Abstract

We present a sensitive inverted light sheet microscope, capable of single-molecule fluorescence imaging of cells in 96-well plates. Light sheet microscope designs are often complex and costly, requiring custom-made sample chambers that are incompatible with standard cell culture samples. To overcome this limitation, we have developed single-objective cantilever selective plane illumination microscopy (socSPIM), which introduces a light sheet through the objective lens of an inverted microscope using an AFM tip. We demonstrate the effectiveness of this setup by performing 3D imaging of nuclear pore complexes, as well as live whole-cell 3D imaging of lysosomes and super-resolution imaging of the T-cell membrane. The unique advantage offered by socSPIM is the minimal footprint of the cantilever, which allowed us to perform super-resolution reflected light-sheet microscopy by PAINT in 96-well plates, paving the way for high-throughput studies.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Light sheet approaches for improved precision in 3D localization-based super-resolution imaging in mammalian cells [Invited]

Anna-Karin Gustavsson, Petar N. Petrov, and W. E. Moerner
Opt. Express 26(10) 13122-13147 (2018)

Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

Marjolein B. M. Meddens, Sheng Liu, Patrick S. Finnegan, Thayne L. Edwards, Conrad D. James, and Keith A. Lidke
Biomed. Opt. Express 7(6) 2219-2236 (2016)

Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging

Dipanjan Bhattacharya, Vijay Raj Singh, Chen Zhi, Peter T. C. So, Paul Matsudaira, and George Barbastathis
Opt. Express 20(25) 27337-27347 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  2. E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
    [Crossref] [PubMed]
  3. D. Axelrod, “Total Internal Reflection Fluorescence Microscopy in Cell Biology,” Traffic 2(11), 764–774 (2001).
    [Crossref] [PubMed]
  4. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
    [Crossref] [PubMed]
  5. K. M. Dean, P. Roudot, E. S. Welf, T. Pohlkamp, G. Garrelts, J. Herz, and R. Fiolka, “Imaging subcellular dynamics with fast and light-efficient volumetrically parallelized microscopy,” Optica 4(2), 263–271 (2017).
    [Crossref] [PubMed]
  6. Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics And Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
    [Crossref] [PubMed]
  7. W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
    [Crossref] [PubMed]
  8. R. M. Power and J. Huisken, “A guide to light-sheet fluorescence microscopy for multiscale imaging,” Nat. Methods 14(4), 360–373 (2017).
    [Crossref] [PubMed]
  9. A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
    [Crossref] [PubMed]
  10. M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7(6), 2219–2236 (2016).
    [Crossref] [PubMed]
  11. R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
    [Crossref] [PubMed]
  12. Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
    [Crossref] [PubMed]
  13. J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
    [Crossref] [PubMed]
  14. A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
    [Crossref] [PubMed]
  15. P. N. Hedde, L. Malacrida, S. Ahrar, A. Siryaporn, and E. Gratton, “sideSPIM - selective plane illumination based on a conventional inverted microscope,” Biomed. Opt. Express 8(9), 3918–3937 (2017).
    [Crossref] [PubMed]
  16. E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25(3), 1732–1745 (2017).
    [Crossref] [PubMed]
  17. J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
    [Crossref] [PubMed]
  18. F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
    [Crossref] [PubMed]
  19. Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
    [Crossref] [PubMed]
  20. B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
    [Crossref] [PubMed]
  21. S. Kumar, D. Wilding, M. B. Sikkel, A. R. Lyon, K. T. MacLeod, and C. Dunsby, “High-speed 2D and 3D fluorescence microscopy of cardiac myocytes,” Opt. Express 19(15), 13839–13847 (2011).
    [Crossref] [PubMed]
  22. V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).
  23. A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A 103, 18911 (2006).
  24. D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
    [Crossref] [PubMed]
  25. A. Herbert, “Single Molecule Light Microscopy ImageJ Plugins,” http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/gdsc_plugins Accessed 2018 (n.d.).
  26. A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
    [Crossref] [PubMed]
  27. H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
    [Crossref] [PubMed]
  28. T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
    [Crossref] [PubMed]
  29. T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
    [Crossref] [PubMed]
  30. H. Xu and D. Ren, “Lysosomal Physiology,” Annu. Rev. Physiol. 77(1), 57–80 (2015).
    [Crossref] [PubMed]
  31. D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
    [Crossref] [PubMed]
  32. P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
    [Crossref] [PubMed]
  33. A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
    [Crossref] [PubMed]
  34. M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
    [Crossref] [PubMed]
  35. Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
    [Crossref] [PubMed]

