Abstract

The sound-driven vibration of the tympanic membrane and ossicular chain of middle-ear bones is fundamental to hearing. Here we show that optical coherence tomography in phase synchrony with a sound stimulus is well suited for volumetric, vibrational imaging of the ossicles and tympanic membrane. This imaging tool — OCT vibrography — provides intuitive motion pictures of the ossicular chain and how they vary with frequency. Using the chinchilla ear as a model, we investigated the vibrational snapshots and phase delays of the manubrium, incus, and stapes over 100 Hz to 15 kHz. The vibrography images reveal a previously undescribed mode of motion of the chinchilla ossicles at high frequencies.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT

Jesung Park, Jeffrey T. Cheng, Daniel Ferguson, Gopi Maguluri, Ernest W. Chang, Caitlin Clancy, Daniel J. Lee, and Nicusor Iftimia
Biomed. Opt. Express 7(2) 238-250 (2016)

Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics

Dan MacDougall, Joshua Farrell, Jeremy Brown, Manohar Bance, and Robert Adamson
Biomed. Opt. Express 7(11) 4621-4635 (2016)

Picometer scale vibrometry in the human middle ear using a surgical microscope based optical coherence tomography and vibrometry system

Wihan Kim, Sangmin Kim, Shuning Huang, John S. Oghalai, and Brian E. Applegate
Biomed. Opt. Express 10(9) 4395-4410 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
    [Crossref] [PubMed]
  2. J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
    [PubMed]
  3. T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
    [Crossref] [PubMed]
  4. G. von Békésy, “Über die Messung Schwingungsamplitude der Gehörknochelchen mittels einer kapazitiven Sonde [About the vibration amplitude of the ossicles measured by means of a capacitive probe],” Akust Zeits 6, 1–16 (1941).
  5. M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
    [Crossref] [PubMed]
  6. S. M. Khanna and J. Tonndorf, “Tympanic Membrane Vibrations in Cats Studied by Time-Averaged Holography,” J. Acoust. Soc. Am. 51(6), 1904–1920 (1972).
    [Crossref] [PubMed]
  7. J. Tonndorf and S. M. Khanna, “Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer,” J. Acoust. Soc. Am. 44(6), 1546–1554 (1968).
    [Crossref] [PubMed]
  8. P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
    [Crossref] [PubMed]
  9. L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
    [Crossref] [PubMed]
  10. O. de La Rochefoucauld, S. M. Khanna, and E. S. Olson, “Recording depth and signal competition in heterodyne interferometry,” J. Acoust. Soc. Am. 117(3), 1267–1284 (2005).
    [Crossref] [PubMed]
  11. C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
    [Crossref] [PubMed]
  12. G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
    [Crossref] [PubMed]
  13. G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
    [Crossref] [PubMed]
  14. H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
    [Crossref] [PubMed]
  15. R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
    [Crossref] [PubMed]
  16. T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
    [Crossref] [PubMed]
  17. H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
    [Crossref] [PubMed]
  18. N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
    [Crossref] [PubMed]
  19. S. Page, R. Ghaffari, and D. M. Freeman, “Doppler optical coherence microscopy and tomography applied to inner ear mechanics,” in AIP Conf. Proc. Mechanics of Hearing: Protein to Perception (2015), 040002, 040002.
    [Crossref]
  20. T. Ren, W. He, and P. G. Barr-Gillespie, “Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry,” Nat. Commun. 7, 10282 (2016).
    [Crossref] [PubMed]
  21. A. Recio-Spinoso and J. S. Oghalai, “Mechanical tuning and amplification within the apex of the guinea pig cochlea,” J. Physiol. 595(13), 4549–4561 (2017).
    [Crossref] [PubMed]
  22. R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
    [Crossref] [PubMed]
  23. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
    [Crossref] [PubMed]
  24. H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
    [Crossref] [PubMed]
  25. A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
    [Crossref] [PubMed]
  26. J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)
  27. L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).
  28. S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
    [Crossref] [PubMed]
  29. D. MacDougall, J. Farrell, J. Brown, M. Bance, and R. Adamson, “Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics,” Biomed. Opt. Express 7(11), 4621–4635 (2016).
    [Crossref] [PubMed]
  30. J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
    [Crossref] [PubMed]
  31. E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
    [Crossref] [PubMed]
  32. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003).
    [Crossref] [PubMed]
  33. S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
    [Crossref] [PubMed]
  34. E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
    [Crossref] [PubMed]
  35. B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
    [Crossref] [PubMed]
  36. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [Crossref] [PubMed]
  37. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
    [Crossref]
  38. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
    [Crossref] [PubMed]
  39. S. Yazdanfar, C. Yang, M. Sarunic, and J. Izatt, “Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound,” Opt. Express 13(2), 410–416 (2005).
    [Crossref] [PubMed]
  40. J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
    [Crossref] [PubMed]
  41. M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.),” IEEE Trans. Inf. Theory 16(1), 85–89 (1970).
    [Crossref]
  42. M. E. Ravicz and J. J. Rosowski, “Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla,” J. Acoust. Soc. Am. 134(4), 2852–2865 (2013).
    [Crossref] [PubMed]
  43. S. Puria and J. B. Allen, “Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay,” J. Acoust. Soc. Am. 104(6), 3463–3481 (1998).
    [Crossref] [PubMed]
  44. G. Fleischer, “Evolutionary principles of the mammalian middle ear,” Adv. Anat. Embryol. Cell Biol. 55(5), 3–70 (1978).
    [PubMed]
  45. S. Puria and C. Steele, “Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals,” Hear. Res. 263(1-2), 183–190 (2010).
    [Crossref] [PubMed]
  46. R. S. Heffner and H. E. Heffner, “Behavioral hearing range of the chinchilla,” Hear. Res. 52(1), 13–16 (1991).
    [Crossref] [PubMed]
  47. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859 (2017).
    [Crossref] [PubMed]
  48. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
    [Crossref] [PubMed]
  49. S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
    [Crossref] [PubMed]

