Abstract

We present a new micromotor catheter implementation of dual-beam manually-actuated distortion-corrected imaging (DMDI). The new catheter called a depth-multiplexed dual-beam micromotor catheter, or mDBMC, maintains the primary advantage of unlimited field-of-view distortion-corrected imaging along the catheter axis. The mDBMC uses a polarization beam splitter and cube mirror to create two beams that scan circularly with approximately constant separation at the catheter surface. This arrangement also multiplexes both imaging channels into a single optical coherence tomography channel by offsetting them in depth, requiring half the data bandwidth compared to previous DMDI demonstrations that used two parallel image acquisition systems. Furthermore, the relatively simple scanning pattern of the two beams enables a straightforward automated distortion correction algorithm. We demonstrate the imaging capabilities of this catheter with a printed paper phantom and in a section of dragon fruit.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-beam manually actuated distortion-corrected imaging (DMDI): two dimensional scanning with a single-axis galvanometer

Madeline Harlow, Calum MacAulay, Pierre Lane, and Anthony M. D. Lee
Opt. Express 26(14) 18758-18772 (2018)

Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters

Anthony M. D. Lee, Geoffrey Hohert, Patricia T. Angkiriwang, Calum MacAulay, and Pierre Lane
Opt. Express 25(18) 22164-22177 (2017)

Correction of rotational distortion for catheter-based en face OCT and OCT angiography

Osman O. Ahsen, Hsiang-Chieh Lee, Michael G. Giacomelli, Zhao Wang, Kaicheng Liang, Tsung-Han Tsai, Benjamin Potsaid, Hiroshi Mashimo, and James G. Fujimoto
Opt. Lett. 39(20) 5973-5976 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
    [Crossref]
  2. M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405–2444 (2017).
    [Crossref] [PubMed]
  3. T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
    [Crossref]
  4. G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
    [Crossref] [PubMed]
  5. D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, and J. G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography,” Opt. Express 17(2), 784–796 (2009).
    [Crossref] [PubMed]
  6. M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
    [Crossref] [PubMed]
  7. K. Liang, Z. Wang, O. O. Ahsen, H.-C. Lee, B. M. Potsaid, V. Jayaraman, A. Cable, H. Mashimo, X. Li, and J. G. Fujimoto, “Cycloid scanning for wide field optical coherence tomography endomicroscopy and angiography in vivo,” Optica 5(1), 36–43 (2018).
    [Crossref] [PubMed]
  8. H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E.-L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
    [Crossref] [PubMed]
  9. D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
    [Crossref] [PubMed]
  10. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]
  11. K. Liang, G. Traverso, H.-C. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,” Biomed. Opt. Express 6(4), 1146–1163 (2015).
    [Crossref] [PubMed]
  12. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
    [Crossref] [PubMed]
  13. N. Iftimia, G. Maguluri, E. W. Chang, S. Chang, J. Magill, and W. Brugge, “Hand scanning optical coherence tomography imaging using encoder feedback,” Opt. Lett. 39(24), 6807–6810 (2014).
    [Crossref] [PubMed]
  14. B. Y. Yeo, R. A. McLaughlin, R. W. Kirk, and D. D. Sampson, “Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system,” Biomed. Opt. Express 3(7), 1565–1578 (2012).
    [Crossref] [PubMed]
  15. P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
    [Crossref] [PubMed]
  16. A. M. D. Lee, G. Hohert, P. T. Angkiriwang, C. MacAulay, and P. Lane, “Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters,” Opt. Express 25(18), 22164–22177 (2017).
    [Crossref] [PubMed]
  17. M. Harlow, C. MacAulay, P. Lane, and A. M. D. Lee, “Dual-beam manually actuated distortion-corrected imaging (DMDI): two dimensional scanning with a single-axis galvanometer,” Opt. Express 26(14), 18758–18772 (2018).
    [Crossref] [PubMed]

2018 (2)

2017 (2)

2016 (4)

