMed]

1993 (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

1977 (1)

R. T. Kovacic and K. E. van Holde, “Sedimentation of homogeneous double-strand DNA molecules,” Biochemistry 16(7), 1490–1498 (1977).
[Crossref] [PubMed]

1974 (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Aoki, K.

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

Björling, S.

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

Brinkmeier, M.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Brown, C. M.

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

Buchholz, J.

Cardarelli, F.

F. Cardarelli and E. Gratton, “In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions,” PLoS One 5(5), e10475 (2010).
[Crossref] [PubMed]

Charbon, E.

Cooper, J.

Courtial, J.

Digman, M. A.

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

Dörre, K.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Eigen, M.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Ellisman, M. H.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
[Crossref] [PubMed]

Elson, E. L.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Enderlein, J.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Földes-Papp, Z.

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

Fukushima, R.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Gehring, W. J.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Gibson, G.

Gratton, E.

F. Cardarelli and E. Gratton, “In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions,” PLoS One 5(5), e10475 (2010).
[Crossref] [PubMed]

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

Grünwald, D.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Hagman, E.

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

Haist, T.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).

Haraguchi, T.

Hiraoka, Y.

Hoekstra, A.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Horwitz, A. R.

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

Ishikawa, H.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Iwai, T.

J. Yamamoto and T. Iwai, “Highly Controllable Optical Tweezers Using Dynamic Electronic Holograms,” Curr. Pharm. Biotechnol. 13(14), 2655–2662 (2012).
[Crossref] [PubMed]

Jin, T.

Jordan, P.

Karunwi, K.

Kask, P.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Kinjo, M.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Y. Ohsugi and M. Kinjo, “Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope,” J. Biomed. Opt. 14(1), 014030 (2009).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
[Crossref] [PubMed]

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

M. Kinjo and R. Rigler, “Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy,” Nucleic Acids Res. 23(10), 1795–1799 (1995).
[Crossref] [PubMed]

Koberling, F.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Kovacic, R. T.

R. T. Kovacic and K. E. van Holde, “Sedimentation of homogeneous double-strand DNA molecules,” Biochemistry 16(7), 1490–1498 (1977).
[Crossref] [PubMed]

Kraut, R. S.

T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
[Crossref]

Krautz, R.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Krieger, J. W.

Krmpot, A. J.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Kubitscheck, U.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Kues, T.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Laczik, Z. J.

Langowski, J.

Leach, J.

Liesener, J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).

Loman, A.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Magde, D.

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Manna, M.

T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
[Crossref]

Mets, Ü.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Miki, S.

Mikuni, S.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Müller, C. B.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Nikolic, S. N.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Nishimura, G.

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

Oasa, S.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Ohsugi, Y.

Y. Ohsugi and M. Kinjo, “Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope,” J. Biomed. Opt. 14(1), 014030 (2009).
[Crossref] [PubMed]

Oura, M.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

Pacheco, V.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Pack, C.

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
[Crossref] [PubMed]

Pack, C. G.

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

Padgett, M.

Papadopoulos, D. K.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Peters, R.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Reicherter, M.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).

Richtering, W.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Rigler, R.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

M. Kinjo and R. Rigler, “Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy,” Nucleic Acids Res. 23(10), 1795–1799 (1995).
[Crossref] [PubMed]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Rohleder, D.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Saito, K.

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
[Crossref] [PubMed]

Sankaran, J.

T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
[Crossref]

Sasaki, A.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Sengupta, P.

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

Siebrasse, J. P.

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

Sinclair, G.

Singh, A. P.

Squier, J. A.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
[Crossref] [PubMed]

Stephan, J.

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Taguchi, H.

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

Tamura, M.

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
[Crossref] [PubMed]

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

Terai, H.

Terenius, L.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Thomson, L.

Thyberg, P.

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

Tiziani, H. J.

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).

Tomancak, P.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

van Holde, K. E.

R. T. Kovacic and K. E. van Holde, “Sedimentation of homogeneous double-strand DNA molecules,” Biochemistry 16(7), 1490–1498 (1977).
[Crossref] [PubMed]

Vukojevic, V.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Widengren, J.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Willbold, D.

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Wilson, K. R.

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
[Crossref] [PubMed]

Wiseman, P. W.

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
[Crossref] [PubMed]

Wohland, T.

A. P. Singh, J. W. Krieger, J. Buchholz, E. Charbon, J. Langowski, and T. Wohland, “The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy,” Opt. Express 21(7), 8652–8668 (2013).
[Crossref] [PubMed]

T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
[Crossref]

Wulff, K.