2018 (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

2017 (4)

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8(2), 828–859 (2017).
[Crossref] [PubMed]

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

A. Recio-Spinoso and J. S. Oghalai, “Mechanical tuning and amplification within the apex of the guinea pig cochlea,” J. Physiol. 595(13), 4549–4561 (2017).
[Crossref] [PubMed]

S. Choi, K. Sato, T. Ota, F. Nin, S. Muramatsu, and H. Hibino, “Multifrequency-swept optical coherence microscopy for highspeed full-field tomographic vibrometry in biological tissues,” Biomed. Opt. Express 8(2), 608–621 (2017).
[Crossref] [PubMed]

2016 (8)

D. MacDougall, J. Farrell, J. Brown, M. Bance, and R. Adamson, “Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics,” Biomed. Opt. Express 7(11), 4621–4635 (2016).
[Crossref] [PubMed]

J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
[Crossref] [PubMed]

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

T. Ren, W. He, and P. G. Barr-Gillespie, “Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry,” Nat. Commun. 7, 10282 (2016).
[Crossref] [PubMed]

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

2015 (3)

L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

2014 (2)

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

2013 (3)

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

M. E. Ravicz and J. J. Rosowski, “Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla,” J. Acoust. Soc. Am. 134(4), 2852–2865 (2013).
[Crossref] [PubMed]

2012 (2)

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref] [PubMed]

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

S. Puria and C. Steele, “Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals,” Hear. Res. 263(1-2), 183–190 (2010).
[Crossref] [PubMed]

2009 (1)

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
[Crossref] [PubMed]

2008 (1)

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

2006 (2)

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

2005 (4)

2003 (1)

2002 (1)

R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
[Crossref] [PubMed]

2001 (2)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

1998 (1)

S. Puria and J. B. Allen, “Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay,” J. Acoust. Soc. Am. 104(6), 3463–3481 (1998).
[Crossref] [PubMed]

1991 (1)

R. S. Heffner and H. E. Heffner, “Behavioral hearing range of the chinchilla,” Hear. Res. 52(1), 13–16 (1991).
[Crossref] [PubMed]

1990 (1)

M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
[Crossref] [PubMed]

1985 (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
[Crossref]

1978 (1)

G. Fleischer, “Evolutionary principles of the mammalian middle ear,” Adv. Anat. Embryol. Cell Biol. 55(5), 3–70 (1978).
[PubMed]

1972 (1)

S. M. Khanna and J. Tonndorf, “Tympanic Membrane Vibrations in Cats Studied by Time-Averaged Holography,” J. Acoust. Soc. Am. 51(6), 1904–1920 (1972).
[Crossref] [PubMed]

