Abstract

The ultra-miniaturization of massively multiplexed fluorescence-based bio-molecular sensing systems for proteins and nucleic acids into a chip-scale form, small enough to fit inside a pill (∼ 0.1cm3), can revolutionize sensing modalities in-vitro and in-vivo. Prior miniaturization techniques have been limited to focusing on traditional optical components (multiple filter sets, lenses, photo-detectors, etc.) arranged in new packaging systems. Here, we report a method that eliminates all external optics and miniaturizes an entire multiplexed fluorescence system into a 2 × 1 mm2 chip through co-integration for the first time of massively scalable nano-plasmonic multi-functional optical elements and electronic processing circuitry realized in an industry standard complementary-metal-oxide semiconductor (CMOS) foundry process with absolutely ‘no change’ in fabrication or processing. The implemented nano-waveguide based filters operating in the visible and near-IR realized with the embedded sub-wavelength multi-layer copper-based electronic interconnects inside the chip show for the first time a sub-wavelength surface plasmon polariton mode inside CMOS. This is the principle behind the angle-insensitive nature of the filtering that operates in the presence of uncollimated and scattering environments, enabling the first optics-free 96-sensor CMOS fluorescence sensing system. The chip demonstrates the surface sensitivity of zeptomoles of quantum dot-based labels, and volume sensitivities of ∼ 100 fM for nucleic acids and ∼ 5 pM for proteins that are comparable to, if not better, than commercial fluorescence readers. The ability to integrate multi-functional nano-optical structures in a commercial CMOS process, along with all the complex electronics, can have a transformative impact and enable a new class of miniaturized and scalable chip-sized optical sensors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces

Ian D. Block, Patrick C. Mathias, Nikhil Ganesh, Sarah I. Jones, Brian R. Dorvel, Vikram Chaudhery, Lila O. Vodkin, Rashid Bashir, and Brian T. Cunningham
Opt. Express 17(15) 13222-13235 (2009)

Spatially selective photonic crystal enhanced fluorescence and application to background reduction for biomolecule detection assays

Vikram Chaudhery, Cheng-Sheng Huang, Anusha Pokhriyal, James Polans, and Brian T. Cunningham
Opt. Express 19(23) 23327-23340 (2011)

Combined fluorescent and interferometric detection of protein on a BioCD

Xuefeng Wang, Ming Zhao, and D. D. Nolte
Appl. Opt. 47(15) 2779-2789 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. Xu, K.M. Chan, and E.T. Kool, “Fluorescent nucleobases as tools for studying DNA and RNA,” Nat. Chem. 9, 1043–1055 (2017).
    [Crossref] [PubMed]
  2. Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
    [Crossref]
  3. Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
    [Crossref] [PubMed]
  4. J.R. Heath, A. Ribas, and P.S. Mischel, “Single-cell analysis tools for drug discovery and development,” Nat. Reviews Drug Discovery 15, 204–216 (2016).
    [Crossref]
  5. H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
    [Crossref]
  6. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photon. 6, 657–661 (2012).
    [Crossref]
  7. Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
    [Crossref]
  8. L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
    [Crossref] [PubMed]
  9. J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
    [Crossref]
  10. A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
    [Crossref] [PubMed]
  11. M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
    [Crossref]
  12. M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
    [Crossref]
  13. L. Liu, S. Towfghian, and A. Hila, “A review of locomotion systems for capsule endoscopy,” IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
    [Crossref] [PubMed]
  14. G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
    [Crossref]
  15. D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
    [Crossref] [PubMed]
  16. B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
    [Crossref] [PubMed]
  17. B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng.,  12, 55–85 (2010)
    [Crossref] [PubMed]
  18. J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
    [Crossref] [PubMed]
  19. L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
    [Crossref]
  20. K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
    [Crossref]
  21. M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
    [Crossref]
  22. M.A. Al-Rawhani, J. Beeley, and D.R. Cumming, “Wireless fluorescence capsule for endoscopy using single photon-based detection,” Sci. Rep. 5, 18591 (2015).
    [Crossref] [PubMed]
  23. G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
    [Crossref]
  24. C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
    [Crossref] [PubMed]
  25. P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
    [Crossref] [PubMed]
  26. H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
    [Crossref] [PubMed]
  27. D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
    [Crossref] [PubMed]
  28. Y. Huang and A.J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors,” Lab on a Chip,  13, 3929–3934 (2013).
    [Crossref] [PubMed]
  29. D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
    [Crossref]
  30. J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
    [Crossref]
  31. D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
    [Crossref]
  32. J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
    [Crossref] [PubMed]
  33. A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
    [Crossref] [PubMed]
  34. H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
    [Crossref] [PubMed]
  35. A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
    [Crossref]
  36. B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).
  37. D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
    [Crossref]
  38. M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
    [Crossref]
  39. R.M. Field, S. Realov, and K.L. Shepard, “A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49, 867–880 (2014).
    [Crossref]
  40. D.K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [Crossref]
  41. J.B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotech. 10, 2–6 (2015).
    [Crossref]
  42. J.A. Schuller, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat. 9, 193–204 (2010).
    [Crossref]
  43. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009).
    [Crossref]
  44. H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
    [Crossref] [PubMed]
  45. N. Meinzer, W.L. Barnes, and I.A. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photon. 8, 889–898 (2014).
    [Crossref]
  46. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mat. 13, 139–150 (2014).
    [Crossref]
  47. A.G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6, 709–713 (2012).
    [Crossref]
  48. L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
    [Crossref] [PubMed]
  49. A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
    [Crossref]
  50. D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
    [Crossref] [PubMed]
  51. L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
    [Crossref]
  52. D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
    [Crossref]
  53. L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
    [Crossref] [PubMed]
  54. N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
    [Crossref] [PubMed]
  55. D.M. Shcherbakova and V.V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10, 751–754 (2013).
    [Crossref] [PubMed]
  56. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
    [Crossref] [PubMed]
  57. R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
    [Crossref] [PubMed]
  58. W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67, 1607–1615 (1977).
    [Crossref]
  59. W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” JOSA 67, 1615–1619 (1977).
    [Crossref]
  60. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69, 1495–1503 (1979).
    [Crossref]
  61. T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
    [Crossref]
  62. S. Yokogawa, S. P. Burgos, and H. Atawater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12, 4349–4354 (2012).
    [Crossref] [PubMed]
  63. S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
    [Crossref] [PubMed]
  64. L. Hong, H. Li, H. Yang, and K. Sengupta, ”Integrated Angle-insensitive Nano-plasmonic Filters for Ultra-miniaturized Fluorescence Microarray in a 65-nm Digital CMOS Process,” ACS Photonics, accepted [10.1021/acsphotonics.8b00440] (2018).
    [Crossref]
  65. L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” IEEE Trans. Biomedical Circuits and Systems 11, 1176–1191 (2017).
    [Crossref]
  66. X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs Using Noise-Immune Process-Sensitive Photonic Crystals Incorporating Passive Variations for Robustness,” IEEE J. Solid-State Circuits 53, 2709–2721 (2018).
    [Crossref]
  67. L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 462–463.
  68. X. Lu, L. Hong, and K. Sengupta, “15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 272–273.
  69. L. Hong, X. Lu, and K. Sengupta, “Nano-optical systems in CMOS,” in IEEE Intl. Midwest Symp. Circuits and Systems (MWSCAS) (2017), pp. 906–909.
  70. ThermoFisher Scientific, Qdot 800 Streptavidin Conjugate. https://www.thermofisher.com/order/catalog/product/Q10171MP . Accessed February 07, 2018.
  71. X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
    [Crossref] [PubMed]
  72. L. Song, S. Ahn, and D.R. Walt, “Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection,” Anal. Chem. 78, 1023–1033 (2006).
    [Crossref] [PubMed]
  73. M. Bowden, L. Song, and D.R. Walt, “Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,” Anal. Chem. 77, 5583–5588 (2005).
    [Crossref] [PubMed]
  74. H. Xie, C. Zhang, and Z. Gao, “Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrod,” Anal. Chem. 76, 1611–1617 (2004).
    [Crossref] [PubMed]
  75. R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
    [Crossref]
  76. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
    [Crossref] [PubMed]
  77. T. Datta-Chaudhuri, P. Abshire, and E. Smela, “Packaging commercial CMOS chips for lab on a chip integration,” Lab on a Chip 14, 1753–1766 (2014).
    [Crossref] [PubMed]
  78. D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
    [Crossref] [PubMed]