2018 (3)

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

2017 (7)

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

P. N. Hedde, L. Malacrida, S. Ahrar, A. Siryaporn, and E. Gratton, “sideSPIM - selective plane illumination based on a conventional inverted microscope,” Biomed. Opt. Express 8(9), 3918–3937 (2017).
[Crossref] [PubMed]

E. Zagato, T. Brans, S. Verstuyft, D. van Thourhout, J. Missinne, G. van Steenberge, J. Demeester, S. De Smedt, K. Remaut, K. Neyts, and K. Braeckmans, “Microfabricated devices for single objective single plane illumination microscopy (SoSPIM),” Opt. Express 25(3), 1732–1745 (2017).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, E. S. Welf, T. Pohlkamp, G. Garrelts, J. Herz, and R. Fiolka, “Imaging subcellular dynamics with fast and light-efficient volumetrically parallelized microscopy,” Optica 4(2), 263–271 (2017).
[Crossref] [PubMed]

R. M. Power and J. Huisken, “A guide to light-sheet fluorescence microscopy for multiscale imaging,” Nat. Methods 14(4), 360–373 (2017).
[Crossref] [PubMed]

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

2016 (5)

M. B. M. Meddens, S. Liu, P. S. Finnegan, T. L. Edwards, C. D. James, and K. A. Lidke, “Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution,” Biomed. Opt. Express 7(6), 2219–2236 (2016).
[Crossref] [PubMed]

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

2015 (4)

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

H. Xu and D. Ren, “Lysosomal Physiology,” Annu. Rev. Physiol. 77(1), 57–80 (2015).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics And Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref] [PubMed]

2014 (3)

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

2013 (2)

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

2012 (1)

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

2011 (3)

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

S. Kumar, D. Wilding, M. B. Sikkel, A. R. Lyon, K. T. MacLeod, and C. Dunsby, “High-speed 2D and 3D fluorescence microscopy of cardiac myocytes,” Opt. Express 19(15), 13839–13847 (2011).
[Crossref] [PubMed]

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

2010 (1)

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

2008 (3)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

2006 (1)

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A 103, 18911 (2006).

2001 (1)

D. Axelrod, “Total Internal Reflection Fluorescence Microscopy in Cell Biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Aguet, F.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Ahrar, S.

Allbritton, N. L.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Aravind, A.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Avants, B. B.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

Axelrod, D.

D. Axelrod, “Total Internal Reflection Fluorescence Microscopy in Cell Biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Backer, A. S.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Bandyopadhyay, D.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Bao, Z.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Basu, S.

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Beghin, A.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Bembenek, J. N.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Betzig, E.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics And Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref] [PubMed]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Böhme, R.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Boothby, T. C.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Braeckmans, K.

Brans, T.

Braun, D.

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

Brown, T. A.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

Butler, C.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Cabillic, M.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Cang, H.

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

Carling, D.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Carman, C. V.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Carr, A. R.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Chapman, A. R.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Chen, B.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Cheng, A.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Chennell, G.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Choquet, D.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Christensen, R.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Colón-Ramos, D.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Cyphersmith, A.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Davidson, M. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Davis, S.

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Davis, S. J.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

De Smedt, S.

Dean, K. M.

Deligiannaki, M.

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

Demeester, J.

DiSalvo, M.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Donati, L.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Du, S.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Du, Z.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Dunsby, C.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

S. Kumar, D. Wilding, M. B. Sikkel, A. R. Lyon, K. T. MacLeod, and C. Dunsby, “High-speed 2D and 3D fluorescence microscopy of cardiac myocytes,” Opt. Express 19(15), 13839–13847 (2011).
[Crossref] [PubMed]

Dvorak, A. M.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Edwards, T. L.

English, B. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Fadero, T. C.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Finnegan, P. S.

Fiolka, R.

Fortun, D.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Fritz-Laylin, L.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Galland, R.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Garrelts, G.

Gaul, U.

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

Gebhardt, J. C. M.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Gerbich, T. M.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Ghitani, A.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Giannone, G.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Gladfelter, A. S.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Goldstein, B.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Gratton, E.

Greger, K.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Greiss, F.

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

Grenci, G.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Grill, S. W.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Grimm, J. B.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

Guiet, R.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Gustavsson, A. K.

