Abstract

The paper is devoted to a computational super-resolution microscopy. A complex-valued wavefront of a transparent biological cellular specimen is restored from multiple intensity diffraction patterns registered with noise. For this problem, the recently developed lensless super-resolution phase retrieval algorithm [Optica, 4(7), 786 (2017)] is modified and tuned. This algorithm is based on a random phase coding of the wavefront and on a sparse complex-domain approximation of the specimen. It is demonstrated in experiments, that the reliable phase and amplitude imaging of the specimen is achieved for the low signal-to-noise ratio provided a low dynamic range of observations. The filterings in the observation domain and specimen variables are specific features of the applied algorithm. If these filterings are omitted the algorithm becomes a super-resolution version of the standard iterative phase retrieval algorithms. In comparison with this simplified algorithm with no filterings, our algorithm shows a valuable improvement in imaging with much smaller number of observations and shorter exposure time. In this way, presented algorithm demonstrates ability to work in a low radiation photon-limited mode.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments

Vladimir Katkovnik, Igor Shevkunov, Nikolay V. Petrov, and Karen Egiazarian
Optica 4(7) 786-794 (2017)

Lensless phase microscopy using phase retrieval with multiple illumination wavelengths

Peng Bao, Guohai Situ, Giancarlo Pedrini, and Wolfgang Osten
Appl. Opt. 51(22) 5486-5494 (2012)

Subsampled phase retrieval for temporal resolution enhancement in lensless on-chip holographic video