1970 (1)

M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.),” IEEE Trans. Inf. Theory 16(1), 85–89 (1970).
[Crossref]

1968 (1)

J. Tonndorf and S. M. Khanna, “Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer,” J. Acoust. Soc. Am. 44(6), 1546–1554 (1968).
[Crossref] [PubMed]

1941 (1)

G. von Békésy, “Über die Messung Schwingungsamplitude der Gehörknochelchen mittels einer kapazitiven Sonde [About the vibration amplitude of the ossicles measured by means of a capacitive probe],” Akust Zeits 6, 1–16 (1941).

Adamson, R.

Allen, J. B.

S. Puria and J. B. Allen, “Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay,” J. Acoust. Soc. Am. 104(6), 3463–3481 (1998).
[Crossref] [PubMed]

Applegate, B. E.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

Bance, M.

Barr-Gillespie, P. G.

T. Ren, W. He, and P. G. Barr-Gillespie, “Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry,” Nat. Commun. 7, 10282 (2016).
[Crossref] [PubMed]

Baumgärtner, S.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Boppart, S. A.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Bornitz, M.

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

Bouma, B.

Bouma, B. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Braaf, B.

Brezinski, M. E.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Brown, J.

Burkhardt, A.

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

Carbajal, E. F.

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

Chan, R. C.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Chang, E. W.

Chen, F.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Chen, X.

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

Cheng, J. T.

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
[Crossref] [PubMed]

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

Choi, S.

Choma, M. A.

Choudhury, N.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Ciganovic, N.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Clancy, C.

Creazzo, T. L.

de Boer, J.

de Boer, J. F.

B. Braaf, K. A. Vermeer, V. A. D. P. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-µm for the measurement of blood flow in the human choroid,” Opt. Express 19(21), 20886–20903 (2011).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

de La Rochefoucauld, O.

O. de La Rochefoucauld, S. M. Khanna, and E. S. Olson, “Recording depth and signal competition in heterodyne interferometry,” J. Acoust. Soc. Am. 117(3), 1267–1284 (2005).
[Crossref] [PubMed]

Desjardins, A. E.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Dillier, N.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Djalilian, H. R.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Dobrev, I.

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

Ellerbee, A. K.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, and J. A. Izatt, “Spectral-domain phase microscopy,” Opt. Lett. 30(10), 1162–1164 (2005).
[Crossref] [PubMed]

Erkkilä, M. T.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Evans, J. A.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Fan, Y.-H.

L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
[Crossref] [PubMed]

Farrell, J.

Ferguson, D.

Ferrazzini, M.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Fisch, U.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Fleischer, G.

G. Fleischer, “Evolutionary principles of the mammalian middle ear,” Adv. Anat. Embryol. Cell Biol. 55(5), 3–70 (1978).
[PubMed]

Freeman, D. M.

S. Page, R. Ghaffari, and D. M. Freeman, “Doppler optical coherence microscopy and tomography applied to inner ear mechanics,” in AIP Conf. Proc. Mechanics of Hearing: Protein to Perception (2015), 040002, 040002.
[Crossref]

Fridberger, A.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Fujimoto, J. G.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Furlong, C.

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

Ghaffari, R.

S. Page, R. Ghaffari, and D. M. Freeman, “Doppler optical coherence microscopy and tomography applied to inner ear mechanics,” in AIP Conf. Proc. Mechanics of Hearing: Protein to Perception (2015), 040002, 040002.
[Crossref]

Golde, J.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Harrington, E.

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

Hauger, C.

R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
[Crossref] [PubMed]

He, W.

T. Ren, W. He, and P. G. Barr-Gillespie, “Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry,” Nat. Commun. 7, 10282 (2016).
[Crossref] [PubMed]

Heermann, R.

R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
[Crossref] [PubMed]

Heffner, H. E.

R. S. Heffner and H. E. Heffner, “Behavioral hearing range of the chinchilla,” Hear. Res. 52(1), 13–16 (1991).
[Crossref] [PubMed]

Heffner, R. S.

R. S. Heffner and H. E. Heffner, “Behavioral hearing range of the chinchilla,” Hear. Res. 52(1), 13–16 (1991).
[Crossref] [PubMed]

Hibino, H.