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

H. Pahlevaninezhad, A. M. D. Lee, G. Hohert, S. Lam, T. Shaipanich, E.-L. Beaudoin, C. MacAulay, C. Boudoux, and P. Lane, “Endoscopic high-resolution autofluorescence imaging and OCT of pulmonary vascular networks,” Opt. Lett. 41(14), 3209–3212 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

2015 (2)

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

K. Liang, G. Traverso, H.-C. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,” Biomed. Opt. Express 6(4), 1146–1163 (2015).
[Crossref] [PubMed]

2014 (2)

N. Iftimia, G. Maguluri, E. W. Chang, S. Chang, J. Magill, and W. Brugge, “Hand scanning optical coherence tomography imaging using encoder feedback,” Opt. Lett. 39(24), 6807–6810 (2014).
[Crossref] [PubMed]

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

2013 (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

2012 (1)

2010 (1)

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

2009 (2)

Adams, D. C.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

Adler, D. C.

Ahsen, O. O.

Angkiriwang, P. T.

Barman, R.

Beaudoin, E.-L.

Beurskens, R.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Boppart, S. A.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Boudoux, C.

Bouma, B. E.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Brugge, W.

Cable, A.

Carruth, R. W.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Chang, E. W.

Chang, S.

Cho, J. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Fard, A. M.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Fujimoto, J. G.

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Giacomelli, M.

Gora, M. J.

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405–2444 (2017).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Griffith, J. W.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Halpern, E. F.

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Hamilos, D. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Hara, T.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Hariri, L. P.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

Harlow, M.

Hohert, G.

Holz, J. A.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Huang, Q.

Iftimia, N.

Jaffer, F. A.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Jayaraman, V.

Jillella, P. A.

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Kirk, R. W.

Knapen, B.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Lam, S.

Lancée, C.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Lane, P.

Langer, R.

Lauwers, G. Y.

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Lee, A. M. D.

Lee, H.-C.

Li, X.

Liang, K.

Luster, A. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

MacAulay, C.

Magill, J.

Maguluri, G.

Mashimo, H.

Mauskapf, A.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

McDowell, E. J.

McLaughlin, R. A.

Medoff, B. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Meijer, J.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Miller, A. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Mino-Kenudson, M.

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Monroy, G. L.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Nishioka, N. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Nolan, R. M.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Osborn, E.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Pahlevaninezhad, H.

Pande, P.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Potsaid, B.

Potsaid, B. M.

Ren, J.

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Sampson, D. D.

Sauk, J. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Schmitt, J.

Scott Harris, R.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Shaipanich, T.

Shelton, R. L.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Suter, M. J.

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405–2444 (2017).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Szabari, M. V.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Tearney, G. J.

M. J. Gora, M. J. Suter, G. J. Tearney, and X. Li, “Endoscopic optical coherence tomography: technologies and clinical applications [Invited],” Biomed. Opt. Express 8(5), 2405–2444 (2017).
[Crossref] [PubMed]

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

Traverso, G.

Tsai, T.-H.

Ughi, G. J.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Vakoc, B. J.

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

van der Steen, A. F. W.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

van Soest, G.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Verjans, J.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Villiger, M.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Wang, H.

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

Wang, T.

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Wang, Y.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

Wang, Z.

Wu, J.

Yang, C.

Yeo, B. Y.

Zhou, C.

Biomed. Opt. Express (3)

Gastrointest. Endosc. (1)

M. J. Suter, P. A. Jillella, B. J. Vakoc, E. F. Halpern, M. Mino-Kenudson, G. Y. Lauwers, B. E. Bouma, N. S. Nishioka, and G. J. Tearney, “Image-guided biopsy in the esophagus through comprehensive optical frequency domain imaging and laser marking: a study in living swine,” Gastrointest. Endosc. 71(2), 346–353 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

Int. J. Cardiovasc. Imaging (1)

