Abstract

We introduced a method for producing solid phantoms with various water-to-lipid ratios that can simulate the absorption, and to some extent the scattering characteristics of human breast tissue. We also achieved phantom stability for a minimum of one month by solidifying the emulsion phantoms. The characteristics of the phantoms were evaluated using the six-wavelength time-domain diffuse optical spectroscopy (TD-DOS) system we developed to measure water and lipid contents and hemoglobin concentration. The TD-DOS measurements were validated with a magnetic resonance imaging system.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Recipes to make organic phantoms for diffusive optical spectroscopy

Giovanna Quarto, Antonio Pifferi, Ilaria Bargigia, Andrea Farina, Rinaldo Cubeddu, and Paola Taroni
Appl. Opt. 52(11) 2494-2502 (2013)

Fat emulsions as diffusive reference standards for tissue simulating phantoms?

Paola Di Ninni, Yves Bérubé-Lauzière, Luca Mercatelli, Elisa Sani, and Fabrizio Martelli
Appl. Opt. 51(30) 7176-7182 (2012)

Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite

Yan Zhao, Brian W. Pogue, Steffen J. Haider, Jiang Gui, Roberta M. diFlorio-Alexander, Keith D. Paulsen, and Shudong Jiang
Biomed. Opt. Express 7(6) 2186-2201 (2016)

References

  • View by:
  • |
  • |
  • |

  1. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
    [Crossref] [PubMed]
  2. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
    [Crossref] [PubMed]
  3. Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
    [Crossref] [PubMed]
  4. Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
    [Crossref] [PubMed]
  5. P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
    [Crossref] [PubMed]
  6. P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
    [Crossref] [PubMed]
  7. N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
    [Crossref] [PubMed]
  8. Y. Zhao, B. W. Pogue, S. J. Haider, J. Gui, R. M. diFlorio-Alexander, K. D. Paulsen, and S. Jiang, “Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite,” Biomed. Opt. Express 7(6), 2186–2201 (2016).
    [Crossref] [PubMed]
  9. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
    [Crossref] [PubMed]
  10. T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
    [Crossref] [PubMed]
  11. S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
    [Crossref] [PubMed]
  12. S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
    [Crossref] [PubMed]
  13. B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
    [Crossref] [PubMed]
  14. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
    [Crossref] [PubMed]
  15. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref] [PubMed]
  16. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  17. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
    [Crossref] [PubMed]
  18. G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
    [Crossref] [PubMed]
  19. R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
    [Crossref] [PubMed]
  20. K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
    [Crossref] [PubMed]
  21. N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
    [Crossref] [PubMed]
  22. K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
    [Crossref] [PubMed]
  23. K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
    [Crossref] [PubMed]
  24. S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
    [Crossref] [PubMed]
  25. S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
    [Crossref] [PubMed]
  26. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
    [Crossref] [PubMed]
  27. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref] [PubMed]
  28. A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
    [Crossref] [PubMed]
  29. K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
    [Crossref] [PubMed]
  30. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
    [Crossref] [PubMed]
  31. R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
    [Crossref] [PubMed]
  32. A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
    [Crossref] [PubMed]
  33. S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
    [Crossref] [PubMed]
  34. S. D. Serai, J. R. Dillman, and A. T. Trout, “Proton density fat fraction measurements at 1.5-and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers,” Radiology 284(1), 244–254 (2017).
    [Crossref] [PubMed]
  35. D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
    [Crossref] [PubMed]
  36. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref] [PubMed]
  37. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  38. S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
    [Crossref] [PubMed]
  39. S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
    [Crossref] [PubMed]
  40. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31(10), 1370–1376 (1992).
    [Crossref] [PubMed]

2018 (1)

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

2017 (3)

S. D. Serai, J. R. Dillman, and A. T. Trout, “Proton density fat fraction measurements at 1.5-and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers,” Radiology 284(1), 244–254 (2017).
[Crossref] [PubMed]