2018 (1)

X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs Using Noise-Immune Process-Sensitive Photonic Crystals Incorporating Passive Variations for Robustness,” IEEE J. Solid-State Circuits 53, 2709–2721 (2018).
[Crossref]

2017 (12)

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” IEEE Trans. Biomedical Circuits and Systems 11, 1176–1191 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
[Crossref]

W. Xu, K.M. Chan, and E.T. Kool, “Fluorescent nucleobases as tools for studying DNA and RNA,” Nat. Chem. 9, 1043–1055 (2017).
[Crossref] [PubMed]

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
[Crossref]

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

2016 (6)

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

J.R. Heath, A. Ribas, and P.S. Mischel, “Single-cell analysis tools for drug discovery and development,” Nat. Reviews Drug Discovery 15, 204–216 (2016).
[Crossref]

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

2015 (10)

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

J.B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotech. 10, 2–6 (2015).
[Crossref]

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
[Crossref] [PubMed]

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

L. Liu, S. Towfghian, and A. Hila, “A review of locomotion systems for capsule endoscopy,” IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
[Crossref] [PubMed]

M.A. Al-Rawhani, J. Beeley, and D.R. Cumming, “Wireless fluorescence capsule for endoscopy using single photon-based detection,” Sci. Rep. 5, 18591 (2015).
[Crossref] [PubMed]

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

2014 (11)

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

R.M. Field, S. Realov, and K.L. Shepard, “A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49, 867–880 (2014).
[Crossref]

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
[Crossref] [PubMed]

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
[Crossref] [PubMed]

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

N. Meinzer, W.L. Barnes, and I.A. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photon. 8, 889–898 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mat. 13, 139–150 (2014).
[Crossref]

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

T. Datta-Chaudhuri, P. Abshire, and E. Smela, “Packaging commercial CMOS chips for lab on a chip integration,” Lab on a Chip 14, 1753–1766 (2014).
[Crossref] [PubMed]

2013 (5)

D.M. Shcherbakova and V.V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10, 751–754 (2013).
[Crossref] [PubMed]

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Y. Huang and A.J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors,” Lab on a Chip,  13, 3929–3934 (2013).
[Crossref] [PubMed]

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

2012 (6)

H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
[Crossref] [PubMed]

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photon. 6, 657–661 (2012).
[Crossref]

Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
[Crossref]

A.G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6, 709–713 (2012).
[Crossref]

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. Atawater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref] [PubMed]

2011 (3)

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref]

2010 (5)

B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng.,  12, 55–85 (2010)
[Crossref] [PubMed]

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

D.K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
[Crossref]

J.A. Schuller, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat. 9, 193–204 (2010).
[Crossref]

2009 (1)

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009).
[Crossref]

2008 (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

2006 (5)

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

L. Song, S. Ahn, and D.R. Walt, “Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection,” Anal. Chem. 78, 1023–1033 (2006).
[Crossref] [PubMed]

D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
[Crossref]

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

2005 (2)

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

M. Bowden, L. Song, and D.R. Walt, “Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,” Anal. Chem. 77, 5583–5588 (2005).
[Crossref] [PubMed]

2004 (1)

H. Xie, C. Zhang, and Z. Gao, “Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrod,” Anal. Chem. 76, 1611–1617 (2004).
[Crossref] [PubMed]

1979 (1)

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69, 1495–1503 (1979).
[Crossref]

1977 (2)

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67, 1607–1615 (1977).
[Crossref]

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” JOSA 67, 1615–1619 (1977).
[Crossref]

Abbott, J.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Abbott, J.J.

B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng.,  12, 55–85 (2010)
[Crossref] [PubMed]

Abshire, P.

T. Datta-Chaudhuri, P. Abshire, and E. Smela, “Packaging commercial CMOS chips for lab on a chip integration,” Lab on a Chip 14, 1753–1766 (2014).
[Crossref] [PubMed]

Ahn, S.

L. Song, S. Ahn, and D.R. Walt, “Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection,” Anal. Chem. 78, 1023–1033 (2006).
[Crossref] [PubMed]

Albright, S.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Alivisatos, A.P.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Alon, E.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Al-Rawhani, M.A.

M.A. Al-Rawhani, J. Beeley, and D.R. Cumming, “Wireless fluorescence capsule for endoscopy using single photon-based detection,” Sci. Rep. 5, 18591 (2015).
[Crossref] [PubMed]

Altug, H.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Anand, S.V.

B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
[Crossref] [PubMed]

Andrews, A.M.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Atawater, H.

S. Yokogawa, S. P. Burgos, and H. Atawater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref] [PubMed]

Atreya, R.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Atwater, H.A.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Baker, S.C.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Ballini, M.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Barnes, W.L.

N. Meinzer, W.L. Barnes, and I.A. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photon. 8, 889–898 (2014).
[Crossref]

Barr, H.M.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Beeley, J.

M.A. Al-Rawhani, J. Beeley, and D.R. Cumming, “Wireless fluorescence capsule for endoscopy using single photon-based detection,” Sci. Rep. 5, 18591 (2015).
[Crossref] [PubMed]

Bellin, D.L.