Donghun Ryu, Zihao Wang, Kuan He, Guoan Zheng, Roarke Horstmeyer, and Oliver Cossairt
Biomed. Opt. Express 8(3) 1981-1995 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Mikuła, T. Kozacki, M. Józwik, and J. Kostencka, “Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy,” Appl. Opt. 57, A197–A204 (2018).
    [Crossref]
  2. V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
    [Crossref] [PubMed]
  3. Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
    [Crossref] [PubMed]
  4. A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, E. S. Kornilova, N. V. Petrov, A. V. Salova, I. V. Semenova, and O. S. Vasyutinskii, “Digital holographic microscopy in label-free analysis of cultured cells’ response to photodynamic treatment,” Opt. Lett. 41, 5035–5038 (2016).
    [Crossref] [PubMed]
  5. H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
    [Crossref]
  6. A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
    [Crossref] [PubMed]
  7. R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
    [Crossref]
  8. V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods cell biology 114, 545–560 (2013).
    [Crossref]
  9. L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
    [Crossref]
  10. A. V. Belashov, A. A. Zhikhoreva, V. G. Bespalov, V. I. Novik, N. T. Zhilinskaya, I. V. Semenova, and O. S. Vasyutinskii, “Refractive index distributions in dehydrated cells of human oral cavity epithelium,” J. Opt. Soc. Am. B 34, 2538–2543 (2017).
    [Crossref]
  11. P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
    [Crossref]
  12. V. V. Dyomin and A. S. Olshukov, “Digital holographic video for studying biological particles,” J. Opt. Technol. 79, 344–347 (2012).
    [Crossref]
  13. M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
    [Crossref]
  14. R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Phys. E. ppl. Opt. OPTIK 2, 237–246 (1969).
  15. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref] [PubMed]
  16. I. A. Shevkunov and N. V. Petrov, “Experimental comparison of phase retrieval methods which use intensity distribution at different planes,” J. Physics: Conf. Ser. 536, 012028 (2014).
  17. P. Bao, F. Zhang, G. Pedrini, and W. Osten, “Phase retrieval using multiple illumination wavelengths,” Opt. Lett. 33, 309–311 (2008).
    [Crossref] [PubMed]
  18. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
    [Crossref]
  19. A. Anand, G. Pedrini, W. Osten, and P. Almoro, “Wavefront sensing with random amplitude mask and phase retrieval,” Opt. Lett. 32, 1584–1586 (2007).
    [Crossref] [PubMed]
  20. J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
    [Crossref]
  21. G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
    [Crossref]
  22. T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
    [Crossref]
  23. V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.
  24. A. V. Martin, F. Wang, N.-t. D. Loh, T. Ekeberg, F. R. N. C. Maia, M. Hantke, G. van der Schot, C. Y. Hampton, R. G. Sierra, A. Aquila, S. Bajt, M. Barthelmess, C. Bostedt, J. D. Bozek, N. Coppola, S. W. Epp, B. Erk, H. Fleckenstein, L. Foucar, M. Frank, H. Graafsma, L. Gumprecht, A. Hartmann, R. Hartmann, G. Hauser, H. Hirsemann, P. Holl, S. Kassemeyer, N. Kimmel, M. Liang, L. Lomb, S. Marchesini, K. Nass, E. Pedersoli, C. Reich, D. Rolles, B. Rudek, A. Rudenko, J. Schulz, R. L. Shoeman, H. Soltau, D. Starodub, J. Steinbrener, F. Stellato, L. Strüder, J. Ullrich, G. Weidenspointner, T. A. White, C. B. Wunderer, A. Barty, I. Schlichting, M. J. Bogan, and H. N. Chapman, “Noise-robust coherent diffractive imaging with a single diffraction pattern,” Opt. Express 20, 16650–61 (2012).
    [Crossref]
  25. F. Soulez, A. Thiébaut, A. Schutz, A. Ferrari, F. Courbin, and M. Unser, “Proximity operators for phase retrieval,” Appl. Opt. 55, 7412–7421 (2016).
    [Crossref] [PubMed]
  26. C. Shen, X. Bao, J. Tan, S. Liu, and Z. Liu, “Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint,” Opt. Express 25, 16235–49 (2017).
    [Crossref] [PubMed]
  27. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
    [Crossref]
  28. V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
    [Crossref]
  29. V. Katkovnik, J. Bioucas-Dias, and N. Petrov, “Digital phase-shifting holography based on sparse approximation of phase and amplitude,” IEEE 3DTV-Conference pp. 1–4 (2014).
  30. V. Katkovnik and K. Egiazarian, “Sparse superresolution phase retrieval from phase-coded noisy intensity patterns,” Opt. Eng. 56, 56–67 (2017).
    [Crossref]
  31. V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica 4, 786–794 (2017).
    [Crossref]
  32. V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Eguiazarian, “Multiwavelength surface contouring from phase-coded diffraction patterns,” in “Unconventional Optical Imaging,” C. Fournier, M. P. Georges, and G. Popescu, eds. (SPIE, 2018), pp. 106711B–106726B.
  33. V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
    [Crossref]
  34. E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Analysis 39, 277–299 (2015).
    [Crossref]
  35. Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Sparsity-regularized photon-limited imaging,” in “2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,” (IEEE, 2010), pp. 772–775.
  36. N. V. Petrov, M. V. Volkov, and V. G. Bespalov, “Phase retrieval of THz radiation using set of 2D spatial intensity measurements with different wavelengths,” in “Practical Holography XXVI: Materials and Applications,”, vol. 8281 (SPIE, 2012), vol. 8281, pp. 82810J-82810J-7.
  37. M. E. Kandel, M. Fanous, C. Best-Popescu, and G. Popescu, “Real-time halo correction in phase contrast imaging,” Biomed. Opt. express 9, 623–635 (2018).
    [Crossref] [PubMed]
  38. P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
    [Crossref]

2018 (8)

M. Mikuła, T. Kozacki, M. Józwik, and J. Kostencka, “Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy,” Appl. Opt. 57, A197–A204 (2018).
[Crossref]

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref] [PubMed]

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
[Crossref]

V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
[Crossref]

M. E. Kandel, M. Fanous, C. Best-Popescu, and G. Popescu, “Real-time halo correction in phase contrast imaging,” Biomed. Opt. express 9, 623–635 (2018).
[Crossref] [PubMed]

2017 (7)

V. Katkovnik and K. Egiazarian, “Sparse superresolution phase retrieval from phase-coded noisy intensity patterns,” Opt. Eng. 56, 56–67 (2017).
[Crossref]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica 4, 786–794 (2017).
[Crossref]

C. Shen, X. Bao, J. Tan, S. Liu, and Z. Liu, “Two noise-robust axial scanning multi-image phase retrieval algorithms based on Pauta criterion and smoothness constraint,” Opt. Express 25, 16235–49 (2017).
[Crossref] [PubMed]