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

Hammer, J. A.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Hedde, P. N.

Heppert, J. K.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Herrup, K.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Herz, J.

Hochstrasser, R. M.

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A 103, 18911 (2006).

Hu, Y. S.

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

Huisken, J.

R. M. Power and J. Huisken, “A guide to light-sheet fluorescence microscopy for multiscale imaging,” Nat. Methods 14(4), 360–373 (2017).
[Crossref] [PubMed]

Imamoto, N.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Ip, N. Y.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

James, C. D.

Janetopoulos, C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Jung, C.

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

Kamei, M.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Kechkar, A.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Kiehart, D. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Kim, Y. J.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Kirshner, H.

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Klenerman, D.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Kržic, U.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Kubitscheck, U.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

Kulenkampff, K.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

Kumar, S.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

S. Kumar, D. Wilding, M. B. Sikkel, A. R. Lyon, K. T. MacLeod, and C. Dunsby, “High-speed 2D and 3D fluorescence microscopy of cardiac myocytes,” Opt. Express 19(15), 13839–13847 (2011).
[Crossref] [PubMed]

Lana, T.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Lau, S. C.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Laue, E. D.

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Lavis, L. D.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics And Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref] [PubMed]

Lee, M. K.

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Lee, M. Y.

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

Lee, S. F.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Legant, W. R.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Levet, F.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Lew, M. D.

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Li, Y.

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

Lidke, K. A.

Lippert, A.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Liu, S.

Liu, Z.

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics And Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref] [PubMed]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Loy, M. M. T.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Lyon, A. R.

MacLeod, K. T.

Maddox, A. S.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Maddox, P. S.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Maioli, V.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Malacrida, L.

Maniatis, T.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Martinelli, R.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

McColl, J.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Meddens, M. B. M.

Milkie, D. E.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Mimori-Kiyosue, Y.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Missinne, J.

Mitchell, D. M.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Moerner, W. E.

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Mullins, R. D.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Neyts, K.

Payne, C. K.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Peifer, M.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Petrov, P. N.

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

Pohlkamp, T.

Ponjavic, A.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Power, R. M.

R. M. Power and J. Huisken, “A guide to light-sheet fluorescence microscopy for multiscale imaging,” Nat. Methods 14(4), 360–373 (2017).
[Crossref] [PubMed]

Ptacin, J. L.

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Rana, K.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Remaut, K.

Ren, D.

H. Xu and D. Ren, “Lysosomal Physiology,” Annu. Rev. Physiol. 77(1), 57–80 (2015).
[Crossref] [PubMed]

Reymann, A.-C.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Reynaud, E. G.

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Ritter, A. T.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Ritter, J. G.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

Romero, D. P.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Rondeau, G.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Rossier, O.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

Roudot, P.

Roy, R.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Sage, D.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Sage, P. T.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Sahl, S. J.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Sakata-Sogawa, K.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Santella, A.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Santos, A. M.

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

Sardini, A.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Schaefer, K. N.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Schmit, G.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Sciuto, T. E.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Seitz, A.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Seydoux, G.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Shao, L.

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Shapiro, L.

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Sharonov, A.

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A 103, 18911 (2006).

Sharpe, A. H.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Shechtman, Y.

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Shroff, H.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Sibarita, J. B.

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Siebrasse, J. P.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

Sikkel, M. B.

Siryaporn, A.

Soulez, F.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Sparks, H.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Springer, T. A.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

Studer, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Su, Y.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Suter, D. M.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Suzuki, A.

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

Tokunaga, M.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Tulu, U. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Twieg, R. J.

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Unser, M.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

van Steenberge, G.

van Thourhout, D.

Varghese, L. M.

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

Veenendaal, A.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

Veith, R.

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

Verstuyft, S.

Viasnoff, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Vonesch, C.

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Wang, H.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Wang, J. T.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wang, K.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wang, Y.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Watters, R.

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

Weiss, L. E.

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Welf, E. S.

Wilding, D.

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Wu, X. S.

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Xie, X. S.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Xu, H.

H. Xu and D. Ren, “Lysosomal Physiology,” Annu. Rev. Physiol. 77(1), 57–80 (2015).
[Crossref] [PubMed]

Zagato, E.

Zapata, J. A.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Zhao, T.

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Zhao, Z. W.

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Zimmerley, M.