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

Belloni, F.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Bentolila, L.A.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Billmeier, U.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Blilou, I.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Bolouki, S.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

Bowden, M.

M. Bowden, L. Song, and D.R. Walt, “Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,” Anal. Chem. 77, 5583–5588 (2005).
[Crossref] [PubMed]

Boyden, E.S.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Bozhevolnyi, S.I.

D.K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Bradd, A.

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

Breault-Turcot, J.

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

Briere, C.

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

Brolo, A.G.

A.G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6, 709–713 (2012).
[Crossref]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. Atawater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref] [PubMed]

Burgos, S.P.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Burns, L.D.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Camborde, L.

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

Cao, P.

B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mat. 13, 139–150 (2014).
[Crossref]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

Ceylan, H.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Chan, K.M.

W. Xu, K.M. Chan, and E.T. Kool, “Fluorescent nucleobases as tools for studying DNA and RNA,” Nat. Chem. 9, 1043–1055 (2017).
[Crossref] [PubMed]

Chander, K.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Chang, J.Y.

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Chapman, S.

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

Chen, H.

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Chen, Y.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Chevalier, A.

B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).

Choi, H.

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Chou, S.Y.

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Chouket, R.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Chuang, E.

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

Chun, M.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Church, G.M.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Ciuti, G.

G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref]

Cocker, E.D.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Contie, S.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Couture, M.

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

Crawford, M.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Croquette, V.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Cui, M.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photon. 6, 657–661 (2012).
[Crossref]

Cumming, D.R.

M.A. Al-Rawhani, J. Beeley, and D.R. Cumming, “Wireless fluorescence capsule for endoscopy using single photon-based detection,” Sci. Rep. 5, 18591 (2015).
[Crossref] [PubMed]

Dalma-Weiszhausz, D.D.T

D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
[Crossref]

Darai, E.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Dario, P.

G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref]

Datta-Chaudhuri, T.

T. Datta-Chaudhuri, P. Abshire, and E. Smela, “Packaging commercial CMOS chips for lab on a chip integration,” Lab on a Chip 14, 1753–1766 (2014).
[Crossref] [PubMed]

Deisseroth, K.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Deslandes, L.

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

Dietrich, L.E.

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

Diller, E.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

DiMarzio, C.A.

Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
[Crossref]

Ding, F.

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Ding, W.

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Dodson, C.M.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Doose, S.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Dorwart, M.

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Drescher, C.W.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Dumas, B.

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

El Gamal, A.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Ellington, A.

B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).

Emami, A.

M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
[Crossref]

Faure, J.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Fedyanin, D.Y.

D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
[Crossref] [PubMed]

Field, R.M.

R.M. Field, S. Realov, and K.L. Shepard, “A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49, 867–880 (2014).
[Crossref]

H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
[Crossref] [PubMed]

Fiolka, R.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photon. 6, 657–661 (2012).
[Crossref]

Fournet, M.B.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Fraser, S.E.

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Fratalocchi, A.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Gadella, T.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Gao, Z.

H. Xie, C. Zhang, and Z. Gao, “Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrod,” Anal. Chem. 76, 1611–1617 (2004).
[Crossref] [PubMed]

Gaster, R.S.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Gaulin, E.

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

Gautier, A.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Genevet, P.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Genov, R.

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

Georgeson, J.M.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Gertner, R.S.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

Ghosh, K.K.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Giltinan, J.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Gissot, L.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Goedhart, J.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

Gramotnev, D.K.

D.K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Grinenval, E.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Gulak, G.

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

Guo, L.J.

T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
[Crossref]

Guruaribam, D.

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

Gutova, M.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Ha, D.

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

Hajimiri, A.

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
[Crossref] [PubMed]

Hall, D.A.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Ham, D.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Han, S.J.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Hassibi, A.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).

Heath, J.R.

J.R. Heath, A. Ribas, and P.S. Mischel, “Single-cell analysis tools for drug discovery and development,” Nat. Reviews Drug Discovery 15, 204–216 (2016).
[Crossref]

Hernández-Neuta, I.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Hila, A.

L. Liu, S. Towfghian, and A. Hila, “A review of locomotion systems for capsule endoscopy,” IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
[Crossref] [PubMed]

Ho, D.

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

Hong, L.

X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs Using Noise-Immune Process-Sensitive Photonic Crystals Incorporating Passive Variations for Robustness,” IEEE J. Solid-State Circuits 53, 2709–2721 (2018).
[Crossref]

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” IEEE Trans. Biomedical Circuits and Systems 11, 1176–1191 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, ”Integrated Angle-insensitive Nano-plasmonic Filters for Ultra-miniaturized Fluorescence Microarray in a 65-nm Digital CMOS Process,” ACS Photonics, accepted [10.1021/acsphotonics.8b00440] (2018).
[Crossref]

L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 462–463.

X. Lu, L. Hong, and K. Sengupta, “15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 272–273.

L. Hong, X. Lu, and K. Sengupta, “Nano-optical systems in CMOS,” in IEEE Intl. Midwest Symp. Circuits and Systems (MWSCAS) (2017), pp. 906–909.

Hooper, I.A.

N. Meinzer, W.L. Barnes, and I.A. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photon. 8, 889–898 (2014).
[Crossref]

Hu, A.

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

Hu, W.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Huang, C.H.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Huang, C.W.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Huang, N.T.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Huang, Y.

Y. Huang and A.J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors,” Lab on a Chip,  13, 3929–3934 (2013).
[Crossref] [PubMed]

Huang, Y.J.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Ilani, T.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009).
[Crossref]

Ipendey, E.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Jang, B.

B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).

Jauneau, A.

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

Jayasuriya, S.

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

Jones, W.D.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Jorgolli, M.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

Juang, Y.Z.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Judkewitz, B.

Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
[Crossref]

Jullien, L.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Kagawa, K.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

Kalachikov, S.

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Kaliakatsos, I.K.

B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng.,  12, 55–85 (2010)
[Crossref] [PubMed]

Kawahito, S.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009).
[Crossref]

Kawata, Y.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

Kelemen, Z.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Khachaturian, A.

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

Khurgin, J.B.

J.B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotech. 10, 2–6 (2015).
[Crossref]

Kirtaev, R.V.

D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
[Crossref] [PubMed]

Kiss, V.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Kiviat, N.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Kool, E.T.

W. Xu, K.M. Chan, and E.T. Kool, “Fluorescent nucleobases as tools for studying DNA and RNA,” Nat. Chem. 9, 1043–1055 (2017).
[Crossref] [PubMed]

Korepina, Y.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Kriesch, A.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Krull, U.J.

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

Kuan, D.H.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Kuhnemund, M.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Kumar, S.

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Kunz, R.E.

