Abstract

Line-scanning temporal focusing microscopy (LineTFM) is capable of imaging biological samples more than 10 times faster than two-photon laser point-scanning microscopy (TPLSM), while achieving nearly the same lateral and axial spatial resolution. However, the image contrast taken by LineTFM is lower than that by TPLSM because LineTFM is severely influenced by biological tissue scattering. To reject the scattered photons, we implemented LineTFM using both structured illumination and uniform illumination combined with the HiLo post-processing algorithm, called HiLL microscopy (HiLo-Line-scanning temporal focusing microscopy). HiLL microscopy significantly reduces tissue scattering and improves image contrast. We demonstrate HiLL microscopy with in vivo brain imaging. This approach could potentially find applications in monitoring fast dynamic events and in mapping high resolution structures over a large volume.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination

Heejin Choi, Elijah Y. S. Yew, Bertan Hallacoglu, Sergio Fantini, Colin J. R. Sheppard, and Peter T. C. So
Biomed. Opt. Express 4(7) 995-1005 (2013)

High speed functional imaging with source localized multifocal two-photon microscopy

Peter Quicke, Stephanie Reynolds, Mark Neil, Thomas Knöpfel, Simon R. Schultz, and Amanda J. Foust
Biomed. Opt. Express 9(8) 3678-3693 (2018)

Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy

Ziwei Li, Jia Hou, Jinli Suo, Chang Qiao, Lingjie Kong, and Qionghai Dai
Opt. Express 25(25) 32010-32020 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref] [PubMed]
  2. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
    [Crossref] [PubMed]
  3. K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15, 11658–11678 (2007).
    [Crossref] [PubMed]
  4. E. Tal, D. Oron, and Y. Silberberg, “Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing,” Opt. Lett. 30, 1686–1688 (2005).
    [Crossref] [PubMed]
  5. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
    [Crossref] [PubMed]
  6. H. Dana and S. Shoham, “Remotely scanned multiphoton temporal focusing by axial grism scanning,” Opt. Lett. 37, 2913–2915 (2012).
    [Crossref] [PubMed]
  7. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [Crossref] [PubMed]
  8. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
    [Crossref] [PubMed]
  9. M. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [Crossref]
  10. J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
    [Crossref] [PubMed]
  11. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15, 016027 (2010).
    [Crossref] [PubMed]
  12. D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).
    [Crossref] [PubMed]
  13. L.-C. Cheng, C.-H. Lien, Y. Da Sie, Y. Y. Hu, C.-Y. Lin, F.-C. Chien, C. Xu, C. Y. Dong, and S.-J. Chen, “Nonlinear structured-illumination enhanced temporal focusing multiphoton excitation microscopy with a digital micromirror device,” Biomed. Opt. Express 5, 2526–2536 (2014).
    [Crossref] [PubMed]
  14. H. Choi, E. Y. S. Yew, B. Hallacoglu, S. Fantini, C. J. R. Sheppard, and P. T. C. So, “Improvement of axial resolution and contrast in temporally focused widefield two-photon microscopy with structured light illumination,” Biomed. Opt. Express 4, 995–1005 (2013).
    [Crossref] [PubMed]
  15. E. Y. S. Yew, C. J. R. Sheppard, and P. T. C. So, “Temporally focused wide-field two-photon microscopy: paraxial to vectorial,” Opt. Express 21, 12951–12963 (2013).
    [Crossref] [PubMed]
  16. M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
    [Crossref] [PubMed]
  17. P. Rupprecht, R. Prevedel, F. Groessl, W. E. Haubensak, and A. Vaziri, “Optimizing and extending light-sculpting microscopy for fast functional imaging in neuroscience,” Biomed. Opt. Express 6, 353–368 (2015).
    [Crossref] [PubMed]
  18. Y. Zhang, L. Kong, H. Xie, X. Han, and Q. Dai, “Enhancing axial resolution and background rejection in line-scanning temporal focusing microscopy by focal modulation,” Opt. Express 26, 21518–21526 (2018).
    [Crossref] [PubMed]
  19. Z. Li, J. Hou, J. Suo, C. Qiao, L. Kong, and Q. Dai, “Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy,” Opt. Express 25, 32010–32020 (2017).
    [Crossref] [PubMed]
  20. P. A. Stokseth, “Properties of a defocused optical system*,” J. Opt. Soc. Am., JOSA 59, 1314–1321 (1969).
    [Crossref]
  21. M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
    [Crossref] [PubMed]
  22. K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
    [Crossref] [PubMed]
  23. J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
    [Crossref] [PubMed]
  24. J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
    [Crossref] [PubMed]
  25. W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
    [Crossref]
  26. W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
    [Crossref]
  27. G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
    [Crossref] [PubMed]
  28. H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience 103, 865–872 (2001).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (1)