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

2016 (3)

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Zhao, B. W. Pogue, S. J. Haider, J. Gui, R. M. diFlorio-Alexander, K. D. Paulsen, and S. Jiang, “Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite,” Biomed. Opt. Express 7(6), 2186–2201 (2016).
[Crossref] [PubMed]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

2015 (3)

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

2014 (4)

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

2013 (5)

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

2012 (2)

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

2010 (2)

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

2009 (1)

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

2005 (2)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

2003 (4)

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

2000 (1)

1996 (1)

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

1995 (1)

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref] [PubMed]

1994 (1)

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

1992 (1)

1991 (1)

1989 (1)

Aarnoudse, J. G.

Abbate, F.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

Aliyari Ghasabeh, M.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Alvis, B. D.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Anderson, P. G.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Andersson-Engels, S.

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Arora, S. S.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Bahri, S.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Bargigia, I.

Baribeau, F.

Barstow, T. J.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Bashir, M. R.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Bénazech-Lavoué, M.

Berger, A. J.

Bérubé-Lauzière, Y.

Bevilacqua, F.

Boas, D. A.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Bodnar, O.

Botwicz, M.

Bouchard, J.-P.

Boverman, G.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Brooks, D. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Butler, J.

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Carp, S. A.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Carpenter, P. M.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Cassano, E.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

Cerussi, A.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Cerussi, A. E.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

Chance, B.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

Chen, J. H.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chen, W. P.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Chikoidze, E.

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

Chiou, G.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Chu, Y.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Chung, S. H.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

Compton, M.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Cope, M.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Cubeddu, R.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

de Mul, F. F. M.

Delpy, D. T.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Deng, C.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Desjardins, A. E.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Di Ninni, P.

DiFlorio-Alexander, R.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

diFlorio-Alexander, R. M.

Dillman, J. R.

S. D. Serai, J. R. Dillman, and A. T. Trout, “Proton density fat fraction measurements at 1.5-and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers,” Radiology 284(1), 244–254 (2017).
[Crossref] [PubMed]

Durduran, T.

Durkin, A.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Durkin, A. J.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Elster, C.

Fang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Fantini, S.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Farina, A.

Foschum, F.

Frazee, T. E.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Gallant, P.

Graaff, R.

Graham, R. A.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Greve, J.

Grosenick, D.

Gui, J.

Y. Zhao, B. W. Pogue, S. J. Haider, J. Gui, R. M. diFlorio-Alexander, K. D. Paulsen, and S. Jiang, “Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite,” Biomed. Opt. Express 7(6), 2186–2201 (2016).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Gulsen, G.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Haider, S. J.

Hamaoka, T.

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

Hamilton, G.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Hendriks, B. H.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Hernando, D.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Hielscher, A. H.

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref] [PubMed]

Hirokawa, E.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Ho, H.-C.

Homer, M. J.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Hsiang, D.

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Hylton, N.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Ieva, F.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

Iihara, K.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Ima, E.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Inatomi, Y.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Irie, T.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Isakoff, S. J.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Itoh, H.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref] [PubMed]

Jakubowski, D.

Jermyn, M.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Jiang, S.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Y. Zhao, B. W. Pogue, S. J. Haider, J. Gui, R. M. diFlorio-Alexander, K. D. Paulsen, and S. Jiang, “Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite,” Biomed. Opt. Express 7(6), 2186–2201 (2016).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Jordan, E.

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

Kacprzak, M.

Kainerstorfer, J. M.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Kamel, I. R.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Kanayama, N.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Kaneko, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

Kaufman, P. A.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Khoptyar, D.

Kienle, A.

Klauenberg, K.

Koelink, M. H.

Koga, S.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Kondo, N.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Kopans, D. B.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Krishnamurthy, N.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Krishnaswamy, V.

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

Kuji, I.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Kuwajima, K.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Leclair, S.

Leproux, A.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Lesage, F.