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” JOSA 67, 1615–1619 (1977).
[Crossref]

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67, 1607–1615 (1977).
[Crossref]

Kymissis, I.

H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
[Crossref] [PubMed]

Lee, H.W.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Lee-Gosselin, A.

M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
[Crossref]

Li, H.

L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, ”Integrated Angle-insensitive Nano-plasmonic Filters for Ultra-miniaturized Fluorescence Microarray in a 65-nm Digital CMOS Process,” ACS Photonics, accepted [10.1021/acsphotonics.8b00440] (2018).
[Crossref]

Li, J.J.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Li, X.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Li, Z.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Liao, H.H.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Lin, C.T.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Lin, J.R.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Lin, Y.H.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Liu, L.

L. Liu, S. Towfghian, and A. Hila, “A review of locomotion systems for capsule endoscopy,” IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
[Crossref] [PubMed]

Livi, P.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Long, Y.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Lu, X.

X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs Using Noise-Immune Process-Sensitive Photonic Crystals Incorporating Passive Variations for Robustness,” IEEE J. Solid-State Circuits 53, 2709–2721 (2018).
[Crossref]

L. Hong, X. Lu, and K. Sengupta, “Nano-optical systems in CMOS,” in IEEE Intl. Midwest Symp. Circuits and Systems (MWSCAS) (2017), pp. 906–909.

X. Lu, L. Hong, and K. Sengupta, “15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 272–273.

Lukosz, W.

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69, 1495–1503 (1979).
[Crossref]

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” JOSA 67, 1615–1619 (1977).
[Crossref]

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67, 1607–1615 (1977).
[Crossref]

Luo, X.

T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
[Crossref]

Luo, Y.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Maas, S.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Maharbiz, M.M.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Mahdavi, A.

H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
[Crossref] [PubMed]

Manickam, A.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

Margulies, D.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Markus, B.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Masmanidis, S.

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Mason, A.J.

Y. Huang and A.J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors,” Lab on a Chip,  13, 3929–3934 (2013).
[Crossref] [PubMed]

Masson, J.F.

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

McDermott, M.W.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

Meinzer, N.

N. Meinzer, W.L. Barnes, and I.A. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photon. 8, 889–898 (2014).
[Crossref]

Menciassi, A.

G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref]

Michalet, X.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Mischel, P.S.

J.R. Heath, A. Ribas, and P.S. Mischel, “Single-cell analysis tools for drug discovery and development,” Nat. Reviews Drug Discovery 15, 204–216 (2016).
[Crossref]

Miyada, C.G.

D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
[Crossref]

Molnar, A.

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

Momand, J.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Monge, M.

M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
[Crossref]

Motiei, L.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Müller, J.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

Naraghi-Arani, P.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

Neely, R.M.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Nelson, B.J.

B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng.,  12, 55–85 (2010)
[Crossref] [PubMed]

Neufert, C.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Neumann, H.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Neveu, P.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Nimmerjahn, A.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

Nivala, J.

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Noor, M.O.

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

Norian, H.

H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
[Crossref] [PubMed]

O’Briant, K.C.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Osterfeld, S.J.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Ozcan, A.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Padilla, J.E.

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Pai, A.

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

Pala, R.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Palla, M.

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Papadakis, G.

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

Park, H.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

Paulsen, J.

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

Pelechacz, D.

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

Peri-Naor, R.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Pierce, N.A.

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Pinaud, F.F.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Plamont, M.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Pode, Z.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Poirier-Richard, H.P.

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

Postma, M.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Price-Whelan, A.

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

Qin, L.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Querard, J.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Rabaey, J.M.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Radivojevic, M.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Rajagopalan, J.

B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
[Crossref] [PubMed]

Realov, S.

R.M. Field, S. Realov, and K.L. Shepard, “A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49, 867–880 (2014).
[Crossref]

Reid, L.H.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

Ribas, A.

J.R. Heath, A. Ribas, and P.S. Mischel, “Single-cell analysis tools for drug discovery and development,” Nat. Reviews Drug Discovery 15, 204–216 (2016).
[Crossref]

Rigneault, H.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Roemgens, I.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Saif, M.T.

B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
[Crossref] [PubMed]

Sakhtah, H.

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

Sanchez-Perez, M.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Sandeau, L.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Sato, A.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Saux, T.L.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Sawyer, D.

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

Scheres, B.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Schnitzer, M.J.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Scholler, N.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Schuller, J.A.

J.A. Schuller, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat. 9, 193–204 (2010).
[Crossref]

Sengupta, K.

X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs Using Noise-Immune Process-Sensitive Photonic Crystals Incorporating Passive Variations for Robustness,” IEEE J. Solid-State Circuits 53, 2709–2721 (2018).
[Crossref]

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” IEEE Trans. Biomedical Circuits and Systems 11, 1176–1191 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, ”Integrated Angle-insensitive Nano-plasmonic Filters for Ultra-miniaturized Fluorescence Microarray in a 65-nm Digital CMOS Process,” ACS Photonics, accepted [10.1021/acsphotonics.8b00440] (2018).
[Crossref]

X. Lu, L. Hong, and K. Sengupta, “15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 272–273.

L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 462–463.

L. Hong, X. Lu, and K. Sengupta, “Nano-optical systems in CMOS,” in IEEE Intl. Midwest Symp. Circuits and Systems (MWSCAS) (2017), pp. 906–909.

Seo, D.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Seo, M.W.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

Shadmani, A.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Shapiro, M.G.

M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
[Crossref]

Shcherbakova, D.M.

D.M. Shcherbakova and V.V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10, 751–754 (2013).
[Crossref] [PubMed]

Shen, K.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Shepard, K.L.

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
[Crossref] [PubMed]

R.M. Field, S. Realov, and K.L. Shepard, “A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49, 867–880 (2014).
[Crossref]

Shi, L.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Shippy, R.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Si, K.

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photon. 6, 657–661 (2012).
[Crossref]

Simon, R.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Singh, R.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

Singhal, U.

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Sitti, M.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Sivaramakrishnan, S.

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

Sladitschek, H. L.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Smela, E.

T. Datta-Chaudhuri, P. Abshire, and E. Smela, “Packaging commercial CMOS chips for lab on a chip integration,” Lab on a Chip 14, 1753–1766 (2014).
[Crossref] [PubMed]

Song, L.

L. Song, S. Ahn, and D.R. Walt, “Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection,” Anal. Chem. 78, 1023–1033 (2006).
[Crossref] [PubMed]

M. Bowden, L. Song, and D.R. Walt, “Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,” Anal. Chem. 77, 5583–5588 (2005).
[Crossref] [PubMed]

Song, Y.

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Song, Y.Q.

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

Sorger, V.J.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Stahl, Y.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Stettler, A.

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

Stranges, P.B.

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Sun, N.

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

Tanimoto, E.Y.