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2013 (2)

2012 (2)

H. Dana and S. Shoham, “Remotely scanned multiphoton temporal focusing by axial grism scanning,” Opt. Lett. 37, 2913–2915 (2012).
[Crossref] [PubMed]

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

2011 (3)

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
[Crossref] [PubMed]

2010 (1)

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15, 016027 (2010).
[Crossref] [PubMed]

2008 (4)

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).
[Crossref] [PubMed]

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
[Crossref] [PubMed]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

2005 (3)

2004 (1)

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[Crossref] [PubMed]

2001 (1)

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience 103, 865–872 (2001).
[Crossref] [PubMed]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

1997 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

1969 (1)

P. A. Stokseth, “Properties of a defocused optical system*,” J. Opt. Soc. Am., JOSA 59, 1314–1321 (1969).
[Crossref]

Agard, D. A.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Amitai, Y.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

Bahlmann, K.

Berland, K. M.

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[Crossref] [PubMed]

Berry, K. P.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Brown, E. N.

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Buehler, C.

Cande, W. Z.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Cha, J. W.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

Chen, J. L.

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

Chen, S.-J.

Cheng, L.-C.

Chien, F.-C.

Choi, H.

Chu, K. K.

Cianci, G. C.

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[Crossref] [PubMed]

Da Sie, Y.

Dai, Q.

Dana, H.

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Dong, C. Y.

Durst, M.

Durst, M. E.

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
[Crossref] [PubMed]

Fantini, S.

Feng, G.

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Golubovskaya, I. N.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Groessl, F.

Gustafsson, M. G.

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Hallacoglu, B.

Han, X.

Haubensak, W. E.

Heffer, E. L.

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref] [PubMed]

Hou, J.

Hu, Y. Y.

Huang, H.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Juskaitis, R.

Kim, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15, 016027 (2010).
[Crossref] [PubMed]

Kim, K. H.

Kong, L.

Kubota, Y.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

Kwon, H.-B.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

Lee, W.-C. A.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15, 11658–11678 (2007).
[Crossref] [PubMed]

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Leslie, J. H.

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

Li, Z.

Lien, C.-H.

Lim, D.

Lin, C.-Y.

Lin, W. C.

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

Mertz, J.

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
[Crossref] [PubMed]

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15, 016027 (2010).
[Crossref] [PubMed]

D. Lim, K. K. Chu, and J. Mertz, “Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy,” Opt. Lett. 33, 1819–1821 (2008).
[Crossref] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Nakajima, K.

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience 103, 865–872 (2001).
[Crossref] [PubMed]

Nedivi, E.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15, 11658–11678 (2007).
[Crossref] [PubMed]

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Neil, M. A.

Oh, W. C.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

Oron, D.

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

Prevedel, R.

Qiao, C.

Ragan, T.

Rupprecht, P.

Sanes, J. R.

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Sedat, J. W.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Shao, L.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Sheppard, C. J. R.

Shoham, S.

Silberberg, Y.

So, P. T.

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

So, P. T. C.

Stokseth, P. A.

P. A. Stokseth, “Properties of a defocused optical system*,” J. Opt. Soc. Am., JOSA 59, 1314–1321 (1969).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Subramanian, J.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

Suo, J.

Tabata, H.

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience 103, 865–872 (2001).
[Crossref] [PubMed]

Tal, E.

van Howe, J.

Vaziri, A.

Villa, K. L.

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

Wang, C. J. R.

