Abstract

Prior work demonstrated significant contrast in visible wavelength Mueller matrix images for healthy and pre-cancerous regions of excised cervical tissue. This work demonstrates post-processing compressions of the full Mueller matrix that preserve detection performance. The purpose of this post-processing is to understand polarimetric measurement utility for computing mathematical observers and designing future imaging protocols. The detection performance of the full Mueller matrix, and both linear and non-linear parameters of the Mueller matrix will be compared. The area under the receiver operating characteristic (ROC) curve, otherwise known as the AUC, is the gold standard metric to quantify detection performance in medical applications. An AUC = 1 is perfect detection and AUC = 0.5 is the performance of guessing. Either the scalar retardance or the 3 smallest eigenvalues of the coherency matrix yield an average AUC of 0.94 or 0.93, respectively. When these four non-linear parameters are used simultaneously the average AUC is 0.95. The J-optimal Channelized Quadratic Observer (J-CQO) method for optimizing polarimetric measurements demonstrates equivalent AUC values for the full Muller matrix and 6 J-CQO optimized measurements. The advantage of this optimization is that only 6 measurements, instead of 16 for the full Mueller matrix, are required to achieve this AUC.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarimetric imaging of uterine cervix: a case study

Angelo Pierangelo, André Nazac, Abdelali Benali, Pierre Validire, Henri Cohen, Tatiana Novikova, Bicher Haj Ibrahim, Sandeep Manhas, Clément Fallet, Maria-Rosaria Antonelli, and Antonello-De Martino
Opt. Express 21(12) 14120-14130 (2013)

Quantitative fluorescence and elastic scattering tissue polarimetry using an Eigenvalue calibrated spectroscopic Mueller matrix system

Jalpa Soni, Harsh Purwar, Harshit Lakhotia, Shubham Chandel, Chitram Banerjee, Uday Kumar, and Nirmalya Ghosh
Opt. Express 21(13) 15475-15489 (2013)

Narrow band 3 × 3 Mueller polarimetric endoscopy

Ji Qi, Menglong Ye, Mohan Singh, Neil T. Clancy, and Daniel S. Elson
Biomed. Opt. Express 4(11) 2433-2449 (2013)

References

  • View by:
  • |
  • |
  • |

  1. N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8, 725 (2008).
    [Crossref]
  2. T. Novikova, “Optical techniques for cervical neoplasia detection,” Beilstein J. Nanotechnol. 8, 1844–1862 (2017).
    [Crossref] [PubMed]
  3. T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).
  4. J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–982 (2017).
    [Crossref] [PubMed]
  5. A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
    [Crossref] [PubMed]
  6. T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
    [Crossref]
  7. J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
    [Crossref]
  8. J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
    [Crossref] [PubMed]
  9. A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
    [Crossref]
  10. J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
    [Crossref]
  11. J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach(CRC Press, 2016).
  12. G. Anna, F. Goudail, P. Chavel, and D. Dolfi, “On the influence of noise statistics on polarimetric contrast optimization,” Appl. Opt. 51, 1178–1187 (2012).
    [Crossref] [PubMed]
  13. J. S. Tyo, Z. Wang, S. J. Johnson, and B. G. Hoover, “Design and optimization of partial Mueller matrix polarimeters,” Appl. Opt. 49, 2326–2333 (2010).
    [Crossref] [PubMed]
  14. A. S. Alenin and J. S. Tyo, “Structured decomposition design of partial Mueller matrix polarimeters,” J. Opt. Soc. Am. A 32, 1302–1312 (2015).
    [Crossref]
  15. M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).
  16. E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
    [Crossref]
  17. E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
    [Crossref]
  18. R. Chipman, W. S. Tiffany, and G. Young, Polarized Light and Optical Systems(CRC Press, 2018).
    [Crossref]
  19. M. K. Kupinski, J. Bankhead, A. Stohn, and R. Chipman, “Binary classification of Mueller matrix images from an optimization of Poincaré coordinates,” J. Opt. Soc. Am. A 34, 983–990 (2017).
    [Crossref]
  20. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996).
    [Crossref]
  21. H. Barrett and K. Myers, Foundations of Image Science(John Wiley & Sons, 2013).
  22. M. K. Kupinski and E. Clarkson, “Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets,” JOSA A 32, 549–565 (2015).
    [Crossref] [PubMed]
  23. I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).
    [Crossref]
  24. S. R. Cloude, “Group theory and polarisation algebra,” Optik 75, 26–36 (1986).
  25. Y. Jin and S. R. Cloude, “Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers,” GRS. IEEE Trans 32, 1179–1185 (1994).
  26. S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
    [Crossref]
  27. F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” JOSA A 28, 46–53 (2011).
    [Crossref] [PubMed]