Liebert, A.

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Macdonald, R.

Maeda, H.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Mankoff, D.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Martelli, F.

Matcher, S. J.

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

Matlock, A.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Mazurenka, M.

McLaren, C. E.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Mehta, R.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Mehta, R. S.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

Mermut, O.

Merritt, S.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Michaelsen, K. E.

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

Milej, D.

Miller, E. L.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Mimura, T.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

Miyazaki, A.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Moes, C. J.

Moesta, K. T.

Möller, M.

Moore, R. H.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Mucke, J.

Muramatsu, K.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Nachabé, R.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

Nagahashi, K.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Nalcioglu, O.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Nasu, H.

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Nirengi, S.

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

Noiseux, I.

O’Sullivan, T. D.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Oda, M.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Ogura, H.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Ohmae, E.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Ohnishi, Y.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Ohta, K.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

Okushima, D.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Osaki, A.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Paganoni, A. M.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

Pan, L.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

Paulsen, K. D.

Y. Zhao, B. W. Pogue, S. J. Haider, J. Gui, R. M. diFlorio-Alexander, K. D. Paulsen, and S. Jiang, “Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite,” Biomed. Opt. Express 7(6), 2186–2201 (2016).
[Crossref] [PubMed]

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Pifferi, A.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref] [PubMed]

G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
[Crossref] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express 15(11), 6589–6604 (2007).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

Pogue, B. W.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Y. Zhao, B. W. Pogue, S. J. Haider, J. Gui, R. M. diFlorio-Alexander, K. D. Paulsen, and S. Jiang, “Portable, parallel 9-wavelength near-infrared spectral tomography (NIRST) system for efficient characterization of breast cancer within the clinical oncology infusion suite,” Biomed. Opt. Express 7(6), 2186–2201 (2016).
[Crossref] [PubMed]

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Poole, D. C.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Poplack, S. P.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Prahl, S. A.

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Quarto, G.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
[Crossref] [PubMed]

Reeder, S. B.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Rice, M. J.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Rinneberg, H.

Roblyer, D.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Rossiter, H. B.

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saeki, T.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Saito, M.

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

Sakahara, H.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Sano, H.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Sassaroli, A.

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

Sawosz, P.

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schlag, P. M.

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schnall, M.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Selb, J.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Serai, S. D.

S. D. Serai, J. R. Dillman, and A. T. Trout, “Proton density fat fraction measurements at 1.5-and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers,” Radiology 284(1), 244–254 (2017).
[Crossref] [PubMed]

Shaffer, J. M.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Shah, N.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

Sharma, S. D.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Shenoy, A.

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

Shigekawa, T.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Shimada, H.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Sirlin, C. B.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Sloot, P. M. A.

Snyder, B. S.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Sofue, K.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Spinelli, L.

Sterenborg, H. J.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

Stroszczynski, C.

Su, M. Y.

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

Subash, A. A.

Sugie, H.

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

Sugihara, K.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Suzuki, H.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Suzuki, K.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

Suzuki, T.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Szeverenyi, N. M.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Takehara, Y.

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Takeuchi, H.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Tamura, N.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Tanamai, V. W.

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

Taroni, P.

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
[Crossref] [PubMed]

Teruya, C.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Tinevez, J. Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tittel, F. K.

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref] [PubMed]

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Torricelli, A.

Tromberg, B. J.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

Trout, A. T.

S. D. Serai, J. R. Dillman, and A. T. Trout, “Proton density fat fraction measurements at 1.5-and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers,” Radiology 284(1), 244–254 (2017).
[Crossref] [PubMed]

Uchida, T.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Ueda, S.

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Ueda, Y.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

van der Mark, M. B.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

van der Voort, M.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

van Gemert, M. J.

van Marie, J.

van Staveren, H. J.

van Veen, R. L. P.

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

Wabnitz, H.

Wada, H.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

Wang, L.

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref] [PubMed]

Weigel, U.