Hill, M. C.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Hsieh, B.-Y.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Huber, A. M.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Huber, R.

Hüttmann, G.

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
[Crossref] [PubMed]

Iftimia, N.

Issing, P. R.

R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
[Crossref] [PubMed]

Izatt, J.

Izatt, J. A.

Jacques, S. L.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Jang, I.-K.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Just, T.

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
[Crossref] [PubMed]

Karimi, K.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
[Crossref]

Kemper, M.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Khaleghi, M.

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

Khanna, S. M.

O. de La Rochefoucauld, S. M. Khanna, and E. S. Olson, “Recording depth and signal competition in heterodyne interferometry,” J. Acoust. Soc. Am. 117(3), 1267–1284 (2005).
[Crossref] [PubMed]

S. M. Khanna and J. Tonndorf, “Tympanic Membrane Vibrations in Cats Studied by Time-Averaged Holography,” J. Acoust. Soc. Am. 51(6), 1904–1920 (1972).
[Crossref] [PubMed]

J. Tonndorf and S. M. Khanna, “Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer,” J. Acoust. Soc. Am. 44(6), 1546–1554 (1968).
[Crossref] [PubMed]

Kirsten, L.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

Klein, T.

Kobler, J. B.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
[Crossref] [PubMed]

Koch, E.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
[Crossref]

Lankenau, E.

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
[Crossref] [PubMed]

Lasurashvili, N.

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

Lee, D. J.

Lee, H. Y.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Lenarz, T.

R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
[Crossref] [PubMed]

Linder, T.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Lippok, N.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Lu, W.

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

MacDougall, D.

Maguluri, G.

Matthews, S.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

McCormick, D. T.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Merchant, S. N.

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Metasch, M.-L.

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

Monroy, G. L.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Muramatsu, S.

Naemi, K.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Nakajima, H. H.

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
[Crossref]

Neudert, M.

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Nguyen, C. T.

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Nguyen-Huynh, A.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Nin, F.

Nishioka, N. S.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Nolan, R. M.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Novak, M. A.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Nuttall, A. L.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

O’Donnell, M.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Oghalai, J. S.

A. Recio-Spinoso and J. S. Oghalai, “Mechanical tuning and amplification within the apex of the guinea pig cochlea,” J. Physiol. 595(13), 4549–4561 (2017).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

Oh, W. Y.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Olson, E. S.

O. de La Rochefoucauld, S. M. Khanna, and E. S. Olson, “Recording depth and signal competition in heterodyne interferometry,” J. Acoust. Soc. Am. 117(3), 1267–1284 (2005).
[Crossref] [PubMed]

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
[Crossref]

Ota, T.

Page, S.

S. Page, R. Ghaffari, and D. M. Freeman, “Doppler optical coherence microscopy and tomography applied to inner ear mechanics,” in AIP Conf. Proc. Mechanics of Hearing: Protein to Perception (2015), 040002, 040002.
[Crossref]

Pande, P.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

Park, J.

J. Park, J. T. Cheng, D. Ferguson, G. Maguluri, E. W. Chang, C. Clancy, D. J. Lee, and N. Iftimia, “Investigation of middle ear anatomy and function with combined video otoscopy-phase sensitive OCT,” Biomed. Opt. Express 7(2), 238–250 (2016).
[Crossref] [PubMed]

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

Pau, H. W.

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
[Crossref] [PubMed]

Pelivanov, I.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Petrie, T.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Pitris, C.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Porter, R. G.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

Puria, S.

S. Puria and C. Steele, “Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals,” Hear. Res. 263(1-2), 183–190 (2010).
[Crossref] [PubMed]

S. Puria and J. B. Allen, “Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay,” J. Acoust. Soc. Am. 104(6), 3463–3481 (1998).
[Crossref] [PubMed]

Ramamoorthy, S.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Raphael, P. D.

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

Ravicz, M. E.

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

M. E. Ravicz and J. J. Rosowski, “Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla,” J. Acoust. Soc. Am. 134(4), 2852–2865 (2013).
[Crossref] [PubMed]

Razavi, P.

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

Recio-Spinoso, A.

A. Recio-Spinoso and J. S. Oghalai, “Mechanical tuning and amplification within the apex of the guinea pig cochlea,” J. Physiol. 595(13), 4549–4561 (2017).
[Crossref] [PubMed]

Reichenbach, T.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Ren, T.