2017 (5)

T. Novikova, “Optical techniques for cervical neoplasia detection,” Beilstein J. Nanotechnol. 8, 1844–1862 (2017).
[Crossref] [PubMed]

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–982 (2017).
[Crossref] [PubMed]

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

M. K. Kupinski, J. Bankhead, A. Stohn, and R. Chipman, “Binary classification of Mueller matrix images from an optimization of Poincaré coordinates,” J. Opt. Soc. Am. A 34, 983–990 (2017).
[Crossref]

2016 (2)

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

2015 (2)

M. K. Kupinski and E. Clarkson, “Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets,” JOSA A 32, 549–565 (2015).
[Crossref] [PubMed]

A. S. Alenin and J. S. Tyo, “Structured decomposition design of partial Mueller matrix polarimeters,” J. Opt. Soc. Am. A 32, 1302–1312 (2015).
[Crossref]

2013 (3)

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref]

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

2012 (2)

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

G. Anna, F. Goudail, P. Chavel, and D. Dolfi, “On the influence of noise statistics on polarimetric contrast optimization,” Appl. Opt. 51, 1178–1187 (2012).
[Crossref] [PubMed]

2011 (1)

F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” JOSA A 28, 46–53 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8, 725 (2008).
[Crossref]

1999 (1)

1996 (1)

1995 (1)

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

1994 (1)

Y. Jin and S. R. Cloude, “Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers,” GRS. IEEE Trans 32, 1179–1185 (1994).

1986 (1)

S. R. Cloude, “Group theory and polarisation algebra,” Optik 75, 26–36 (1986).

Alenin, A. S.

Anna, G.

Antonelli, M.

Bankhead, J.

Barrett, H.

H. Barrett and K. Myers, Foundations of Image Science(John Wiley & Sons, 2013).

Benali, A.

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Bigio, I. J.

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).
[Crossref]

Chavel, P.

Chipman, R.

Chipman, R. A.

Clarkson, E.

M. K. Kupinski and E. Clarkson, “Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets,” JOSA A 32, 549–565 (2015).
[Crossref] [PubMed]

Cloude, S. R.

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

Y. Jin and S. R. Cloude, “Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers,” GRS. IEEE Trans 32, 1179–1185 (1994).

S. R. Cloude, “Group theory and polarisation algebra,” Optik 75, 26–36 (1986).

Cohen, H.

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

Compain, E.

Coudert, M.

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

Deby, S.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Dolfi, D.

Drevillon, B.

E. Compain, S. Poirier, and B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers,” Appl. Opt. 38, 3490–3502 (1999).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Elson, D. S.

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–982 (2017).
[Crossref] [PubMed]

Fallet, C.

Fantini, S.

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).
[Crossref]

Fernandez, H.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

Garcia-Caurel, E.

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref]

Gaston, J.-P.

Gayet, B.

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Genestie, C.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

Gil, J. J.

J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach(CRC Press, 2016).

Goudail, F.

G. Anna, F. Goudail, P. Chavel, and D. Dolfi, “On the influence of noise statistics on polarimetric contrast optimization,” Appl. Opt. 51, 1178–1187 (2012).
[Crossref] [PubMed]

F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” JOSA A 28, 46–53 (2011).
[Crossref] [PubMed]

Haddad, H.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Haie-Meder, C.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

Hoover, B. G.

Huynh, B.

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

Ibrahim, B. H.

Jin, Y.

Y. Jin and S. R. Cloude, “Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers,” GRS. IEEE Trans 32, 1179–1185 (1994).

Johnson, S. J.

Kupinski, M. K.

M. K. Kupinski, J. Bankhead, A. Stohn, and R. Chipman, “Binary classification of Mueller matrix images from an optimization of Poincaré coordinates,” J. Opt. Soc. Am. A 34, 983–990 (2017).
[Crossref]

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

M. K. Kupinski and E. Clarkson, “Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets,” JOSA A 32, 549–565 (2015).
[Crossref] [PubMed]

Lu, S.-Y.

Mallet, A.

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

Manhas, S.

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

Martino, A. D.

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

Martino, A. De

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

E. Garcia-Caurel, A. De Martino, J.-P. Gaston, and L. Yan, “Application of spectroscopic ellipsometry and Mueller ellipsometry to optical characterization,” Appl. Spectrosc. 67, 1–21 (2013).
[Crossref]

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Moreau, F.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Myers, K.

H. Barrett and K. Myers, Foundations of Image Science(John Wiley & Sons, 2013).

Nazac, A.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Novikova, T.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

T. Novikova, “Optical techniques for cervical neoplasia detection,” Beilstein J. Nanotechnol. 8, 1844–1862 (2017).
[Crossref] [PubMed]

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Ossikovski, R.