D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
[Crossref]

Teranishi, N.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

Tirrell, D.A.

H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
[Crossref] [PubMed]

Toledo, F.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Towfghian, S.

L. Liu, S. Towfghian, and A. Hila, “A review of locomotion systems for capsule endoscopy,” IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
[Crossref] [PubMed]

Trinh, L.A.

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Tsai, D.

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

Tsai, H.H.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Tsay, J.M.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Turan, M.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Unger, T.

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

Urban, N.

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

Verhagen, E.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Verkhusha, V.V.

D.M. Shcherbakova and V.V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10, 751–754 (2013).
[Crossref] [PubMed]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009).
[Crossref]

Volkov, V.S.

D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
[Crossref] [PubMed]

Volovitch, M.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Vuillaume, C.

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Waldner, M.J.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Walt, D.R.

L. Song, S. Ahn, and D.R. Walt, “Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection,” Anal. Chem. 78, 1023–1033 (2006).
[Crossref] [PubMed]

M. Bowden, L. Song, and D.R. Walt, “Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,” Anal. Chem. 77, 5583–5588 (2005).
[Crossref] [PubMed]

Wang, A.

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

Wang, H.

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
[Crossref] [PubMed]

Wang, I.S.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Wang, S.X.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Wang, Y.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Wang, Y.M.

Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
[Crossref]

Warrington, J.

D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
[Crossref]

Warrington, J.A.

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Wei, Q.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Weidtkamp-Peters, S.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Weiss, S.

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Williams, B.J.

B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
[Crossref] [PubMed]

Wilson, R.J.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Wood, N.

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

Wu, Y.

T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
[Crossref]

Xie, H.

H. Xie, C. Zhang, and Z. Gao, “Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrod,” Anal. Chem. 76, 1611–1617 (2004).
[Crossref] [PubMed]

Xie, X.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Xu, G.

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Xu, L.

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Xu, T.

T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
[Crossref]

Xu, W.

W. Xu, K.M. Chan, and E.T. Kool, “Fluorescent nucleobases as tools for studying DNA and RNA,” Nat. Chem. 9, 1043–1055 (2017).
[Crossref] [PubMed]

Yakubovsky, D.I.

D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
[Crossref] [PubMed]

Yang, C.

Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
[Crossref]

Yang, C.H.

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Yang, H.

L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
[Crossref]

L. Hong, H. Li, H. Yang, and K. Sengupta, ”Integrated Angle-insensitive Nano-plasmonic Filters for Ultra-miniaturized Fluorescence Microarray in a 65-nm Digital CMOS Process,” ACS Photonics, accepted [10.1021/acsphotonics.8b00440] (2018).
[Crossref]

Yang, Z.

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

Yao, X.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Yasutomi, K.

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

Ye, T.

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

Yen, P.W.

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

Yeung, K.Y.

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Yim, S.

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. Atawater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref] [PubMed]

Yoon, H.

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mat. 13, 139–150 (2014).
[Crossref]

Yuste, R.

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

Zhang, C.

H. Xie, C. Zhang, and Z. Gao, “Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrod,” Anal. Chem. 76, 1611–1617 (2004).
[Crossref] [PubMed]

Zhang, R.

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

Zhang, W.

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Zhang, Y.

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

Zhou, F.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Zhou, W.

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Zia, R.

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Ziv, Y.

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Zopf, Y.

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Zurita-Lopez, C.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

ACS Nano (1)

A.P. Alivisatos, A.M. Andrews, E.S. Boyden, M. Chun, G.M. Church, K. Deisseroth, and S. Masmanidis, “Nanotools for neuroscience and brain activity mapping,” ACS Nano,  7, 1850–1866 (2013).
[Crossref] [PubMed]

Anal. Biochem. (1)

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Momand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotidecapped gold nanoparticle signal amplification,” Anal. Biochem. 354, 220–228 (2006).
[Crossref] [PubMed]

Anal. Chem. (4)

L. Song, S. Ahn, and D.R. Walt, “Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection,” Anal. Chem. 78, 1023–1033 (2006).
[Crossref] [PubMed]

M. Bowden, L. Song, and D.R. Walt, “Development of a microfluidic platform with an optical imaging microarray capable of attomolar target DNA detection,” Anal. Chem. 77, 5583–5588 (2005).
[Crossref] [PubMed]

H. Xie, C. Zhang, and Z. Gao, “Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrod,” Anal. Chem. 76, 1611–1617 (2004).
[Crossref] [PubMed]

L. Zhou, F. Ding, H. Chen, W. Ding, W. Zhang, and S.Y. Chou, “Enhancement of Immunoassay’s Fluorescence and Detection Sensitivity Using Three-Dimensional Plasmonic Nano-Antenna-Dots Array,” Anal. Chem. 84, 4489–4495 (2012).
[Crossref] [PubMed]

Analyst (1)

A. Pai, A. Khachaturian, S. Chapman, A. Hu, H. Wang, and A. Hajimiri, “A handheld magnetic sensing platform for antigen and nucleic acid detection,” Analyst 139, 1403–1411 (2014).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, “Microrobots for minimally invasive medicine,” Annu. Rev. Biomed. Eng.,  12, 55–85 (2010)
[Crossref] [PubMed]

Clin. Cancer. Res. (1)

N. Scholler, M. Crawford, A. Sato, C.W. Drescher, K.C. O’Briant, N. Kiviat, and N. Urban, “Bead-based ELISA for validation of ovarian cancer early detection markers,” Clin. Cancer. Res. 12, 2117–2124 (2006).
[Crossref] [PubMed]

IEEE J. Solid-State Circuits (5)

L. Hong, H. Li, H. Yang, and K. Sengupta, “Fully integrated fluorescence biosensors on-chip employing multi-functional nanoplasmonic optical structures in CMOS,” IEEE J. Solid-State Circuits 52, 2388 (2017).
[Crossref]

M.W. Seo, K. Kagawa, K. Yasutomi, Y. Kawata, N. Teranishi, Z. Li, and S. Kawahito, “A 10 ps Time-Resolution CMOS Image Sensor With Two-Tap True-CDS Lock-In Pixels for Fluorescence Lifetime Imaging,” IEEE J. Solid-State Circuits 51, 141–154 (2016).
[Crossref]

R.M. Field, S. Realov, and K.L. Shepard, “A 100 fps, Time-Correlated Single-Photon-Counting-Based Fluorescence-Lifetime Imager in 130 nm CMOS,” IEEE J. Solid-State Circuits 49, 867–880 (2014).
[Crossref]

X. Lu, L. Hong, and K. Sengupta, “CMOS Optical PUFs Using Noise-Immune Process-Sensitive Photonic Crystals Incorporating Passive Variations for Robustness,” IEEE J. Solid-State Circuits 53, 2709–2721 (2018).
[Crossref]