T. Ren, W. He, and P. G. Barr-Gillespie, “Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry,” Nat. Commun. 7, 10282 (2016).
[Crossref] [PubMed]

Rich, N. C.

M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
[Crossref] [PubMed]

Robles, L.

L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
[Crossref] [PubMed]

M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
[Crossref] [PubMed]

Röösli, C.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

Rosowski, J. J.

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

M. E. Ravicz and J. J. Rosowski, “Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla,” J. Acoust. Soc. Am. 134(4), 2852–2865 (2013).
[Crossref] [PubMed]

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Rubinstein, M.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Ruggero, M. A.

L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
[Crossref] [PubMed]

M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
[Crossref] [PubMed]

Sarunic, M.

Sato, K.

Saunders, K. T.

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Schroeder, M.

M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.),” IEEE Trans. Inf. Theory 16(1), 85–89 (1970).
[Crossref]

Schwab, C.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Seidler, H.

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

Shelton, R. L.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Shen, T. T.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Shishkov, M.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Shivapuja, B. G.

M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
[Crossref] [PubMed]

Sicam, V. A. D. P.

Siddiqui, M.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Song, G.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Song, S.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Spillman, D. R.

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

Steele, C.

S. Puria and C. Steele, “Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals,” Hear. Res. 263(1-2), 183–190 (2010).
[Crossref] [PubMed]

Stoeckli, S. J.

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

Stoppe, T.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Subhash, H. M.

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

Suter, M. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Temchin, A. N.

L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
[Crossref] [PubMed]

Tonndorf, J.

S. M. Khanna and J. Tonndorf, “Tympanic Membrane Vibrations in Cats Studied by Time-Averaged Holography,” J. Acoust. Soc. Am. 51(6), 1904–1920 (1972).
[Crossref] [PubMed]

J. Tonndorf and S. M. Khanna, “Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer,” J. Acoust. Soc. Am. 44(6), 1546–1554 (1968).
[Crossref] [PubMed]

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Tschinkel, T.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Vakoc, B.

Vakoc, B. J.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

van Meurs, J. C.

van Zeeburg, E.

Vermeer, K. A.

von Békésy, G.

G. von Békésy, “Über die Messung Schwingungsamplitude der Gehörknochelchen mittels einer kapazitiven Sonde [About the vibration amplitude of the ossicles measured by means of a capacitive probe],” Akust Zeits 6, 1–16 (1941).

Wang, R. K.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref] [PubMed]

Warren, R. L.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Wei, W.

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Wilson, T. M.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Wong, B. J. F.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Wu, E. C.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Yang, C.

Yazdanfar, S.

Yun, S.

Yun, S. H.

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

E. W. Chang, J. B. Kobler, and S. H. Yun, “Subnanometer optical coherence tomographic vibrography,” Opt. Lett. 37(17), 3678–3680 (2012).
[Crossref] [PubMed]

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Zahnert, T.

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

Zardouz, S.

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

Zhang, Y.

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Zheng, J.

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

Adv. Anat. Embryol. Cell Biol. (1)

G. Fleischer, “Evolutionary principles of the mammalian middle ear,” Adv. Anat. Embryol. Cell Biol. 55(5), 3–70 (1978).
[PubMed]

Akust Zeits (1)

G. von Békésy, “Über die Messung Schwingungsamplitude der Gehörknochelchen mittels einer kapazitiven Sonde [About the vibration amplitude of the ossicles measured by means of a capacitive probe],” Akust Zeits 6, 1–16 (1941).

Appl. Phys. Lett. (1)

S. Song, W. Wei, B.-Y. Hsieh, I. Pelivanov, T. T. Shen, M. O’Donnell, and R. K. Wang, “Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate,” Appl. Phys. Lett. 108(19), 191104 (2016).
[Crossref] [PubMed]

Arch. Otolaryngol. Head Neck Surg. (1)

C. Pitris, K. T. Saunders, J. G. Fujimoto, and M. E. Brezinski, “High-Resolution Imaging of the Middle Ear with Optical Coherence Tomography: A Feasibility Study,” Arch. Otolaryngol. Head Neck Surg. 127(6), 637–642 (2001).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Curr. Dir. Biomed. Eng. (1)

L. Kirsten, S. Baumgärtner, M. T. Erkkilä, J. Golde, M. Kemper, T. Stoppe, M. Bornitz, M. Neudert, T. Zahnert, and E. Koch, “Doppler optical coherence tomography as a promising tool for detecting fluid in the human middle ear,” Curr. Dir. Biomed. Eng. 2, 443–447 (2016).