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

A. V. Belashov, A. A. Zhikhoreva, V. G. Bespalov, V. I. Novik, N. T. Zhilinskaya, I. V. Semenova, and O. S. Vasyutinskii, “Refractive index distributions in dehydrated cells of human oral cavity epithelium,” J. Opt. Soc. Am. B 34, 2538–2543 (2017).
[Crossref]

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

2016 (2)

2015 (2)

E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Analysis 39, 277–299 (2015).
[Crossref]

V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
[Crossref]

2014 (2)

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

I. A. Shevkunov and N. V. Petrov, “Experimental comparison of phase retrieval methods which use intensity distribution at different planes,” J. Physics: Conf. Ser. 536, 012028 (2014).

2013 (1)

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods cell biology 114, 545–560 (2013).
[Crossref]

2012 (2)

2010 (1)

T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]

2008 (1)

2007 (4)

Y. Fu, G. Pedrini, and W. Osten, “Vibration measurement by temporal Fourier analyses of a digital hologram sequence,” Appl. Opt. 46, 5719–5727 (2007).
[Crossref] [PubMed]

A. Anand, G. Pedrini, W. Osten, and P. Almoro, “Wavefront sensing with random amplitude mask and phase retrieval,” Opt. Lett. 32, 1584–1586 (2007).
[Crossref] [PubMed]

G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
[Crossref]

2001 (1)

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

1982 (1)

1969 (1)

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Phys. E. ppl. Opt. OPTIK 2, 237–246 (1969).

Abashkin, V.

Achimova, E.

Allen, L.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

Almoro, P.

Anand, A.

Aquila, A.

Arikkath, J.

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

Bajt, S.

Bao, P.

Bao, X.

Barthelmess, M.

Barty, A.

Belashov, A. V.

Belyaeva, T. N.

Bespalov, V. G.

A. V. Belashov, A. A. Zhikhoreva, V. G. Bespalov, V. I. Novik, N. T. Zhilinskaya, I. V. Semenova, and O. S. Vasyutinskii, “Refractive index distributions in dehydrated cells of human oral cavity epithelium,” J. Opt. Soc. Am. B 34, 2538–2543 (2017).
[Crossref]

N. V. Petrov, M. V. Volkov, and V. G. Bespalov, “Phase retrieval of THz radiation using set of 2D spatial intensity measurements with different wavelengths,” in “Practical Holography XXVI: Materials and Applications,”, vol. 8281 (SPIE, 2012), vol. 8281, pp. 82810J-82810J-7.

Best-Popescu, C.

M. E. Kandel, M. Fanous, C. Best-Popescu, and G. Popescu, “Real-time halo correction in phase contrast imaging,” Biomed. Opt. express 9, 623–635 (2018).
[Crossref] [PubMed]

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

Bianco, V.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.

Bioucas-Dias, J.

V. Katkovnik, J. Bioucas-Dias, and N. Petrov, “Digital phase-shifting holography based on sparse approximation of phase and amplitude,” IEEE 3DTV-Conference pp. 1–4 (2014).

Bogan, M. J.

Bostedt, C.

Bozek, J. D.

Cai, W.-J.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Candès, E. J.

E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Analysis 39, 277–299 (2015).
[Crossref]

Cazac, V.

Chapman, H. N.

Cintora, P.

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

Claus, D.

Coppola, N.

Courbin, F.

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
[Crossref]

Daloglu, M. U.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Dirksen, D.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

Dyomin, V. V.

Egiazarian, K.

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica 4, 786–794 (2017).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse superresolution phase retrieval from phase-coded noisy intensity patterns,” Opt. Eng. 56, 56–67 (2017).
[Crossref]

V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
[Crossref]

Eguiazarian, K.

V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
[Crossref]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Eguiazarian, “Multiwavelength surface contouring from phase-coded diffraction patterns,” in “Unconventional Optical Imaging,” C. Fournier, M. P. Georges, and G. Popescu, eds. (SPIE, 2018), pp. 106711B–106726B.

Ekeberg, T.

Epp, S. W.

Erk, B.