A. Manickam, R. Singh, M.W. McDermott, N. Wood, S. Bolouki, P. Naraghi-Arani, and A. Hassibi, “A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing,” IEEE J. Solid-State Circuits 52, 2857–2870 (2017).
[Crossref]

IEEE Rev. Biomed. Eng. (2)

L. Liu, S. Towfghian, and A. Hila, “A review of locomotion systems for capsule endoscopy,” IEEE Rev. Biomed. Eng. 8, 138–151 (2015).
[Crossref] [PubMed]

G. Ciuti, A. Menciassi, and P. Dario, “Capsule endoscopy: from current achievements to open challenges,” IEEE Rev. Biomed. Eng. 4, 59–72 (2011).
[Crossref]

IEEE Trans. Biomedical Circuits and Sys. (1)

D. Ho, M.O. Noor, U.J. Krull, G. Gulak, and R. Genov, “CMOS Spectrally-Multiplexed FRET-on-a-Chip for DNA Analysis,” IEEE Trans. Biomedical Circuits and Sys. 7, 643–654 (2013).
[Crossref]

IEEE Trans. Biomedical Circuits and Systems (1)

L. Hong and K. Sengupta, “Fully Integrated Optical Spectrometer in Visible and Near-IR in CMOS,” IEEE Trans. Biomedical Circuits and Systems 11, 1176–1191 (2017).
[Crossref]

JOSA (3)

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67, 1607–1615 (1977).
[Crossref]

W. Lukosz and R.E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” JOSA 67, 1615–1619 (1977).
[Crossref]

W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69, 1495–1503 (1979).
[Crossref]

Lab Chip (2)

J. Breault-Turcot, H.P. Poirier-Richard, M. Couture, D. Pelechacz, and J.F. Masson, “Single chip SPR and fluorescent ELISA assay of prostate specific antigen,” Lab Chip 15, 4433–4440 (2015).
[Crossref] [PubMed]

L. Sandeau, C. Vuillaume, S. Contie, E. Grinenval, F. Belloni, H. Rigneault, and M.B. Fournet, “Large area CMOS bio-pixel array for compact high sensitive multiplex biosensing,” Lab Chip 15, 877 (2015).
[Crossref]

Lab on a Chip (7)

H. Wang, A. Mahdavi, D.A. Tirrell, and A. Hajimiri, “A magnetic cell-based sensor,” Lab on a Chip 12, 4465–4471 (2012).
[Crossref] [PubMed]

Y. Huang and A.J. Mason, “Lab-on-CMOS integration of microfluidics and electrochemical sensors,” Lab on a Chip,  13, 3929–3934 (2013).
[Crossref] [PubMed]

J. Müller, M. Ballini, P. Livi, Y. Chen, M. Radivojevic, A. Shadmani, and A. Stettler, “High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels,” Lab on a Chip 15, 2767–2780 (2015).
[Crossref] [PubMed]

C.W. Huang, Y.J. Huang, P.W. Yen, H.H. Tsai, H.H. Liao, Y.Z. Juang, and C.T. Lin, “A CMOS wireless biomolecular sensing system-on-chip based on polysilicon nanowire technology,” Lab on a Chip 13, 4451–4459 (2013).
[Crossref] [PubMed]

H. Norian, R.M. Field, I. Kymissis, and K.L. Shepard, “An integrated CMOS quantitative-polymerase-chain-reaction lab-on-chip for point-of-care diagnostics,” Lab on a Chip,  14, 4076–4084 (2014).
[Crossref] [PubMed]

T. Datta-Chaudhuri, P. Abshire, and E. Smela, “Packaging commercial CMOS chips for lab on a chip integration,” Lab on a Chip 14, 1753–1766 (2014).
[Crossref] [PubMed]

D.H. Kuan, I.S. Wang, J.R. Lin, C.H. Yang, C.H. Huang, Y.H. Lin, and N.T. Huang, “A microfluidic device integrating dual CMOS polysilicon nanowire sensors for on-chip whole blood processing and simultaneous detection of multiple analytes,” Lab on a Chip 16, 3105–3113 (2016).
[Crossref] [PubMed]

Methods Enzymol. (1)

D.D.T Dalma-Weiszhausz, J. Warrington, E.Y. Tanimoto, and C.G. Miyada, “The Affymetrix GeneChips platform: an overview,” Methods Enzymol. 410, 3–28 (2006).
[Crossref]

Nano Lett. (3)

H.W. Lee, G. Papadakis, S.P. Burgos, K. Chander, A. Kriesch, R. Pala, and H.A. Atwater, “Nanoscale Conducting Oxide PlasMOStor,” Nano Lett. 14, 6463–6468 (2014).
[Crossref] [PubMed]

D.Y. Fedyanin, D.I. Yakubovsky, R.V. Kirtaev, and V.S. Volkov, “Ultralow-Loss CMOS Copper Plasmonic Waveguides,” Nano Lett.,  16, 362–366 (2015).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. Atawater, “Plasmonic Color Filters for CMOS Image Sensor Applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref] [PubMed]

Nat. Biomed. Eng. (1)

M. Monge, A. Lee-Gosselin, M.G. Shapiro, and A. Emami, “Localization of microscale devices in vivo using addressable transmitters operated as magnetic spins,” Nat. Biomed. Eng. 1, 736–744 (2017).
[Crossref]

Nat. Biotech. (1)

H. Choi, J.Y. Chang, L.A. Trinh, J.E. Padilla, S.E. Fraser, and N.A. Pierce, “Programmable in situ amplification for multiplexed imaging of mRNA expression,” Nat. Biotech. 28, 1208–1212 (2010).
[Crossref]

Nat. Biotechnol. (1)

L. Shi, L.H. Reid, W.D. Jones, R. Shippy, J.A. Warrington, S.C. Baker, and Y. Luo, “The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements,” Nat. Biotechnol. 24, 1151–1161 (2006).
[Crossref] [PubMed]

Nat. Chem. (1)

W. Xu, K.M. Chan, and E.T. Kool, “Fluorescent nucleobases as tools for studying DNA and RNA,” Nat. Chem. 9, 1043–1055 (2017).
[Crossref] [PubMed]

Nat. Comm. (7)

Y.M. Wang, B. Judkewitz, C.A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Comm. 3, 928 (2012).
[Crossref]

J. Querard, R. Zhang, Z. Kelemen, M. Plamont, X. Xie, R. Chouket, I. Roemgens, Y. Korepina, S. Albright, E. Ipendey, M. Volovitch, H. L. Sladitschek, P. Neveu, L. Gissot, A. Gautier, J. Faure, V. Croquette, T.L. Saux, and L. Jullien, “Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations,” Nat. Comm. 8, 969 (2017).
[Crossref]