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

Annu. Rev. Physiol. (1)

H. Xu and D. Ren, “Lysosomal Physiology,” Annu. Rev. Physiol. 77(1), 57–80 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (3)

A. Ponjavic, J. McColl, A. R. Carr, A. M. Santos, K. Kulenkampff, A. Lippert, S. J. Davis, D. Klenerman, and S. F. Lee, “Single-Molecule Light-Sheet Imaging of Suspended T Cells,” Biophys. J. 114(9), 2200–2211 (2018).
[Crossref] [PubMed]

A. R. Carr, A. Ponjavic, S. Basu, J. McColl, A. M. Santos, S. Davis, E. D. Laue, D. Klenerman, and S. F. Lee, “Three-Dimensional Super-Resolution in Eukaryotic Cells Using the Double-Helix Point Spread Function,” Biophys. J. 112(7), 1444–1454 (2017).
[Crossref] [PubMed]

F. Greiss, M. Deligiannaki, C. Jung, U. Gaul, and D. Braun, “Single-Molecule Imaging in Living Drosophila Embryos with Reflected Light-Sheet Microscopy,” Biophys. J. 110(4), 939–946 (2016).
[Crossref] [PubMed]

ChemPhysChem (1)

Y. S. Hu, M. Zimmerley, Y. Li, R. Watters, and H. Cang, “Single-molecule super-resolution light-sheet microscopy,” ChemPhysChem 15(4), 577–586 (2014).
[Crossref] [PubMed]

HFSP J. (1)

E. G. Reynaud, U. Kržič, K. Greger, and E. H. K. Stelzer, “Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage,” HFSP J. 2(5), 266–275 (2008).
[Crossref] [PubMed]

J. Cell Biol. (1)

T. C. Fadero, T. M. Gerbich, K. Rana, A. Suzuki, M. DiSalvo, K. N. Schaefer, J. K. Heppert, T. C. Boothby, B. Goldstein, M. Peifer, N. L. Allbritton, A. S. Gladfelter, A. S. Maddox, and P. S. Maddox, “LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching,” J. Cell Biol. 217(5), 1869–1882 (2018).
[Crossref] [PubMed]

J. Immunol. (1)

P. T. Sage, L. M. Varghese, R. Martinelli, T. E. Sciuto, M. Kamei, A. M. Dvorak, T. A. Springer, A. H. Sharpe, and C. V. Carman, “Antigen Recognition Is Facilitated by Invadosome-like Protrusions Formed by Memory/Effector T Cells,” J. Immunol. 188(8), 3686–3699 (2012).
[Crossref] [PubMed]

J. Microsc. (1)

H. Kirshner, F. Aguet, D. Sage, and M. Unser, “3-D PSF fitting for fluorescence microscopy: implementation and localization application,” J. Microsc. 249(1), 13–25 (2013).
[Crossref] [PubMed]

Methods (1)

D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, and M. Unser, “DeconvolutionLab2: An open-source software for deconvolution microscopy,” Methods 115, 28–41 (2017).
[Crossref] [PubMed]

Mol. Cell (1)

Z. Liu, L. D. Lavis, and E. Betzig, “Imaging Live-Cell Dynamics And Structure at the Single-Molecule Level,” Mol. Cell 58(4), 644–659 (2015).
[Crossref] [PubMed]

Nano Lett. (1)

Y. Shechtman, L. E. Weiss, A. S. Backer, S. J. Sahl, and W. E. Moerner, “Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions,” Nano Lett. 15(6), 4194–4199 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

A. K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, and W. E. Moerner, “3D single-molecule super-resolution microscopy with a tilted light sheet,” Nat. Commun. 9(1), 123 (2018).
[Crossref] [PubMed]

Nat. Methods (6)

J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, “High-density three-dimensional localization microscopy across large volumes,” Nat. Methods 13(4), 359–365 (2016).
[Crossref] [PubMed]

R. M. Power and J. Huisken, “A guide to light-sheet fluorescence microscopy for multiscale imaging,” Nat. Methods 14(4), 360–373 (2017).
[Crossref] [PubMed]

A. Beghin, A. Kechkar, C. Butler, F. Levet, M. Cabillic, O. Rossier, G. Giannone, R. Galland, D. Choquet, and J. B. Sibarita, “Localization-based super-resolution imaging meets high-content screening,” Nat. Methods 14(12), 1184–1190 (2017).
[Crossref] [PubMed]

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Optica (1)

PLoS One (2)

J. G. Ritter, R. Veith, A. Veenendaal, J. P. Siebrasse, and U. Kubitscheck, “Light sheet microscopy for single molecule tracking in living tissue,” PLoS One 5(7), e11639 (2010).
[Crossref] [PubMed]

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A (1)

A. Sharonov and R. M. Hochstrasser, “Wide-field subdiffraction imaging by accumulated binding of diffusing probes,” Proc. Natl. Acad. Sci. U.S.A 103, 18911 (2006).