Fanous, M.

Ferrari, A.

Ferraro, P.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.

Fienup, J. R.

Finizio, A.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.

Fleckenstein, H.

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
[Crossref]

Formanek, P.

T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]

Foucar, L.

Frank, M.

Fu, Y.

Gennari, O.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Phys. E. ppl. Opt. OPTIK 2, 237–246 (1969).

Graafsma, H.

Grepl, M.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Gumprecht, L.

Haase, A.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Hampton, C. Y.

Hantke, M.

Harmany, Z. T.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Sparsity-regularized photon-limited imaging,” in “2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,” (IEEE, 2010), pp. 772–775.

Hartmann, A.

Hartmann, R.

Hauser, G.

Herrmann, A. J.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Hirsemann, H.

Holl, P.

Horák, R.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Hradil, P.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Huang, J.

J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
[Crossref]

Isbach, M.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

Jakubowski, N.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Jiang, J.-Q.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Jin, H.

J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
[Crossref]

Józwik, M.

Kajdacsy-Balla, A.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

Kandel, M.

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

Kandel, M. E.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

M. E. Kandel, M. Fanous, C. Best-Popescu, and G. Popescu, “Real-time halo correction in phase contrast imaging,” Biomed. Opt. express 9, 623–635 (2018).
[Crossref] [PubMed]

Kassemeyer, S.

Kastl, L.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

Katkovnik, V.

V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
[Crossref]

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref] [PubMed]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica 4, 786–794 (2017).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse superresolution phase retrieval from phase-coded noisy intensity patterns,” Opt. Eng. 56, 56–67 (2017).
[Crossref]

V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
[Crossref]

V. Katkovnik, J. Bioucas-Dias, and N. Petrov, “Digital phase-shifting holography based on sparse approximation of phase and amplitude,” IEEE 3DTV-Conference pp. 1–4 (2014).

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Eguiazarian, “Multiwavelength surface contouring from phase-coded diffraction patterns,” in “Unconventional Optical Imaging,” C. Fournier, M. P. Georges, and G. Popescu, eds. (SPIE, 2018), pp. 106711B–106726B.

Kemper, B.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

Khodjakov, A.

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods cell biology 114, 545–560 (2013).
[Crossref]

Kim, K.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Kimmel, N.

Koch, C.

T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]

Koristek, K.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Kornilova, E. S.

Kostencka, J.

Kozacki, T.

Kvapil, L.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Latychevskaia, T.

T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]

Lee, I.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Li, X.

E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Analysis 39, 277–299 (2015).
[Crossref]

Liang, M.

Lin, F.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Liu, S.

Liu, Z.

Loh, N.-t. D.

Lomb, L.

Lubk, A.

T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]

Luch, A.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Luo, W.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Magidson, V.

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods cell biology 114, 545–560 (2013).
[Crossref]

Maia, F. R. N. C.

Majeed, H.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

Marchesini, S.

Marcia, R. F.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Sparsity-regularized photon-limited imaging,” in “2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,” (IEEE, 2010), pp. 772–775.

Martin, A. V.

Memmolo, P.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.

Meng, G.

J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
[Crossref]

Merola, F.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

Meshalkin, A.

Miccio, L.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

Mikula, M.

Motyka, K.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Mueller, L.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Nass, K.

Netti, P. A.

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

Nguyen, T. H.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

Novik, V. I.

Olshukov, A. S.

Osten, W.

Oxley, M.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

Ozcan, A.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Panne, U.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Paturzo, M.

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.

Pedersoli, E.

Pedrini, G.

Petrov, N.

V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
[Crossref]

V. Katkovnik, J. Bioucas-Dias, and N. Petrov, “Digital phase-shifting holography based on sparse approximation of phase and amplitude,” IEEE 3DTV-Conference pp. 1–4 (2014).

Petrov, N. V.