Ear Hear. (1)

J. J. Rosowski, H. H. Nakajima, and S. N. Merchant, “Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears,” Ear Hear. 29(1), 3–19 (2008).
[PubMed]

Hear. Res. (6)

P. Razavi, M. E. Ravicz, I. Dobrev, J. T. Cheng, C. Furlong, and J. J. Rosowski, “Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results,” Hear. Res. 340, 15–24 (2016).
[Crossref] [PubMed]

E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, and S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013).
[Crossref] [PubMed]

J. J. Rosowski, I. Dobrev, M. Khaleghi, W. Lu, J. T. Cheng, E. Harrington, and C. Furlong, “Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane,” Hear. Res. 301, 44–52 (2013).
[Crossref] [PubMed]

N. Choudhury, G. Song, F. Chen, S. Matthews, T. Tschinkel, J. Zheng, S. L. Jacques, and A. L. Nuttall, “Low coherence interferometry of the cochlear partition,” Hear. Res. 220(1-2), 1–9 (2006).
[Crossref] [PubMed]

S. Puria and C. Steele, “Tympanic-membrane and malleus-incus-complex co-adaptations for high-frequency hearing in mammals,” Hear. Res. 263(1-2), 183–190 (2010).
[Crossref] [PubMed]

R. S. Heffner and H. E. Heffner, “Behavioral hearing range of the chinchilla,” Hear. Res. 52(1), 13–16 (1991).
[Crossref] [PubMed]

IEEE Trans. Inf. Theory (1)

M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (Corresp.),” IEEE Trans. Inf. Theory 16(1), 85–89 (1970).
[Crossref]

IEEE Trans. Sonics Ultrason. (1)

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. 32(3), 458–464 (1985).
[Crossref]

J. Acoust. Soc. Am. (6)

M. E. Ravicz and J. J. Rosowski, “Middle-ear velocity transfer function, cochlear input immittance, and middle-ear efficiency in chinchilla,” J. Acoust. Soc. Am. 134(4), 2852–2865 (2013).
[Crossref] [PubMed]

S. Puria and J. B. Allen, “Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay,” J. Acoust. Soc. Am. 104(6), 3463–3481 (1998).
[Crossref] [PubMed]

M. A. Ruggero, N. C. Rich, L. Robles, and B. G. Shivapuja, “Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea,” J. Acoust. Soc. Am. 87(4), 1612–1629 (1990).
[Crossref] [PubMed]

S. M. Khanna and J. Tonndorf, “Tympanic Membrane Vibrations in Cats Studied by Time-Averaged Holography,” J. Acoust. Soc. Am. 51(6), 1904–1920 (1972).
[Crossref] [PubMed]

J. Tonndorf and S. M. Khanna, “Submicroscopic displacement amplitudes of the tympanic membrane (cat) measured by a laser interferometer,” J. Acoust. Soc. Am. 44(6), 1546–1554 (1968).
[Crossref] [PubMed]

O. de La Rochefoucauld, S. M. Khanna, and E. S. Olson, “Recording depth and signal competition in heterodyne interferometry,” J. Acoust. Soc. Am. 117(3), 1267–1284 (2005).
[Crossref] [PubMed]

J. Assoc. Res. Otolaryngol. (1)

L. Robles, A. N. Temchin, Y.-H. Fan, and M. A. Ruggero, “Stapes Vibration in the Chinchilla Middle Ear: Relation to Behavioral and Auditory-Nerve Thresholds,” J. Assoc. Res. Otolaryngol. 16(4), 447–457 (2015).
[Crossref] [PubMed]

J. Biomed. Opt. (2)

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt. 15(5), 056005 (2010).
[Crossref] [PubMed]

H. M. Subhash, A. Nguyen-Huynh, R. K. Wang, S. L. Jacques, N. Choudhury, and A. L. Nuttall, “Feasibility of spectral-domain phase-sensitive optical coherence tomography for middle ear vibrometry,” J. Biomed. Opt. 17(6), 060505 (2012).
[Crossref] [PubMed]