Welch, E. B.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Wells, W. A.

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Wilson, B. C.

Yamanaka, T.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Yamashita, D.

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Yamashita, Y.

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

Yamazaki, K.

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

Yang, W.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Yodh, A. G.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Yokoo, T.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Yoneshiro, T.

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

Yoshida, M.

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

Yoshimoto, K.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

Yoshitani, K.

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Yoshizawa, N.

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Yu, H.

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

Yuan, Q.

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Zaccanti, G.

Zhang, Q.

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

Zhang, Z.

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Zhao, Y.

Zijp, J. R.

Zolek, N.

Acad. Radiol. (1)

A. E. Cerussi, V. W. Tanamai, R. S. Mehta, D. Hsiang, J. Butler, and B. J. Tromberg, “Frequent optical imaging during breast cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient,” Acad. Radiol. 17(8), 1031–1039 (2010).
[Crossref] [PubMed]

Appl. Opt. (7)

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref] [PubMed]

D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42(16), 3170–3186 (2003).
[Crossref] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[Crossref] [PubMed]

G. Quarto, A. Pifferi, I. Bargigia, A. Farina, R. Cubeddu, and P. Taroni, “Recipes to make organic phantoms for diffusive optical spectroscopy,” Appl. Opt. 52(11), 2494–2502 (2013).
[Crossref] [PubMed]

H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[Crossref] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31(10), 1370–1376 (1992).
[Crossref] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt. 39(34), 6498–6507 (2000).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Breast Cancer (1)

N. Yoshizawa, Y. Ueda, H. Nasu, H. Ogura, E. Ohmae, K. Yoshimoto, Y. Takehara, Y. Yamashita, and H. Sakahara, “Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer,” Breast Cancer 23(6), 844–850 (2016).
[Crossref] [PubMed]

Breast Cancer Res. (2)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy,” Breast Cancer Res. 7(6), 279–285 (2005).
[Crossref] [PubMed]

T. D. O’Sullivan, A. Leproux, J. H. Chen, S. Bahri, A. Matlock, D. Roblyer, C. E. McLaren, W. P. Chen, A. E. Cerussi, M. Y. Su, and B. J. Tromberg, “Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy,” Breast Cancer Res. 15(1), R14 (2013).
[Crossref] [PubMed]

Cancer Res. (1)

B. J. Tromberg, Z. Zhang, A. Leproux, T. D. O’Sullivan, A. E. Cerussi, P. M. Carpenter, R. S. Mehta, D. Roblyer, W. Yang, K. D. Paulsen, B. W. Pogue, S. Jiang, P. A. Kaufman, A. G. Yodh, S. H. Chung, M. Schnall, B. S. Snyder, N. Hylton, D. A. Boas, S. A. Carp, S. J. Isakoff, and D. Mankoff, “Predicting responses to neoadjuvant chemotherapy in breast cancer: ACRIN 6691 trial of diffuse optical spectroscopic imaging,” Cancer Res. 76(20), 5933–5944 (2016).
[Crossref] [PubMed]

Clin. Cancer Res. (1)

S. Jiang, B. W. Pogue, P. A. Kaufman, J. Gui, M. Jermyn, T. E. Frazee, S. P. Poplack, R. DiFlorio-Alexander, W. A. Wells, and K. D. Paulsen, “Predicting breast tumor response to neoadjuvant chemotherapy with diffuse optical spectroscopic tomography prior to treatment,” Clin. Cancer Res. 20(23), 6006–6015 (2014).
[Crossref] [PubMed]

Clin. Physiol. Funct. Imaging (1)

K. Yamazaki, K. Suzuki, H. Itoh, K. Muramatsu, K. Nagahashi, N. Tamura, T. Uchida, K. Sugihara, H. Maeda, and N. Kanayama, “Cerebral oxygen saturation evaluated by near-infrared time-resolved spectroscopy (TRS) in pregnant women during caesarean section - a promising new method of maternal monitoring,” Clin. Physiol. Funct. Imaging 33(2), 109–116 (2013).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