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica 4, 786–794 (2017).
[Crossref]

A. V. Belashov, A. A. Zhikhoreva, T. N. Belyaeva, E. S. Kornilova, N. V. Petrov, A. V. Salova, I. V. Semenova, and O. S. Vasyutinskii, “Digital holographic microscopy in label-free analysis of cultured cells’ response to photodynamic treatment,” Opt. Lett. 41, 5035–5038 (2016).
[Crossref] [PubMed]

V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
[Crossref]

I. A. Shevkunov and N. V. Petrov, “Experimental comparison of phase retrieval methods which use intensity distribution at different planes,” J. Physics: Conf. Ser. 536, 012028 (2014).

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Eguiazarian, “Multiwavelength surface contouring from phase-coded diffraction patterns,” in “Unconventional Optical Imaging,” C. Fournier, M. P. Georges, and G. Popescu, eds. (SPIE, 2018), pp. 106711B–106726B.

N. V. Petrov, M. V. Volkov, and V. G. Bespalov, “Phase retrieval of THz radiation using set of 2D spatial intensity measurements with different wavelengths,” in “Practical Holography XXVI: Materials and Applications,”, vol. 8281 (SPIE, 2012), vol. 8281, pp. 82810J-82810J-7.

Pfeifer, M.

G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
[Crossref]

Popescu, G.

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

M. E. Kandel, M. Fanous, C. Best-Popescu, and G. Popescu, “Real-time halo correction in phase contrast imaging,” Biomed. Opt. express 9, 623–635 (2018).
[Crossref] [PubMed]

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

Ramesh, V.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Reich, C.

Robinson, I.

G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
[Crossref]

Rolles, D.

Rudek, B.

Rudenko, A.

Salova, A. V.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Phys. E. ppl. Opt. OPTIK 2, 237–246 (1969).

Schlichting, I.

Schnekenburger, J.

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

Schulz, J.

Schutz, A.

Semenova, I. V.

Shabbir, F.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Shen, C.

Shevkunov, I.

V. Cazac, A. Meshalkin, E. Achimova, V. Abashkin, V. Katkovnik, I. Shevkunov, D. Claus, and G. Pedrini, “Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography,” Appl. Opt. 57, 507–513 (2018).
[Crossref] [PubMed]

V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
[Crossref]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica 4, 786–794 (2017).
[Crossref]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Eguiazarian, “Multiwavelength surface contouring from phase-coded diffraction patterns,” in “Unconventional Optical Imaging,” C. Fournier, M. P. Georges, and G. Popescu, eds. (SPIE, 2018), pp. 106711B–106726B.

Shevkunov, I. A.

V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
[Crossref]

I. A. Shevkunov and N. V. Petrov, “Experimental comparison of phase retrieval methods which use intensity distribution at different planes,” J. Physics: Conf. Ser. 536, 012028 (2014).

Shoeman, R. L.

Sierra, R. G.

Slaninová, L.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Soltanolkotabi, M.

E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Analysis 39, 277–299 (2015).
[Crossref]

Soltau, H.

Soulez, F.

Soural, M.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

Starodub, D.

Steinbrener, J.

Stellato, F.

Strüder, L.

Tan, J.

Techritz, S.

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Thiébaut, A.

Ullrich, J.

Unser, M.

Urbášek, M.

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

van der Schot, G.

Vartanyants, I.

G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
[Crossref]

Vasyutinskii, O. S.

Volkov, M. V.

N. V. Petrov, M. V. Volkov, and V. G. Bespalov, “Phase retrieval of THz radiation using set of 2D spatial intensity measurements with different wavelengths,” in “Practical Holography XXVI: Materials and Applications,”, vol. 8281 (SPIE, 2012), vol. 8281, pp. 82810J-82810J-7.

Wang, F.

Weidenspointner, G.

White, T. A.

Willett, R. M.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Sparsity-regularized photon-limited imaging,” in “2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,” (IEEE, 2010), pp. 772–775.

Williams, G.

G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
[Crossref]

Wunderer, C. B.

Ye, Q.

J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
[Crossref]

Yu, M.-Y.

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Zhang, F.

Zhikhoreva, A. A.

Zhilinskaya, N. T.