Proc. Natl. Acad. Sci. U.S.A. (2)

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

M. D. Lew, S. F. Lee, J. L. Ptacin, M. K. Lee, R. J. Twieg, L. Shapiro, and W. E. Moerner, “Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus,” Proc. Natl. Acad. Sci. U.S.A. 108(46), E1102–E1110 (2011).
[Crossref] [PubMed]

Sci. Rep (1)

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep.  6, 3777 (2016).

Sci. Rep. (1)

T. Zhao, S. C. Lau, Y. Wang, Y. Su, H. Wang, A. Cheng, K. Herrup, N. Y. Ip, S. Du, and M. M. T. Loy, “Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets,” Sci. Rep. 6(April), 26159 (2016).
[Crossref] [PubMed]

Science (2)

B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Böhme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, “Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution,” Science 346(6208), 1257998 (2014).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Traffic (1)

D. Axelrod, “Total Internal Reflection Fluorescence Microscopy in Cell Biology,” Traffic 2(11), 764–774 (2001).
[Crossref] [PubMed]

Other (1)

A. Herbert, “Single Molecule Light Microscopy ImageJ Plugins,” http://www.sussex.ac.uk/gdsc/intranet/microscopy/imagej/gdsc_plugins Accessed 2018 (n.d.).

Supplementary Material (2)

NameDescription
» Visualization 1       Single-objective light-sheet microscopy using an AFM cantilever enables live 3D imaging of lysosomal dynamics
» Visualization 2       Jurkat T cell membrane is imaged using PAINT super-resolution microscopy with Alexa Fluor 555-labelled wheat germ agglutinin