J. Biophotonics (2)

A. Burkhardt, L. Kirsten, M. Bornitz, T. Zahnert, and E. Koch, “Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography,” J. Biophotonics 7(6), 434–441 (2014).
[Crossref] [PubMed]

G. L. Monroy, P. Pande, R. L. Shelton, R. M. Nolan, D. R. Spillman, R. G. Porter, M. A. Novak, and S. A. Boppart, “Non-invasive optical assessment of viscosity of middle ear effusions in otitis media,” J. Biophotonics 10(3), 394–403 (2017).
[Crossref] [PubMed]

J. Laryngol. Otol. (1)

T. Just, E. Lankenau, G. Hüttmann, and H. W. Pau, “Optical coherence tomography of the oval window niche,” J. Laryngol. Otol. 123(6), 603–608 (2009).
[Crossref] [PubMed]

J. Physiol. (1)

A. Recio-Spinoso and J. S. Oghalai, “Mechanical tuning and amplification within the apex of the guinea pig cochlea,” J. Physiol. 595(13), 4549–4561 (2017).
[Crossref] [PubMed]

Laryngorhinootologie (1)

R. Heermann, C. Hauger, P. R. Issing, and T. Lenarz, “Application of Optical Coherence Tomography (OCT) in middle ear surgery,” Laryngorhinootologie 81(6), 400–405 (2002).
[Crossref] [PubMed]

Laryngoscope (2)

A. M. Huber, C. Schwab, T. Linder, S. J. Stoeckli, M. Ferrazzini, N. Dillier, and U. Fisch, “Evaluation of eardrum laser doppler interferometry as a diagnostic tool,” Laryngoscope 111(3), 501–507 (2001).
[Crossref] [PubMed]

G. L. Monroy, R. L. Shelton, R. M. Nolan, C. T. Nguyen, M. A. Novak, M. C. Hill, D. T. McCormick, and S. A. Boppart, “Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media,” Laryngoscope 125(8), E276–E282 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Ren, W. He, and P. G. Barr-Gillespie, “Reverse transduction measured in the living cochlea by low-coherence heterodyne interferometry,” Nat. Commun. 7, 10282 (2016).
[Crossref] [PubMed]

Nat. Med. (1)

S. H. Yun, G. J. Tearney, B. J. Vakoc, M. Shishkov, W. Y. Oh, A. E. Desjardins, M. J. Suter, R. C. Chan, J. A. Evans, I.-K. Jang, N. S. Nishioka, J. F. de Boer, and B. E. Bouma, “Comprehensive volumetric optical microscopy in vivo,” Nat. Med. 12(12), 1429–1433 (2006).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12(2), 111–116 (2018).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett (1)

J. Park, E. F. Carbajal, X. Chen, J. S. Oghalai, and B. E. Applegate, “Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear,” Opt. Lett.  39, 6233 (2014)

Opt. Lett. (2)

Otol. Neurotol. (2)

H. R. Djalilian, M. Rubinstein, E. C. Wu, K. Naemi, S. Zardouz, K. Karimi, and B. J. F. Wong, “Optical Coherence Tomography of Cholesteatoma,” Otol. Neurotol. 31(6), 932–935 (2010).
[Crossref] [PubMed]

T. Zahnert, M.-L. Metasch, H. Seidler, M. Bornitz, N. Lasurashvili, and M. Neudert, “A new intraoperative real-time monitoring system for reconstructive middle ear surgery: an experimental and clinical feasibility study,” Otol. Neurotol. 37(10), 1601–1607 (2016).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

H. Y. Lee, P. D. Raphael, J. Park, A. K. Ellerbee, B. E. Applegate, and J. S. Oghalai, “Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea,” Proc. Natl. Acad. Sci. U.S.A. 112(10), 3128–3133 (2015).
[Crossref] [PubMed]

R. L. Warren, S. Ramamoorthy, N. Ciganović, Y. Zhang, T. M. Wilson, T. Petrie, R. K. Wang, S. L. Jacques, T. Reichenbach, A. L. Nuttall, and A. Fridberger, “Minimal basilar membrane motion in low-frequency hearing,” Proc. Natl. Acad. Sci. U.S.A. 113(30), E4304–E4310 (2016).
[Crossref] [PubMed]

Other (1)