Acta Crystallogr. Sect. A: Foundations Crystallogr. (1)

G. Williams, M. Pfeifer, I. Vartanyants, and I. Robinson, “Effectiveness of iterative algorithms in recovering phase in the presence of noise,” Acta Crystallogr. Sect. A: Foundations Crystallogr. 63, 36–42 (2007).
[Crossref]

Appl. Comput. Harmon. Analysis (1)

E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval from coded diffraction patterns,” Appl. Comput. Harmon. Analysis 39, 277–299 (2015).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

J. Huang, H. Jin, Q. Ye, and G. Meng, “Differential phase retrieval based on phase modulating for wavefront detection,” Appl. Phys. B 124, 58–65 (2018).
[Crossref]

Appl. Sci. (1)

V. Katkovnik, I. Shevkunov, N. Petrov, and K. Eguiazarian, “Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm,” Appl. Sci. 8, 719–738 (2018).
[Crossref]

Biomed. Opt. express (1)

Cytom. Part A (3)

P. Memmolo, L. Miccio, F. Merola, O. Gennari, P. A. Netti, and P. Ferraro, “3D morphometry of red blood cells by digital holography,” Cytom. Part A 85, 1030–1036 (2014).
[Crossref]

P. Cintora, J. Arikkath, M. Kandel, G. Popescu, and C. Best-Popescu, “Cell density modulates intracellular mass transport in neural networks,” Cytom. Part A 91, 503–509 (2017).
[Crossref]

L. Kastl, M. Isbach, D. Dirksen, J. Schnekenburger, and B. Kemper, “Quantitative phase imaging for cell culture quality control,” Cytom. Part A 91, 470–481 (2017).
[Crossref]

IEEE Trans. on Image Process. (1)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering,” IEEE Trans. on Image Process. 16, 2080–2095 (2007).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

J. Physics: Conf. Ser. (1)

I. A. Shevkunov and N. V. Petrov, “Experimental comparison of phase retrieval methods which use intensity distribution at different planes,” J. Physics: Conf. Ser. 536, 012028 (2014).

Light. Sci. & Appl. (1)

M. U. Daloglu, W. Luo, F. Shabbir, F. Lin, K. Kim, I. Lee, J.-Q. Jiang, W.-J. Cai, V. Ramesh, M.-Y. Yu, and A. Ozcan, “Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume,” Light. Sci. & Appl. 7, 17121–32 (2018).
[Crossref]

Methods cell biology (1)

V. Magidson and A. Khodjakov, “Circumventing photodamage in live-cell microscopy,” Methods cell biology 114, 545–560 (2013).
[Crossref]

Opt. Commun. (1)

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199, 65–75 (2001).
[Crossref]

Opt. Eng. (1)

V. Katkovnik and K. Egiazarian, “Sparse superresolution phase retrieval from phase-coded noisy intensity patterns,” Opt. Eng. 56, 56–67 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Opt. letters (1)

V. Katkovnik, I. A. Shevkunov, N. V. Petrov, and K. Egiazarian, “Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase,” Opt. letters 40, 2417–2420 (2015).
[Crossref]

Optica (1)

Phys. E. ppl. Opt. OPTIK (1)

R. W. Gerchberg and W. O. Saxton, “A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures,” Phys. E. ppl. Opt. OPTIK 2, 237–246 (1969).

Sci. Reports (1)

H. Majeed, T. H. Nguyen, M. E. Kandel, A. Kajdacsy-Balla, and G. Popescu, “Label-free quantitative evaluation of breast tissue using Spatial Light Interference Microscopy (SLIM),” Sci. Reports 8, 6875–6884 (2018).
[Crossref]

Tetrahedron (1)

R. Horák, L. Kvapil, K. Motyka, L. Slaninová, M. Grepl, K. Kořistek, M. Urbášek, P. Hradil, and M. Soural, “Synthesis of 2-alkenyl-3-hydroxyquinolin-4(1 H)-ones as promising antimicrobial and fluorescent agents,” Tetrahedron 74, 366–374 (2018).
[Crossref]

The Analyst (1)

A. J. Herrmann, S. Techritz, N. Jakubowski, A. Haase, A. Luch, U. Panne, and L. Mueller, “A simple metal staining procedure for identification and visualization of single cells by LA-ICP-MS,” The Analyst 142, 1703–1710 (2017).
[Crossref] [PubMed]

Ultramicroscopy (1)