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Wilson, T.

Wu, J.

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[Crossref] [PubMed]

Xie, H.

Xu, C.

Yew, E. Y. S.

Zhang, Y.

Zhu, G.

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
[Crossref] [PubMed]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express 13, 2153–2159 (2005).
[Crossref] [PubMed]

Zipfel, W.

Biomed. Opt. Express (3)

Biophys. J. (1)

M. G. L. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15, 016027 (2010).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am., JOSA (1)

P. A. Stokseth, “Properties of a defocused optical system*,” J. Opt. Soc. Am., JOSA 59, 1314–1321 (1969).
[Crossref]

Microsc. Res. Tech. (1)

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[Crossref] [PubMed]

Nat. Methods (3)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using bessel beam plane illumination,” Nat. Methods 8, 417–423 (2011).
[Crossref] [PubMed]

J. Mertz, “Optical sectioning microscopy with planar or structured illumination,” Nat. Methods 8, 811–819 (2011).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2, 932–940 (2005).
[Crossref] [PubMed]

Nat. Neurosci. (1)

J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nat. Neurosci. 14, 587–594 (2011).
[Crossref] [PubMed]

Neuron (2)

K. L. Villa, K. P. Berry, J. Subramanian, J. W. Cha, W. C. Oh, H.-B. Kwon, Y. Kubota, P. T. C. So, and E. Nedivi, “Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo,” Neuron 89, 756–769 (2016).
[Crossref] [PubMed]

J. L. Chen, K. L. Villa, J. W. Cha, P. T. C. So, Y. Kubota, and E. Nedivi, “Clustered dynamics of inhibitory synapses and dendritic spines in the adult neocortex,” Neuron 74, 361–373 (2012).
[Crossref] [PubMed]

Neuroscience (1)

H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience 103, 865–872 (2001).
[Crossref] [PubMed]

Opt. Commun. (1)

M. E. Durst, G. Zhu, and C. Xu, “Simultaneous spatial and temporal focusing in nonlinear microscopy,” Opt. Commun. 281, 1796–1805 (2008).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

PLoS Biol. (1)

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, and E. Nedivi, “Dynamic remodeling of dendritic arbors in GABAergic interneurons of adult visual cortex,” PLoS Biol. 4, e29 (2006).
[Crossref]

Proc. Natl. Acad. Sci. (1)