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of socSPIM setup. Three laser beams of different wavelengths are guided into a high NA objective lens via mirrors. The beams are reflected by an AFM cantilever mounted onto a metallic rod holder. In socSPIM mode a cylindrical lens is used to create a light sheet in the image plane. By replacing the cylindrical lens with a spherical lens, the setup can be used in epifluorescence or HILO mode for comparison. The emission is captured by an EM-CCD camera.
Fig. 2
Fig. 2 socSPIM alignment. Insets show the position of the cantilever relative to the coverslip and the angle of the light sheet as viewed from the side. a: Epifluorescence image of Oxazine 725 adsorbed to a coverslip. b: Reflection of laser beam at the glass-water interface can be observed, focused 25 μm below the interface in (a). c: The AFM cantilever is positioned just above the coverslip surface. d: The bottom edge of the cantilever is positioned on top of the laser beam. e: The cantilever is lifted from the surface to observe the focal point of the laser beam in solution using fluorescence. f: An example of having too steep of an angle is shown when the cantilever is close to the surface. g: By tilting the angle properly the laser beam hits the surface within its focal depth. h: A cylindrical lens creates a sheet of light in the image plane. i: Rotation of the cylindrical lens properly aligns the sheet.
Fig. 3
Fig. 3 Simulations of how tilting the light sheet affects imaging. 1000 beads were randomly distributed in a 512×128×128 volume. The PSF of the beads was simulated using the PSF generator plugin [27] for Matlab. The xy data shows the beads as viewed by a 90× 1.27 NA objective lens, while the xz data shows a sum projection of all the beads as viewed from the side (without the objective lens). To generate the socSPIM data, the epifluorescence data was multiplied by the light-sheet intensity distribution as defined by the experimentally measured FWHM thickness and Rayleigh length.
Fig. 4
Fig. 4 Principles of socSPIM. a: Schematic of the socSPIM setup. A reflective AFM cantilever is mounted onto a machined brass rod. This rod can be placed near to a high NA objective lens in a standard sample such as a petri dish with a coverslip bottom. The inset shows a white light image of the cantilever near HEK cells, with the reflective back surface of the cantilever facing the objective lens. A schematic of the socSPIM geometry is shown at the bottom, where 3D scanning can be achieved by moving the sample stage. The angled brass rod creates a slight downward tilt of the sheet to enable imaging near the coverslip surface. b: Photograph of the setup when imaging with a standard coverslip. c: Fluorescence image of Oxazine 725 excited by the light sheet setup with the cylindrical lens removed to determine the thickness of the sheet. The grey lines represent an approximate outline of the cantilever. d: Fluorescence profiles from (c) fitted with Gaussian distributions. e: Gaussian fits for the data in (d) were performed at each x-position for two different effective NAs, to evaluate the thickness as a function of axial distance and this was fitted to determine the Rayleigh length.
Fig. 5
Fig. 5 Imaging the light sheet using the reflection at the air-water interface. a: Dimensions of the light sheet in focus with the cylindrical lens. b: Same as (a) without the cylindrical lens.
Fig. 6
Fig. 6 Simple implementation of the reflected light sheet. A second iteration of socSPIM was constructed on a standard inverted microscope with a typical microscope stage.
Fig. 7
Fig. 7 3D-imaging of the Alexa Fluor 647-labelled nuclear complexes in HEK cells. a: Orthogonal projections of 3D stacks of the same cell imaged using HILO and socSPIM. The xy view shows the bottom of the cell nucleus where NPCs can be easily identified (yellow circle). The xz and yz slices shown are centered on the highlighted NPC from the xy view. The cartoons depict the excitation modes. b: xz views of the same cells imaged using the two methods with red and blue lines indicating where intensity was analyzed for comparison. The scale bar is 5 μm. c: Average intensity plots taken over the lines in (b). d: Ratio calculated for n = 10 cells using intensity plots in (c). The error represents the standard deviation.
Fig. 8
Fig. 8 Live whole-cell 3D imaging using socSPIM. a: Maximum intensity projections in xy and yz at t = 10 s of lysosomes in HEK cells labelled with mEos4b-LAMP1. b: Same as (a) with Richardson-Lucy deconvolution. c: 3D volume rendering of deconvolved lysosome data, color-coded by depth in μm. d: A large complex diffuses slowly until it suddenly splits into two complexes as indicated by blue circles. e: An initially slowly diffusing lysosome can be seen to suddenly undergo fast, directed motion (red line shows the local 10 tracks backward). The scale bar in a-b is 5 μm and the scale bar in d-e is 1 μm.
Fig. 9
Fig. 9 PAINT imaging using socSPIM. a: Schematic of PAINT experiment excited by a reflected light sheet. WGA labelled with Alexa Fluor-555 diffuses freely in solution until it encounters the cell membrane at which points it becomes immobilized. The inset shows HILO excitation, which excites a larger volume compared to the light sheet. b: The same cell imaged using PAINT with light sheet and HILO microscopy. The left image shows a typical single frame from a PAINT experiment. The middle image represents a diffraction-limited image taken prior to photobleaching of attached WGA. The right frame shows a reconstructed PAINT image using fitted localizations, the number of which is indicated. The scale bar in b is 5 μm (1 μm in inset). c: Various statistics from the experiment shown in b. The dotted lines show the median values.
Fig. 10
Fig. 10 Setup used for LSFM in a 96-well plate. The inset shows the dimensions of the cantilever holder compared to the well and the AFM tip can be seen by the reflected red laser light.
Fig. 11
Fig. 11 Super-resolution imaging of Jurkat T cells in a 96-well plate with socSPIM. a: Schematic demonstrating how the small-footprint cantilever mounted onto a rod fits into a 96-well plate. b: Schematic of a 96-well plate used in imaging experiments. The inset shows the six wells used with the varying concentrations of Alexa Fluor 555-labelled WGA. c: A sample super-resolution image taken over 4000 frames is shown for each concentration condition corresponding to (b). The scale bar is 5 μm. d: Image taken at the 67 nM concentration. The scale bar is 5 μm. The insets represent diffraction-limited (left) and super-resolution (right) magnifications of the region inside the white square. The inset scale bar is 1 μm. e: Variation of localization rate as a function of WGA concentration. The error bars represent the standard deviation in localization rate for n = 5 cells.
Fig. 12
Fig. 12 Sample frames used for constructing Fig. 11. The same contrast is used for concentrations 0.67 – 67 nM where single molecules can clearly be identified. At 200 nM the contrast had to be adjusted as it was too bright and at this point it became difficult to identify isolated emitters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( y 1 bg+ y 2 bg )/2 cbg

Metrics