J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach(CRC Press, 2016).

Pagnoux, D.

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

Pierangelo, A.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Poirier, S.

Pottier, E.

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

Qi, J.

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–982 (2017).
[Crossref] [PubMed]

Rehbinder, J.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Richards-Kortum, R.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8, 725 (2008).
[Crossref]

Roussel, S.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

Soufan, R.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

Stohn, A.

Teig, B.

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Thekkek, N.

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8, 725 (2008).
[Crossref]

Tiffany, W. S.

R. Chipman, W. S. Tiffany, and G. Young, Polarized Light and Optical Systems(CRC Press, 2018).
[Crossref]

Tran, J.

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

Tyo, J. S.

Validire, P.

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

A. Pierangelo, A. Nazac, A. Benali, P. Validire, H. Cohen, T. Novikova, B. H. Ibrahim, S. Manhas, C. Fallet, M. Antonelli, and A. De Martino, “Polarimetric imaging of uterine cervix: a case study,” Opt. Express 21, 14120–14130 (2013).
[Crossref] [PubMed]

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Vercambre, M.

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

Vizet, J.

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

Wang, Z.

Yan, L.

Young, G.

R. Chipman, W. S. Tiffany, and G. Young, Polarized Light and Optical Systems(CRC Press, 2018).
[Crossref]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Beilstein J. Nanotechnol. (1)

T. Novikova, “Optical techniques for cervical neoplasia detection,” Beilstein J. Nanotechnol. 8, 1844–1862 (2017).
[Crossref] [PubMed]

GRS. IEEE Trans (1)

Y. Jin and S. R. Cloude, “Numerical eigenanalysis of the coherency matrix for a layer of random nonspherical scatterers,” GRS. IEEE Trans 32, 1179–1185 (1994).

J. Biomed. Opt (1)

J. Vizet, S. Manhas, J. Tran, P. Validire, A. Benali, E. Garcia-Caurel, A. Pierangelo, A. De Martino, and D. Pagnoux, “Opticalfiber-basedfullMuellerpolarimeterforendoscopicimagingusingatwo-wavelengthsimultaneous measurement method,” J. Biomed. Opt.  21, 071106 (2016).
[Crossref]

J. Biomed. Opt. (1)

J. Rehbinder, H. Haddad, S. Deby, B. Teig, A. Nazac, T. Novikova, A. Pierangelo, and F. Moreau, “Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation,” J. Biomed. Opt. 21, 071113 (2016).
[Crossref]

J. Biophotonics (1)

J. Qi and D. S. Elson, “Mueller polarimetric imaging for surgical and diagnostic applications: a review,” J. Biophotonics 10, 950–982 (2017).
[Crossref] [PubMed]

J. Gynecol. Obstet. Biol. Reprod. (1)

A. Nazac, A. Pierangelo, M. Vercambre, B. Huynh, H. Cohen, M. Coudert, A. Mallet, and A. D. Martino, “Appraisal of the optical diagnostic technique for cervical intra-epithelial neoplasia by polarimetric imaging ‘Polcolpo’. Comparison with colposcopic and histological diagnoses by biopsy,” J. Gynecol. Obstet. Biol. Reprod. 42, 464–472 (2013).
[Crossref]

J. Opt. Soc. Am. A (3)

JOSA A (2)

M. K. Kupinski and E. Clarkson, “Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets,” JOSA A 32, 549–565 (2015).
[Crossref] [PubMed]

F. Goudail and J. S. Tyo, “When is polarimetric imaging preferable to intensity imaging for target detection?” JOSA A 28, 46–53 (2011).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

N. Thekkek and R. Richards-Kortum, “Optical imaging for cervical cancer detection: solutions for a continuing global problem,” Nat. Rev. Cancer 8, 725 (2008).
[Crossref]

Opt. Eng. (1)

S. R. Cloude and E. Pottier, “Concept of polarization entropy in optical scattering,” Opt. Eng. 34, 1599–1610 (1995).
[Crossref]

Opt. Express (1)

Opt. Photonics News (1)

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photonics News 23, 26–33 (2012).
[Crossref]

Optik (1)

S. R. Cloude, “Group theory and polarisation algebra,” Optik 75, 26–36 (1986).

Proc. SPIE (1)

M. K. Kupinski, J. Rehbinder, H. Haddad, S. Deby, J. Vizet, B. Teig, A. Nazac, A. Pierangelo, F. Moreau, and T. Novikova, “Tasked-based quantification of measurement utility for ex vivo multi-spectral Mueller polarimetry of the uterine cervix,” Proc. SPIE 10411, 10411N (2017).