W.-C. A. Lee, J. L. Chen, H. Huang, J. H. Leslie, Y. Amitai, P. T. So, and E. Nedivi, “A dynamic zone defines interneuron remodeling in the adult neocortex,” Proc. Natl. Acad. Sci. 20080810149 (2008).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Simulation results of HiLL. (a) The theoretical PSF of HiLL. (b–c) Comparison of SI pattern and LineTFM PSF in the (b) radial direction and (c) axial direction. The full width of half maximum (FWHM) of the SI pattern is larger than the FWHM of the LineTFM PSF in both directions.
Fig. 2
Fig. 2 Figure 1. The HiLL setup diagram. Laser: femtosecond laser at a wavelength of 1035nm. L1, L2: relay lenses to collimate the beam. SM: scanning mirror, which scans along the y-axis. CL: cylindrical lens, which focuses the beam in the y-axis. Grating: dispersion along the x-axis. L3, L4: relay lenses. Grid: 10 lp/mm Ronchi ruling to project stripes along the x-axis. L5, L6: tube lenses. DM: dichroic mirror. OL: objective lens (XLUMPlanFL, 20×, 0.95NA, Olympus). The image is detected by sCMOS camera 1 (red channel, Prime95B, Photometrics) and sCMOS camera 2 (yellow channel, PCO edge 5.5, PCO AG).
Fig. 3
Fig. 3 (a) The experimental PSF of HiLL; (b) The experimental PSF of LineTFM; (c) The experimental PSF of line-scanning two photon microscopy (LineTPM). (d–e) The PSF of HiLL (blue), PSF of LineTFM (red) and PSF of LineTPM (green) in the (d) radial direction and (e) axial direction.
Fig. 4
Fig. 4 Imaging the same neuron in a mouse brain in vivo by (a) LineTFM, (b) HiLL and (c) TPLSM. (a1, b1, c1) Volume view of the whole neuron. Scale bar, 50 μm. (a2, b2, c2) Zoomed in on one dendrite at a depth of 105 μm. (a3, b3, c3) Zoomed in on one dendrite at a depth of 96 μm. (a4, b4, c4) Zoomed in on one dendrite near the surface. Red, cell fill by mScarlet. Yellow, Venus-gephyrin at inhibitory synapses. Scale bar, 10 μm.
Fig. 5
Fig. 5 Quantitative comparison among LineTFM, HiLL and TPLSM in the lateral and axial directions. (a1–a3) Normalized intensity profiles in the lateral direction. The intensity profiles are corresponding to the white dash lines in Fig. 4. (a4) Lateral contrast calculated from (a1–a3). Y-axis is in log scale, (b1–b3) Normalized intensity profiles in the axial direction. The intensity profiles are corresponding to the white dash boxes in Fig. 4. (b4) Axial contrast calculated from (b1–b3). Y-axis is in log scale. (a1, b1) Intensity profiles of Fig. 4a2, b2, c2. (a2, b2) Intensity profiles of Fig. 4a3, b3, c3. (a3, b3) Intensity profiles of Fig. 4a4, b4, c4.
Fig. 6
Fig. 6 Imaging the same neuron of mouse brain in vivo by (a) LineTFM, (b) HiLL and (c) TPLSM. (a1, b1, c1) Volume view of the whole neuron. Scale bar, 50 μm. (a2, b2, c2) Zoomed in on one dendrite in the depth of 85 μm. (a3, b3, c3) Zoomed in on one dendrite at a depth of 80 μm. (a4, b4, c4) Zoomed in on one dendrite near surface. Red, cell fill by Scarlet. Yellow, Venus-gephyrin at inhibitory synapses. Scale bar, 10 μm.
Fig. 7
Fig. 7 Quantitative comparison among LineTFM, HiLL and TPLSM in the lateral and axial directions. (a1–a3) Normalized intensity profiles in the lateral direction. The intensity profiles are corresponding to the white dash lines in Fig. 6. (a4) Lateral contrast calculated from (a1–a3). Y-axis is in log scale, (b1–b3) Normalized intensity profiles in the axial direction. The intensity profiles are corresponding to the white dash boxes in Fig. 6. (b4) Axial contrast calculated from (b1–b3). Y-axis is in log scale. (a1, b1) Intensity profiles of Fig. s1 a2, b2, c2. (a2, b2) Intensity profiles of Fig. s1 a3, b3, c3. (a3, b3) Intensity profiles of Fig. s1 a4, b4, c4.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

TPE ( z ) 1 1 + ( Δ z / z R ) 2 ,
T A ( z ) = A 2 J 1 [ k sin 2 ( α ) s ( 1 0.5 s ) z ] k sin 2 ( α ) s ( 1 0.5 s ) z .
U ( x ) = I in ( x ) + I out ( x ) ,
S ( x ) = A [ I in ( x ) ( 1 + M cos ( k g x ) ) + I out ( x ) ] , k g = 2 π / T g .
D ( x ) = | U ( x ) frac S ( x ) A | = I in ( x ) ( 1 + M cos ( k g x ) ) .
I LP ( x ) = 1 { { D ( x ) } × LP ( k x ) } .
I HP ( x ) = 1 { { U ( x ) } × HP ( k x ) } .
I HiLo ( x ) = η I LP ( x ) + I HP ( x ) ,
[ x BA α BA ] = [ 1 f 5 0 1 ] [ 1 0 1 / f 5 1 ] [ 1 f 4 + f 5 0 1 ] [ 1 0 1 / f 4 1 ] [ 1 f 3 + f 4 0 1 ] [ 1 0 1 / f 3 1 ] [ 1 f 3 0 1 ] [ x in α in ] .
y BA = f 3 f CL f 5 f 4 y in .
[ x FOV α FOV ] = [ 1 f OL 0 1 ] [ 1 0 1 / f OL 1 ] [ 1 f OL 0 1 ] [ x BA α BA ] ,

Metrics