Yamamoto, J.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

J. Yamamoto, M. Oura, T. Yamashita, S. Miki, T. Jin, T. Haraguchi, Y. Hiraoka, H. Terai, and M. Kinjo, “Rotational diffusion measurements using polarization-dependent fluorescence correlation spectroscopy based on superconducting nanowire single-photon detector,” Opt. Express 23(25), 32633–32642 (2015).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

J. Yamamoto and T. Iwai, “Highly Controllable Optical Tweezers Using Dynamic Electronic Holograms,” Curr. Pharm. Biotechnol. 13(14), 2655–2662 (2012).
[Crossref] [PubMed]

Yamashita, T.

Yoshida, M.

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen, “Two-beam cross-correlation: a method to characterize transport phenomena in micrometer-sized structures,” Anal. Chem. 71(3), 609–616 (1999).
[Crossref] [PubMed]

Appl. Opt. (1)

Biochemistry (2)

R. T. Kovacic and K. E. van Holde, “Sedimentation of homogeneous double-strand DNA molecules,” Biochemistry 16(7), 1490–1498 (1977).
[Crossref] [PubMed]

S. Björling, M. Kinjo, Z. Földes-Papp, E. Hagman, P. Thyberg, and R. Rigler, “Fluorescence correlation spectroscopy of enzymatic DNA polymerization,” Biochemistry 37(37), 12971–12978 (1998).
[Crossref] [PubMed]

Biophys. J. (3)

C. Pack, K. Saito, M. Tamura, and M. Kinjo, “Microenvironment and Effect of Energy Depletion in the Nucleus Analyzed by Mobility of Multiple Oligomeric EGFPs,” Biophys. J. 91(10), 3921–3936 (2006).
[Crossref] [PubMed]

M. A. Digman, P. Sengupta, P. W. Wiseman, C. M. Brown, A. R. Horwitz, and E. Gratton, “Fluctuation Correlation Spectroscopy with a Laser-Scanning Microscope: Exploiting the Hidden Time Structure,” Biophys. J. 88(5), L33–L36 (2005).

T. Wohland, J. Sankaran, M. Manna, and R. S. Kraut, “Imaging Total Internal Reflection Fluorescence Correlation Spectroscopy (ITIR-FCS) Detects Multiple Lipid Domains on Live Cell Membranes,” Biophys. J. 100(3), 475 (2011).
[Crossref]

Biopolymers (1)

E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13(1), 1–27 (1974).
[Crossref]

Curr. Pharm. Biotechnol. (1)

J. Yamamoto and T. Iwai, “Highly Controllable Optical Tweezers Using Dynamic Electronic Holograms,” Curr. Pharm. Biotechnol. 13(14), 2655–2662 (2012).
[Crossref] [PubMed]

Cytometry (1)

C. G. Pack, G. Nishimura, M. Tamura, K. Aoki, H. Taguchi, M. Yoshida, and M. Kinjo, “Analysis of interaction between chaperonin GroEL and its substrate using fluorescence correlation spectroscopy,” Cytometry 36(3), 247–253 (1999).
[Crossref] [PubMed]

EPL (Europhysics Lett. (1)

C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” EPL (Europhysics Lett. 83(4), 46001 (2008).
[Crossref]

Eur. Biophys. J. (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

FEBS Lett. (2)

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

Y. Ohsugi and M. Kinjo, “Multipoint fluorescence correlation spectroscopy with total internal reflection fluorescence microscope,” J. Biomed. Opt. 14(1), 014030 (2009).
[Crossref] [PubMed]

J. Cell Biol. (1)

U. Kubitscheck, D. Grünwald, A. Hoekstra, D. Rohleder, T. Kues, J. P. Siebrasse, and R. Peters, “Nuclear transport of single molecules: dwell times at the nuclear pore complex,” J. Cell Biol. 168(2), 233–243 (2005).
[Crossref] [PubMed]

J. Microsc. (1)

P. W. Wiseman, J. A. Squier, M. H. Ellisman, and K. R. Wilson, “Two-photon image correlation spectroscopy and image cross-correlation spectroscopy,” J. Microsc. 200(1), 14–25 (2000).
[Crossref] [PubMed]

Mech. Dev. (1)

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138(Pt 2), 218–225 (2015).
[Crossref] [PubMed]

Nucleic Acids Res. (1)

M. Kinjo and R. Rigler, “Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy,” Nucleic Acids Res. 23(10), 1795–1799 (1995).
[Crossref] [PubMed]

Opt. Commun. (1)

J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-Functional Optical Tweezers Using Computer-Generated Holograms,” Opt. Commun. 185(1), 77–82 (2000).

Opt. Express (2)

PLoS One (1)

F. Cardarelli and E. Gratton, “In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions,” PLoS One 5(5), e10475 (2010).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Other (2)

B. Kannan, J. Y. Har, P. Liu, I. Maruyama, A. Jeak Ling Ding, and Thorsten Wohland, “Electron Multiplying Charge-Coupled Device Camera Based Fluorescence Correlation Spectroscopy,” (2006).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer US, 2006).