Sci. Rep (1)

J. Vizet, J. Rehbinder, S. Deby, S. Roussel, A. Nazac, R. Soufan, C. Genestie, C. Haie-Meder, H. Fernandez, F. Moreau, and A. Pierangelo, “In vivo imaging of uterine cervix with a Mueller polarimetric colposcope,” Sci. Rep.  7, 2471 (2017).
[Crossref] [PubMed]

Other (5)

T. Novikova, J. Rehbinder, S. Deby, H. Haddad, J. Vizet, A. Pierangelo, P. Validire, A. Benali, B. Gayet, B. Teig, A. Nazac, B. Drevillon, F. Moreau, and A. De Martino, “Multi-spectral Mueller matrix imaging polarimetry for studies of human tissue,” Biomed. Opt. 2016, OSA Tech. Dig. p. TTh3B.2 (2016).

J. J. Gil and R. Ossikovski, Polarized Light and the Mueller Matrix Approach(CRC Press, 2016).

R. Chipman, W. S. Tiffany, and G. Young, Polarized Light and Optical Systems(CRC Press, 2018).
[Crossref]

I. J. Bigio and S. Fantini, Quantitative Biomedical Optics: Theory, Methods, and Applications (Cambridge University Press, 2016).
[Crossref]

H. Barrett and K. Myers, Foundations of Image Science(John Wiley & Sons, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Radiance images of 24 excised cervical specimens labeled with results from histopathology: CIN 2-3 (red), healthy (green) tissue. In total, 59,000 CIN 2-3 and 135,000 healthy pixels are labeled. Patient IDs are counted column-major. Three images contain both CIN2-3 and healthy pixels, these Patient IDs are: 18, 19, and 22. The size of the background square grid cell is 5mm × 5mm.
Fig. 2
Fig. 2 Histogram of LC decomposition parameters for labeled pixels in the population of 24 patients: red (healthy), blue (CIN 2-3). The y-axis is probability of occurrence and for brevity is unlabelled.
Fig. 3
Fig. 3 Histogram of (a) Mueller and (b) coherency matrix elements for labeled pixels in the population of 24 patients: red (healthy), blue (CIN 2–3). The y-axis is probability of occurrence and for brevity is unlabelled.
Fig. 4
Fig. 4 Histogram of sorted (λ1 > λ2 > λ3 > λ4) coherency matrix eigenvalues for labeled pixels in the population of 24 patients: red (healthy), blue (CIN 2-3). The y-axis is probability of occurrence and for brevity is unlabelled.
Fig. 5
Fig. 5 Plots of differences in: (a) 3 smallest coherency matrix eigenvalues and (b) intensity output of 3 J-CQO PSA/PSG states for patients 18, 19, and 22. Red (healthy), blue (CIN 2-3).
Fig. 6
Fig. 6 (a) AUC of J-CQO versus number of measurements. Error bars are ± one standard deviation around mean. (b, c) J-CQO optimal PSA/PSG measurements states on the Poincaré sphere, red (PSA) and green (PSG). At a given measurement, the PSA/PSG pair appears approximately cross-polarized in the top-view shown in (c). The side-view in (b) shows that all PSA/PSG states deviate from purely linearly states towards right circular-polarization (RCP).

Tables (1)

Tables Icon

Table 1 AUC estimates of polarimetric parameters or sets of parameters that are linear or non-linear functions of the Mueller matrix. Standard deviations are computed from three permutations of testing and training sets among 24 patients. Within ±1σ the AUC of: Scalar Retardance, 4 eigenvalues of the coherency matrix, 3 smallest eigenvalues of the coherency matrix, and 3 smallest eigenvalues of the coherency matrix together with the scalar retardance are all equivalent. These parameters are non-linear functions of the Mueller matrix and require measurement of the full Mueller matrix. Linear transforms of the Mueller matrix do not exceed an average AUC of 0.91. J-CQO parameters do not require a full Mueller Matrix measurement and the maximum average AUC is 0.90 for 6 measurements.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ ( v ) = ln [ p r 1 ( v ) ] ln [ p r 2 ( v ) ]
p r n ( v ) = [ ( 2 π ) L det ( K n ) ] 1 2 × exp [ 1 2 ( v v ¯ n ) ( K n ) 1 ( v v ¯ n ) ]
i = T t m .
T = ( a 1 g 1 a 2 g 2 a L g L ) .
A B = ( a 11 B a 1 n B a m 1 B a m n B ) .
2 J ( T ) = 2 L + tr [ C 2 1 C 1 ] + Δ i t C 2 1 Δ i + tr [ C 1 1 C 2 ] + Δ i t C 1 1 Δ i

Metrics