G. J. Ughi, J. Verjans, A. M. Fard, H. Wang, E. Osborn, T. Hara, A. Mauskapf, F. A. Jaffer, and G. J. Tearney, “Dual modality intravascular optical coherence tomography (OCT) and near-infrared fluorescence (NIRF) imaging: a fully automated algorithm for the distance-calibration of NIRF signal intensity for quantitative molecular imaging,” Int. J. Cardiovasc. Imaging 31(2), 259–268 (2015).
[Crossref] [PubMed]

J. Sens. (1)

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Nat. Med. (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Sci. Transl. Med. (1)

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359 (2016).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

T. Wang, C. Lancée, R. Beurskens, J. Meijer, B. Knapen, A. F. W. van der Steen, and G. van Soest, “Development of a high-speed synchronous micro motor and its application in intravascular imaging,” Sens. Actuators A Phys. 218, 60–68 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 OCT multiplexed dual-beam micromotor catheter (mDBMC). i) Model view of the mDBMC. The approximate scan patterns of the A and B beams on the catheter surface are shown as red and blue dashed lines respectively. FPC = flexible printed circuit, DFP = dual fiber pigtail, GRIN = graded-index lens, PBS = polarization beam splitter, CM = cube mirror, MM = 4 mm OD micromotor. ii) Side view of the mDBMC model showing the approximate beam paths of the A (red) and B (blue) beams. iii) Photograph of the mDBMC with the minimum possible rigid length indicated. The smallest divisions of the background scale are 1 mm. iv) OCT image of fingers taken with the mDBMC showing the depth displacement of the A and B imaging channels. The scale bar is for length in air.
Fig. 2
Fig. 2 Outline of the major steps for calibrating and correcting images acquired with the depth-multiplexed dual beam micromotor catheter (mDBMC).
Fig. 3
Fig. 3 Calibration of the mDBMC. i) Preprocessed A(nA,frA) and B(nB,frB) images of the calibration pattern. ii) Calibration curves for the conversion of intraframe pixel indices nA and nB to θ. iii) Fitted scan pattern function S(θ). iv) Fitted fixed pattern function F(θ).
Fig. 4
Fig. 4 DMDI imaging of a paper QR code with the mDBMC. i) Preprocessed and θ-calibrated A(fr,θ) and B(fr,θ) images. ii) A*(fr,θ) and B*(fr,θ) images Fourier-filtered along the θ dimension used for frame co-registration. The micromotor cable has been cropped from image. iii) (frA,frB) (upper) and (frA,Δθ) (lower) maximum intensity projections (MIP) of the 3D FOXC (frame-offset cross-correction) matrix. iv) (frA,frB) (upper) and (frA,Δθ) (lower) projections of the HCTP (high correlation triplet pathway) as green circles (n = 182) and triplets filtered as out-of-order as red crosses (n = 1). v) Extracted z and θ velocities and displacements as a function of time. vi) Distortion corrected A(ZAA) and B(ZAA) images. Green arrowheads indicate the paper seam in the images.
Fig. 5
Fig. 5 DMDI imaging of dragon fruit with the mDBMC. Panel arrangement as in Fig. 4 except in iv) the HCTP consists of n = 74 frame-offset triplets (green circles) excluding n = 2 triplets filtered as out-of-order (red crosses) and n = 2 triplets filtered out due to unlikely high angular accelerations (red plus signs).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

v ¯ z,j = S( θ A,j )+S( θ B,j ) t B,j t A,j
ω ¯ j = θ B,j   θ A,j t B,j t A,j
v z (t)= j ( v ¯ z,j w j (t) ) j w j (t)
ω(t)= j ( ω ¯ j w j (t) ) j w j (t)
w j (t)={ 1 | t B,j t A,j |+1 ,t[ t B,j , t A,j ] 0,elsewhere
Z A (t, θ A )= z cath (t)S( θ A )F( θ A )
Z B (t, θ B )= z cath (t)+S( θ B )F( θ B )
Θ A (t)= θ A (t) φ cath (t)
Θ B (t)= θ B (t) φ cath (t)
v ¯ z,j = S ¯ × f fr f r B,j f r A,j
ω ¯ j = ( θ B,j   θ A,j )× f fr f r B,j f r A,j