M. Kuhnemund, Q. Wei, E. Darai, Y. Wang, I. Hernández-Neuta, Z. Yang, and A. Ozcan, “Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy,” Nat. Comm. 8, 13913 (2017).
[Crossref]

G. Xu, J. Abbott, L. Qin, K.Y. Yeung, Y. Song, H. Yoon, and D. Ham, “Electrophoretic and field-effect graphene for all-electrical DNA array technology,” Nat. Comm. 5, 4866 (2014).
[Crossref]

D. Tsai, D. Sawyer, A. Bradd, R. Yuste, and K.L. Shepard, “A very large-scale microelectrode array for cellular-resolution electrophysiology,” Nat. Comm. 8, 1802 (2017).
[Crossref]

D.L. Bellin, H. Sakhtah, Y. Zhang, A. Price-Whelan, L.E. Dietrich, and K.L. Shepard, “Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms,” Nat. Comm. 7, 10535 (2016).
[Crossref]

T. Xu, Y. Wu, X. Luo, and L.J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Comm. 1, 59 (2010).
[Crossref]

Nat. Commun. (1)

B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T. Saif, “A self-propelled biohybrid swimmer at low Reynolds number,” Nat. Commun.,  5, 3081 (2014).
[Crossref] [PubMed]

Nat. Mat. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mat. 13, 139–150 (2014).
[Crossref]

J.A. Schuller, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat. 9, 193–204 (2010).
[Crossref]

Nat. Med. (1)

R. Atreya, H. Neumann, C. Neufert, M.J. Waldner, U. Billmeier, Y. Zopf, and S. Maas, “In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease,” Nat. Med. 20, 313–318 (2014).
[Crossref] [PubMed]

Nat. Meth. (1)

K.K. Ghosh, L.D. Burns, E.D. Cocker, A. Nimmerjahn, Y. Ziv, A. El Gamal, and M.J. Schnitzer, “Miniaturized integration of a fluorescence microscope,” Nat. Meth. 8, 871–878 (2011).
[Crossref]

Nat. Methods (2)

D.M. Shcherbakova and V.V. Verkhusha, “Near-infrared fluorescent proteins for multicolor in vivo imaging,” Nat. Methods 10, 751–754 (2013).
[Crossref] [PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5, 763–775 (2008).
[Crossref] [PubMed]

Nat. Nanotech. (4)

J.B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotech. 10, 2–6 (2015).
[Crossref]

R.S. Gaster, L. Xu, S.J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, and S.X. Wang, “Quantification of protein interactions and solution transport using high-density GMR sensor arrays,” Nat. Nanotech. 6, 314–320 (2011).
[Crossref]

Z. Pode, R. Peri-Naor, J.M. Georgeson, T. Ilani, V. Kiss, T. Unger, B. Markus, H.M. Barr, L. Motiei, and D. Margulies, “Protein recognition by a pattern-generating fluorescent molecular probe,” Nat. Nanotech. 12, 1161–1168 (2017).
[Crossref]

J. Abbott, T. Ye, L. Qin, M. Jorgolli, R.S. Gertner, D. Ham, and H. Park, “CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging,” Nat. Nanotech. 12, 460–466 (2017).
[Crossref]

Nat. Photon. (5)

K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photon. 6, 657–661 (2012).
[Crossref]

D.K. Gramotnev and S.I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photon. 3, 388–394 (2009).
[Crossref]

N. Meinzer, W.L. Barnes, and I.A. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photon. 8, 889–898 (2014).
[Crossref]

A.G. Brolo, “Plasmonics for future biosensors,” Nat. Photon. 6, 709–713 (2012).
[Crossref]

Nat. Protocols (1)

L. Camborde, A. Jauneau, C. Briere, L. Deslandes, B. Dumas, and E. Gaulin, “Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy,” Nat. Protocols 12, 1933–1950 (2017).
[Crossref] [PubMed]

Nat. Reviews Drug Discovery (1)

J.R. Heath, A. Ribas, and P.S. Mischel, “Single-cell analysis tools for drug discovery and development,” Nat. Reviews Drug Discovery 15, 204–216 (2016).
[Crossref]

Nature (1)

Y. Long, Y. Stahl, S. Weidtkamp-Peters, M. Postma, W. Zhou, J. Goedhart, M. Sanchez-Perez, T. Gadella, R. Simon, B. Scheres, and I. Blilou, “In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis root,” Nature 548, 97–102 (2017).
[Crossref] [PubMed]

Nature Nanotech. (1)

A. Fratalocchi, C.M. Dodson, R. Zia, P. Genevet, E. Verhagen, H. Altug, and V.J. Sorger, “Nano-optics gets practical,” Nature Nanotech. 10, 11–15 (2015).
[Crossref]

Neuron (1)

D. Seo, R.M. Neely, K. Shen, U. Singhal, E. Alon, J.M. Rabaey, and M.M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” Neuron,  91, 529–539 (2016).
[Crossref] [PubMed]

Optics Letters (1)

S. Jayasuriya, S. Sivaramakrishnan, E. Chuang, D. Guruaribam, A. Wang, and A. Molnar, “Dual light field and polarization imaging using CMOS diffractive image sensors,” Optics Letters 40, 2433–2436 (2015).
[Crossref] [PubMed]

PNAS (2)

D. Ha, J. Paulsen, N. Sun, Y.Q. Song, and D. Ham, “Scalable NMR spectroscopy with semiconductor chips,” PNAS 111, 11955–11960 (2014).
[Crossref] [PubMed]

P.B. Stranges, M. Palla, S. Kalachikov, J. Nivala, M. Dorwart, S. Kumar, and Z. Li, “Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array,” PNAS 113, E6749–E6756 (2016).
[Crossref] [PubMed]

Proc. IEEE (1)

M. Sitti, H. Ceylan, W. Hu, J. Giltinan, M. Turan, S. Yim, and E. Diller, “Biomedical applications of untethered mobile milli/microrobots,” Proc. IEEE 103, 205–224 (2015).
[Crossref]

Sci. Rep. (1)

M.A. Al-Rawhani, J. Beeley, and D.R. Cumming, “Wireless fluorescence capsule for endoscopy using single photon-based detection,” Sci. Rep. 5, 18591 (2015).
[Crossref] [PubMed]

Science (1)

X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science 307, 538–544 (2005).
[Crossref] [PubMed]

Other (6)

L. Hong, H. Li, H. Yang, and K. Sengupta, ”Integrated Angle-insensitive Nano-plasmonic Filters for Ultra-miniaturized Fluorescence Microarray in a 65-nm Digital CMOS Process,” ACS Photonics, accepted [10.1021/acsphotonics.8b00440] (2018).
[Crossref]

L. Hong and K. Sengupta, “Fully integrated optical spectrometer with 500-to-830nm range in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 462–463.