Q. Fang, S. A. Carp, J. Selb, G. Boverman, Q. Zhang, D. B. Kopans, R. H. Moore, E. L. Miller, D. H. Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging 28(1), 30–42 (2009).
[Crossref] [PubMed]

J. Appl. Physiol. (1)

S. Koga, T. J. Barstow, D. Okushima, H. B. Rossiter, N. Kondo, E. Ohmae, and D. C. Poole, “Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise,” J. Appl. Physiol. 118(11), 1435–1442 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (8)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt. 15(3), 037015 (2010).
[Crossref] [PubMed]

K. E. Michaelsen, V. Krishnaswamy, A. Shenoy, E. Jordan, B. W. Pogue, and K. D. Paulsen, “Anthropomorphic breast phantoms with physiological water, lipid, and hemoglobin content for near-infrared spectral tomography,” J. Biomed. Opt. 19(2), 026012 (2014).
[Crossref] [PubMed]

N. Yoshizawa, Y. Ueda, T. Mimura, E. Ohmae, K. Yoshimoto, H. Wada, H. Ogura, and H. Sakahara, “Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer,” J. Biomed. Opt. 23(2), 026010 (2018).
[Crossref] [PubMed]

K. Suzuki, Y. Yamashita, K. Ohta, M. Kaneko, M. Yoshida, and B. Chance, “Quantitative measurement of optical parameters in normal breasts using time-resolved spectroscopy: in vivo results of 30 Japanese women,” J. Biomed. Opt. 1(3), 330–334 (1996).
[Crossref] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[Crossref] [PubMed]

R. L. P. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt. 10(5), 054004 (2005).
[Crossref] [PubMed]

S. H. Chung, H. Yu, M. Y. Su, A. E. Cerussi, and B. J. Tromberg, “Molecular imaging of water binding state and diffusion in breast cancer using diffuse optical spectroscopy and diffusion weighted MRI,” J. Biomed. Opt. 17(7), 071304 (2012).
[Crossref] [PubMed]

J. Neurosurg. Anesthesiol. (1)

K. Yoshitani, K. Kuwajima, T. Irie, Y. Inatomi, A. Miyazaki, K. Iihara, and Y. Ohnishi, “Clinical validity of cerebral oxygen saturation measured by time-resolved spectroscopy during carotid endarterectomy,” J. Neurosurg. Anesthesiol. 25(3), 248–253 (2013).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

D. Hernando, S. D. Sharma, M. Aliyari Ghasabeh, B. D. Alvis, S. S. Arora, G. Hamilton, L. Pan, J. M. Shaffer, K. Sofue, N. M. Szeverenyi, E. B. Welch, Q. Yuan, M. R. Bashir, I. R. Kamel, M. J. Rice, C. B. Sirlin, T. Yokoo, and S. B. Reeder, “Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom,” Magn. Reson. Med. 77(4), 1516–1524 (2017).
[Crossref] [PubMed]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Obesity (1)

S. Nirengi, T. Yoneshiro, H. Sugie, M. Saito, and T. Hamaoka, “Human brown adipose tissue assessed by simple, noninvasive near-Infrared time-resolved spectroscopy,” Obesity 23(5), 973–980 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Med. Biol. (3)

A. H. Hielscher, S. L. Jacques, L. Wang, and F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[Crossref] [PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).
[Crossref] [PubMed]

S. J. Matcher, M. Cope, and D. T. Delpy, “Use of the water absorption spectrum to quantify tissue chromophore concentration changes in near-infrared spectroscopy,” Phys. Med. Biol. 39(1), 177–196 (1994).
[Crossref] [PubMed]

PLoS One (2)

P. G. Anderson, J. M. Kainerstorfer, A. Sassaroli, N. Krishnamurthy, M. J. Homer, R. A. Graham, and S. Fantini, “Broadband optical mammography: chromophore concentration and hemoglobin saturation contrast in breast cancer,” PLoS One 10(3), e0117322 (2015).
[Crossref] [PubMed]