T. Latychevskaia, P. Formanek, C. Koch, and A. Lubk, “Off-axis and inline electron holography: Experimental comparison,” Ultramicroscopy 110, 472–482 (2010).
[Crossref]

Other (5)

V. Bianco, P. Memmolo, M. Paturzo, A. Finizio, and P. Ferraro, “A method for total noise removal in digital holography based on enhanced grouping and sparsity enhancement filtering,” in “Proceedings of SPIE - The International Society for Optical Engineering,”, vol. 10329P. Lehmann, W. Osten, and A. Albertazzi Gonçalves, eds. (International Society for Optics and Photonics, 2017), vol. 10329, pp. 103290E–6.

V. Katkovnik, J. Bioucas-Dias, and N. Petrov, “Digital phase-shifting holography based on sparse approximation of phase and amplitude,” IEEE 3DTV-Conference pp. 1–4 (2014).

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Eguiazarian, “Multiwavelength surface contouring from phase-coded diffraction patterns,” in “Unconventional Optical Imaging,” C. Fournier, M. P. Georges, and G. Popescu, eds. (SPIE, 2018), pp. 106711B–106726B.

Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Sparsity-regularized photon-limited imaging,” in “2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro,” (IEEE, 2010), pp. 772–775.

N. V. Petrov, M. V. Volkov, and V. G. Bespalov, “Phase retrieval of THz radiation using set of 2D spatial intensity measurements with different wavelengths,” in “Practical Holography XXVI: Materials and Applications,”, vol. 8281 (SPIE, 2012), vol. 8281, pp. 82810J-82810J-7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Block-scheme of the SR-SPAR algorithm. Each block corresponds to the separate step of the algorithm. Steps from 1 to 5 form the iterative loop, which stops when the number of iteration exceeds T.
Fig. 2
Fig. 2 Experimental setup. The laser is a light source with wavelength λ = 532 nm, L1, L2 are beam expanding lenses, BS is a beamsplitter, SLM stands for Spatial Light Modulator, L3, L4 are lenses in a 4f-telescopic system, Object is an investigated specimen, CMOS is a registration camera.
Fig. 3
Fig. 3 Fragments of intensities distributions (top row) for 1 ms, 5 ms, and 25 ms exposures from left to right, respectively, with corresponding histograms (bottom row).
Fig. 4
Fig. 4 SR-SPAR reconstructed amplitudes (top row) and phases (bottom row) of the epithelial cell with different exposure times: 1 ms, 5 ms and 25 ms from first to third columns, respectively.
Fig. 5
Fig. 5 Middle cross-sections of the phase reconstructions for epithelial cell for different time exposures: 1 ms -blue circles line, 5 ms -red diamonds line, and 25 ms -green squares line.
Fig. 6
Fig. 6 Phases of epithelial cell for exposure time texp = 1 ms. Top row: phases reconstructed by SR-GS for number of experiments L = 6 and L = 18 (first and second images) and by SR-SPAR with L = 6, third image. Bottom row: middle cross-sections of the corresponding phases: SR-SPAR L = 6 -blue triangles line, SR-GS L = 6 -red crosses line, and SR-GS L = 18 -green diamonds line.
Fig. 7
Fig. 7 Amplitudes and phases of the erythrocyte reconstructed by SR-SPAR with the pixel-resolution (Δc = 1.4µm) and the super-resolution (Δc = 0.35µm), top and bottom rows, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

y s ( x , y , d ) = | P s { u ( x , y , 0 ) } | 2 , s = 1 , , L ,
u s ( x , y , d ) = P s { u ( x , y , 0 ) } = P { M s ( x , y ) u ( x , y , 0 ) } .
y s ( x , y , d ) = | P { M s ( x , y ) u ( x , y , 0 ) } | 2 , s = 1 , , L .
z s ( x , y , d ) = G { y s ( x , y , d ) } , s = 1 , , L ,
N d λ Δ c 2 ,
b s = | v s | + | v s | 2 + 4 z ˜ s γ ( 1 + γ ) 2 ( 1 + γ ) .
φ ^ = B M 3 D p h a s e ( φ , T h φ ) ,
b ^ = B M 3 D a m p l ( b , T h b ) .

Metrics