X. Lu, L. Hong, and K. Sengupta, “15.9 An integrated optical physically unclonable function using process-sensitive sub-wavelength photonic crystals in 65nm CMOS,” in IEEE Intl. Solid-State Circuits Conference (ISSCC) (2017), pp. 272–273.

L. Hong, X. Lu, and K. Sengupta, “Nano-optical systems in CMOS,” in IEEE Intl. Midwest Symp. Circuits and Systems (MWSCAS) (2017), pp. 906–909.

ThermoFisher Scientific, Qdot 800 Streptavidin Conjugate. https://www.thermofisher.com/order/catalog/product/Q10171MP . Accessed February 07, 2018.

B. Jang, P. Cao, A. Chevalier, A. Ellington, and A. Hassibi, “A CMOS fluorescent-based biosensor microarray,” IEEE Intl. Solid-State Circuits Conf.436–437 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Ultra-miniaturized CMOS fluorescence microarray system. a, Overview of the system including the CMOS IC with the integrated 96-sensor array, the UV LED as the excitation light source, removable glass slip as the bio-interface, and silicon fixtures enabling automatic alignment with a disposable bio interface for multiplexed detection. b, Fluorescence reader system. c, Perspective and cross-sectional view of the sensing pixels. The strong UV light excites the immobilized fluorophores to emit a weak signal in NIR. Integrated nanoplasmonic filter rejects the UV light and allows the local fluorescence to be detected and process by the photon-detection circuity and integrated electronics underneath. The nanoplasmonic filter is realized using the 4th to 7th copper interconnect layers in the 65-nm CMOS process and spreads across all the sensor sites. The 1st–3rd interconnect layers are used for circuit routing and optical blocking. The multiplexed fluorescence signals are read out in a time-multiplexed fashion and are further processed by CDS circuits to eliminate random offsets and suppress low-frequency noise.
Fig. 2
Fig. 2 a. Simulated radiation propagation (originated from the dipole location) for randomly polarized fluorescence emitters on the chip surface at the air/SiO2 interface. b. Structure and SEM image of the integrated nano-plasmonic filter, implemented in 65 nm CMOS process with minimum metal linewidth of 100 nm and spacing of 130 nm. c. The simulated electric field intensity in filter for LED excitation at 405 nm and fluorescence emission demonstrates the angle-insensitivity of the nanoplasmonic filters with nearly 50 dB of optical filtering.
Fig. 3
Fig. 3 Circuit architecture. a, Circuits architecture of the 96-sensor array chip with the integrated pixels, control and readout circuitry, nanoplasmonic filters and optical shield, all co-designed in a single IC. b,c,d, Layout and schematic of a single sensing pixel. The photo-detection is enabled in each pixel with 80 sensing diodes at the center measured differentially with respect to symmetrically placed and shielded 80 reference diodes to suppress common-mode dark currents. The signals are process with differential CTIA. Each photodiode is implemented using nwell-psub structure and each pixel measures 100μm in each dimension.
Fig. 4
Fig. 4 Sensor cross talk on the multiplexed assay based on the bio-interface. a. Assay can be performed directly on a functionalized 1 μm thick glass grown on the chip surface. b,c. Electromagnetic simulation of the fluorescence emission from a 50 μm diameter spot on the surface and its coupling in the lateral dimensions. Since the pixels are 100 μm in dimension, the emission remains localized to the pixel underneath the spot minimizing cross-talk. d. To re-use chip to do multiple measurements in a laboratory setting, we create a disposable bio-interface that is aligned with the sensor array with silicon positioners (Fig. 1). We perform the experiments on the glass slip positioned about 100 μm from the chip surface. e,f. Electromagnetic simulation of the fluorescence emission from a 50 μm diameter spot on the glass slip. The elevation causes the emission to spread creating cross-talk among the neighboring pixels. This limits the number of spots we can perform on the surface and is only done to reuse the chip for multiple experiments in a laboratory setting. The functionalization can be done on the chip surface as shown in part a., similar to [33].
Fig. 5
Fig. 5 a. Measured (and simulated) transmission spectrum (normalized) showing ∼ 47 dB rejection ratio between 800 nm and 405 nm wavelengths. The absorption and emission spectrum of the chosen quantum dot fluorophore (Qdot 800) are shown inside the figure. b. Measured filtering ratio (in dB) for emission and fluorescence shows an average ratio of 45 dB for the center 40 pixels. c,d. Measured transmission at excitation and fluorescence wavelengths with varying incident angles and polarizations. e. Using on-chip decoders to address the sensor array and read out multiple pixels within single integration (200 ms). f. Measured sensitivity shows capability of detection of fluorescence signals, 77 dB below the excitation.
Fig. 6
Fig. 6 a. Alignment of the bio-interface (glass slip) with the sensor array for multiplexed assays. b. Calibration process and signal acquisition for the assay.
Fig. 7
Fig. 7 Measured sensor response versus surface density of QD 800 fluorophore demonstrating sensitivity level below 1 dot/μm2. The inset figure shows the distribution of surface densities captured in a fluorescence microscopy set-up corroborating with the average surface density. c,d. Measured sensor response against target volume concentration in DNA and protein (IL-6) assays, demonstrating volume sensitivity level down to 100 fM for DNA and 5 pM for protein. e,f. Measured effects of non-specific binding for target volume concentrations of 10 pM for DNA and 100 pM for IL-6.
Fig. 8
Fig. 8 a, b, c, Measured multiplexed detection capability of the sensor array with different DNA capture strands showing positive responses at the conjugated site and almost no signal at the non-specific sites. As the glass slip is 100 μm from the sensor surface, we can see fluorescence emission spreading across multiple pixels (each square is a sensor site). This is not a fundamental limitation of the sensor, but arises as a result of the spacing between the chip and the bio-interface.
Fig. 9
Fig. 9 a. Variation of achievable sensitivity expressed as Pex/Pfl for a SNR=1 with signal power and integration time. Maximizing the integration time to maximize achievable voltage swing allows this ratio to reach nearly 77 dB. This is achieved with an initial pre-filtering of 45–60 dB optically with the nanoplasmonic filters and the remaining background suppression is achieved electronically.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d x = x 1 + ( i 1 ) p x 0
d y = y 1 + ( j 1 ) p y 0
P sig = P f R f T e
T = T max = V SW C fb ( P f + Pl β ) R f
P n = ( V Ncir C fb e ) 2 + ( V Nadc C fb e ) 2 + ( P f + P l β ) R f T e + ( η e x ( P f + P l β ) R f T e ) 2 + ( η bio P f R f T e ) 2
P l P f ( SNR = 1 ) = β 1 η bio 2 η e x 2 + V Ncir 2 + V Nadc 2 V S W + e V S W 2 C f b 1 β 1 η bio 2 η e x 2 + V Ncir 2 + V Nadc 2 V S W 2 + e V S W C f b

Metrics