Supplementary Material (4)

NameDescription
» Data File 1       Fitted results of rhodamine 6G solution. This table gives the averages and standard deviations of the nonlinear curve fitting results measured in different days (n=13).
» Data File 2       Comparison of the results measured by MP-hFCS and ConfoCor 2. This table gives the averages and standard deviations of the nonlinear curve fitting results of three different dyes.
» Data File 3       The fitted results of Figs. 4(e)-(h). The table shows the nonlinear curve fitting results of MP-hFCS measurements in a single cell expressing either GFP or GFP-GRalpha wt.
» Data File 4       Mean diffusion constants and diffusion times for GFP and GFP-Gralpha wt in HeLa cells. This table gives the averages and standard deviations of the nonlinear curve fitting results of MP-hFCS measurement (n=3) of single cells expressing either GFP or

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic of the experimental setup. (a) Optical settings. BE: beam expander. Lenses L1 and L2 constitute a 1 × telescope. The focal plane of the objective lens Lo is a Fourier plane of the SLM plane. Lo and L3 constitute a 60 × microscope, and the end terminal of the multicore fiber is an image plane of the focal plane of Lo. LPF is a long-path filter that reflects light with a wavelength longer than 495 nm, which passes through the LPF. EF: emission filter (transparent for light with wavelengths ranging from 520 to 535 nm). (b) Fourier phase hologram pattern that generates the fluorescence intensity distribution of a rhodamine 6G fluorophore adsorbed coverslip excited by the seven-beam spot array (c). (d) Microscopic image of the end terminal of the multicore fiber. (e) Schematic of the channel design.
Fig. 2
Fig. 2 System proof of concept. (a) Typical ACFs of a solution of rhodamine 6G measured using each channel of the MP-hFCS system. The symbols and solid lines show the experimental results and fitted curves, respectively. (b) Diffusion times measured by each channel. (c) Structural parameters measured by each channel. The error bars represent the standard deviations (n = 13). (d)–(j) Normalized ACFs of each channel obtained simultaneously via MP-hFCS. The samples were aqueous solutions of Alexa 488 dye (0.6 kDa), GFP (27 kDa), and 500 base pairs of DNA labeled with Atto 488 dye (660 kDa). The symbols and solid lines represent the experimental results and fitted curves, respectively.
Fig. 3
Fig. 3 In vivo MP-hFCS measurements of a HeLa cell transiently expressing GFP. (a) Bright-field image of the HeLa cell. The white arrows indicate the measurement positions. The cytosol, nucleus, and nucleolus are digitally colored green, blue, and red, respectively. The image contrast was enhanced by image processing. (b) Schematic and definition of the z-axis. (c) CRs with respect to z. (d) ACFs in the nucleolus and the nucleus. The excitation laser power was approximately 2.5 μW per channel, and the measurements were performed five times for each 5 s. The diffusion times of the GFP in the nucleolus and nucleoplasm were obtained by fitting a single-component model to the ACF, and they were τD = 1.96 and 0.76, respectively.
Fig. 4
Fig. 4 ACFs and spatiotemporal CCFs for the in vivo MP-hFCS measurement of HeLa cells transiently expressing GFP or GFP-GRαwt. Panels (a), (c), (e), and (g) show HeLa cells expressing GFP. The fluctuation of the CR at 0 s was caused by the impact of adding the Dex solution in (c). Panels (b), (d), (f), and (h) show HeLa cells expressing GFP-GRαwt. (a, b) Bright-field images of HeLa cells. The white arrows indicate the measurement positions. The two measurement points indicated are channels 5 and 6, and the distance between them was 2.3 μm. The cytosol and the nucleus are digitally colored green and red, respectively, and the contrast was enhanced by image processing. The scale bar represents 10 μm. (c, d) CRs with respect to time. 100 nM Dex was added at 0 s. (e, f) ACFs in the cytosol. (g, h) ACFs in the nucleus. (i, j) Difference curves of Gc(τ) for HeLa cells expressing GFP and for HeLa cells expressing GFP-GRwt. Note the absence of peaks in (i) and the presence of a single peak in (j) at t = 45.1 s. The laser power was approximately 2.5 μW per channel, and measurements were performed 60 times for each 10 s.

Tables (1)

Tables Icon

Table 1 Comparison of MP-hFCS and ConfoCor3 analysis of the different dye solutions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G c n,m (τ)= I n (t) I m (t+τ) I ¯ n I ¯ m ,
G c n,n (τ)=1+ 1 F triplet + F triplet exp(τ/ τ triplet ) N(1 F triplet ) Σ i F i ( 1+τ/ τ Di ) 1+τ/( s 2 τ Di ) ,
G norm (τ)=N( G(τ)1 ).
G c c,n (τ)= F n (t,r) F c (t+τ,r') / F n F c ,
G c n,c (τ)= F c (t,r') F n (t+τ,r) / F n F c ,

Metrics