S. Page, R. Ghaffari, and D. M. Freeman, “Doppler optical coherence microscopy and tomography applied to inner ear mechanics,” in AIP Conf. Proc. Mechanics of Hearing: Protein to Perception (2015), 040002, 040002.
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Motion-exaggerated ossicular motion at 500 Hz.
» Visualization 2       Motion-exaggerated ossicular motion at 15,000 Hz.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the optical system and signal generation and acquisition. Abbreviations used: Mach-Zehnder interferometer (MZI), photodiode (PD), balanced photodiode (BPD), data acquisition (DAQ) system, fiber Bragg grating (FBG), circulators (C1, C2), galvanometer mirrors (GM), lenses (L1-L3), reference mirror (RM), dichroic mirror (DM).
Fig. 2
Fig. 2 Timing diagrams of data acquisition, sound wave, and beam position scan.
Fig. 3
Fig. 3 Measured SNR and sensitivity. (a) The noise-equivalent displacement measured as a function of the SNR when the 2-axis galvanometer scanner was powered ON (red circles) or OFF (cyan circles), in comparison to the SNR-limited theoretical curve (dashed line). (b) Power spectra of the vibrational signal at a SNR of 35dB, when the scanner was powered off or on. (c) Measured vibration phases of the piezoelectric transducer showing the elimination of phase drift by synchronizing the phase of the stimulus signal to the acquisition board. (d) The standard deviation of the vibrational phase measured as a function of the SNR, which agrees well with the theoretical prediction (dashed line). Error bars represent 99% confidence intervals.
Fig. 4
Fig. 4 OCT images of the chinchilla middle ear. (a) Representative cross-sectional image of a plane orthogonal to the manubrium (long handle of the malleus). (b) Orthographic 3D reconstruction with the TM digitally removed. (c-e) Cross-sectional vibrography images measured with SPL of 100 dB at 500 Hz after averaging over a 3x3x3 kernel of voxels. (c) standard reflectivity image in units of dB above the noise floor, (d) magnitude, and (e) phase maps. Labels: ear canal (EC), bone (B), manubrium (M), umbo (U), incus (I), stapes (S), stapes footplate (SF) and cochlear promontory (C).
Fig. 5
Fig. 5 Acoustic transfer function of the ossicular chain. (a) The axial velocity magnitude and phase φ at the umbo and incus as a function of sound frequency (log scale). Lines: data obtained with broadband sound stimulus; markers: data obtained at discrete frequencies. (b) The data of the umbo (cyan), incus (magenta), and stapes (green) over frequency (linear scale). (c) The axial velocity and phase of the incus and stapes with respect to the umbo.
Fig. 6
Fig. 6 Projection view of the TM vibration at 360 Hz (107 dB SPL), 4.5 kHz (100 dB SPL) and 9.0 kHz (84 dB SPL). The dotted lines show the outline of the manubrium. The phases are scaled relative to the phase of motion of the umbo.
Fig. 7
Fig. 7 Projection view of the ossicular chain at 500 Hz (100 dB SPL), 6.4 kHz (108 dB SPL), and 15 kHz (103 dB SPL). (a-c) Axial velocity maps. (d-e) Phase maps relative to the umbo. (g-i) Phase maps of the manubrium (dashed box in d) relative to the umbo. The range of the colormap is reduced to help visualize phase gradients along the manubrium. Labels: manubrium (M), incus (I), stapes (S), lateral process (LP), umbo (U); * shows the umbo location used as phase reference.
Fig. 8
Fig. 8 Reconstructed ossicular motion at 500 Hz and 15.0 kHz. (a) Motion-exaggerated animations and representative snapshots at φ = 0 and π. See Supplementary Visualization 1 for 500 Hz and Supplementary Visualization 2 for 15 kHz. (b) Schematics of the two rotational modes of ossicular motion. The fundamental mode is predominant at frequencies below 5 kHz. Above 9 kHz, the secondary rotational motion becomes evident.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u z ( z,t,x,y )= λ 0 4π n 0 ϕ( z,t,x,y )
Δϕ( t i ,ROI )=arg( ROI A * ( z, t i1 ,x,y )A( z, t i ,x,y ) )
U z ( f,ROI )=F{ u z (t,ROI) }
σ u = λ 0 4π n 0 1 SNR
σ φ = σ | U | | U |

Metrics