S. Ueda, I. Kuji, T. Shigekawa, H. Takeuchi, H. Sano, E. Hirokawa, H. Shimada, H. Suzuki, M. Oda, A. Osaki, and T. Saeki, “Optical imaging for monitoring tumor oxygenation response after initiation of single-agent bevacizumab followed by cytotoxic chemotherapy in breast cancer patients,” PLoS One 9(6), e98715 (2014).
[Crossref] [PubMed]

Radiology (1)

S. D. Serai, J. R. Dillman, and A. T. Trout, “Proton density fat fraction measurements at 1.5-and 3-T hepatic MR imaging: same-day agreement among readers and across two imager manufacturers,” Radiology 284(1), 244–254 (2017).
[Crossref] [PubMed]

Sci. Rep. (1)

P. Taroni, A. M. Paganoni, F. Ieva, A. Pifferi, G. Quarto, F. Abbate, E. Cassano, and R. Cubeddu, “Non-invasive optical estimate of tissue composition to differentiate malignant from benign breast lesions: A pilot study,” Sci. Rep. 7(1), 40683 (2017).
[Crossref] [PubMed]

Technol. Cancer Res. Treat. (2)

Y. Ueda, K. Yoshimoto, E. Ohmae, T. Suzuki, T. Yamanaka, D. Yamashita, H. Ogura, C. Teruya, H. Nasu, E. Ima, H. Sakahara, M. Oda, and Y. Yamashita, “Time-resolved optical mammography and its preliminary clinical results,” Technol. Cancer Res. Treat. 10(5), 393–401 (2011).
[Crossref] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms,” Technol. Cancer Res. Treat. 2(6), 563–569 (2003).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 TRS-21-6W: (a) appearance and (b) block diagram.
Fig. 2
Fig. 2 IRF at all wavelengths: (a) unit 1 and (b) unit 2.
Fig. 3
Fig. 3 Absorption spectra of water and lipid.
Fig. 4
Fig. 4 (a) Absorption and (b) reduced scattering coefficients obtained from the liquid phantoms.
Fig. 5
Fig. 5 Characteristics of the solid tissue phantoms.
Fig. 6
Fig. 6 Lipid content (volume fraction) in the solid tissue phantoms as obtained from MRI data for different depths underneath the planar phantom surface. At each depth, only a 1 cm wide ROI in the center of the respective cross-sectional area was analyzed.
Fig. 7
Fig. 7 (a) Absorption and (b) reduced scattering coefficients obtained by measuring six solid tissue phantoms using the six-wavelength TD-DOS system.
Fig. 8
Fig. 8 (a) Water and (b) lipid volume fractions measured with TD-DOS system and MRI on solid tissue phantoms as a function of the corresponding theoretical volume fractions based on the phantom preparation procedure.
Fig. 9
Fig. 9 Long-term stability of (a) absorption coefficient, (b) reduced scattering coefficient, and (c) water and lipid contents of the solid tissue phantoms with water-to-lipid ratios of 80:20 (left) and 40:60 (right). All measurement series started 1 day after phantom preparation.
Fig. 10
Fig. 10 40:60 emulsions before solidification (a) O/W (200x magnification) and (b) W/O (100 x magnification).

Tables (1)

Tables Icon

Table 1 Specifications of TRS-21-6W.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

1 c t ϕ( r,t )D 2 ϕ( r,t )+ μ a ϕ( r,t )=S( r,t )
R( d,t )= 1 2 ( 4πDc ) 3/2 t 5/2 exp( μ a ct ) [ z 0 exp( z 0 2 + d 2 4Dct )+( z 0 +2 z e )exp( ( z 0 +2 z e ) 2 + d 2 4Dct ) ],
μ a ( λ )= i=1 m C i ε i ( λ )

Metrics