Abstract

The temporal resolution of quantitative phase imaging with Differential Phase Contrast (DPC) is limited by the requirement for multiple illumination-encoded measurements. This inhibits imaging of fast-moving samples. We present a computational approach to model and correct for non-rigid sample motion during the DPC acquisition in order to improve temporal resolution to that of a single-shot method and enable imaging of motion dynamics at the framerate of the sensor. Our method relies on the addition of a simultaneously-acquired color-multiplexed reference signal to enable non-rigid registration of measurements prior to phase retrieval. We show experimental results where we reduce motion blur from fast-moving live biological samples.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative differential phase contrast imaging in an LED array microscope

Lei Tian and Laura Waller
Opt. Express 23(9) 11394-11403 (2015)

Optimal illumination scheme for isotropic quantitative differential phase contrast microscopy

Yao Fan, Jiasong Sun, Qian Chen, Xiangpeng Pan, Lei Tian, and Chao Zuo
Photon. Res. 7(8) 890-904 (2019)

Single-exposure quantitative phase imaging in color-coded LED microscopy

Wonchan Lee, Daeseong Jung, Suho Ryu, and Chulmin Joo
Opt. Express 25(7) 8398-8411 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [Crossref]
  2. M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).
  3. L. Tian and L. Waller, “Quantitative differential phase contrast imaging in an led array microscope,” Opt. express 23, 11394–11403 (2015).
    [Crossref] [PubMed]
  4. R. A. Claus, P. P. Naulleau, A. R. Neureuther, and L. Waller, “Quantitative phase retrieval with arbitrary pupil and illumination,” Opt. express 23, 26672–26682 (2015).
    [Crossref] [PubMed]
  5. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms,” Appl. Opt. 38, 6994–7001 (1999).
    [Crossref]
  6. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
    [Crossref] [PubMed]
  7. N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. communications 49, 6–10 (1984).
    [Crossref]
  8. G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill biophotonics (McGraw-Hill Education, 2011).
  9. L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
    [Crossref]
  10. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part ii,” Physica 9, 974–986 (1942).
    [Crossref]
  11. G. Nomarski, “Nouveau dispositif pour lobservation en contraste de phase differentiel,” J. de Physique et le Radium 16S88 (1955).
  12. D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. microscopy 133, 27–39 (1984).
    [Crossref]
  13. S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. letters 34, 1924–1926 (2009).
    [Crossref]
  14. Z. F. Phillips, R. Eckert, and L. Waller, “Quasi-dome: A self-calibrated high-na led illuminator for fourier ptychography,” in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), (Optical Society of America, 2017), p. IW4E.5.
    [Crossref]
  15. L. Waller, S. S. Kou, C. J. R. Sheppard, and G. Barbastathis, “Phase from chromatic aberrations,” Opt. Express 18, 22817–22825 (2010).
    [Crossref] [PubMed]
  16. B. E. Allman, K. Nugent, and C. Porter, “An optical system for producing differently focused images,” Tech. rep. (2010).
  17. D. Fu, S. Oh, W. Choi, T. Yamauchi, A. Dorn, Z. Yaqoob, R. R. Dasari, and M. S. Feld, “Quantitative dic microscopy using an off-axis self-interference approach,” Opt. Lett. 35, 2370–2372 (2010).
    [Crossref] [PubMed]
  18. Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cdpc),” PLOS ONE 12, 1–14 (2017).
    [Crossref]
  19. W. Lee, D. Jung, S. Ryu, and C. Joo, “Single-exposure quantitative phase imaging in color-coded led microscopy,” Opt. Express 25, 8398–8411 (2017).
    [Crossref] [PubMed]
  20. T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
    [Crossref]
  21. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
    [Crossref]
  22. N. Brock, C. Crandall, and J. Millerd, “Snap-shot imaging polarimeter: Performance and applications,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 9099 (2014), pp. 9099–10003.
  23. P. Sidorenko and O. Cohen, “Single-shot ptychography,” Optica 3, 9–14 (2016).
    [Crossref]
  24. J. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. image analysis 2, 1–36 (1998).
    [Crossref]
  25. G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
    [Crossref]
  26. M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. models image processing 53, 231–239 (1991).
  27. Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
    [Crossref]
  28. B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” (1981), pp. 674–679.
  29. B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. intelligence 17, 185–203 (1981).
    [Crossref]
  30. L. G. Brown, “A survey of image registration techniques,” ACM computing surveys (CSUR) 24, 325–376 (1992).
    [Crossref]
  31. D. A. Fish, A. M. Brinicombe, E. R. Pike, and J. G. Walker, “Blind deconvolution by means of the richardson–lucy algorithm,” J. Opt. Soc. Am. A 12, 58–65 (1995).
    [Crossref]
  32. J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a single image using sparse approximation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009), pp. 104–111.
    [Crossref]
  33. B. Avants, C. Epstein, and J. C. Gee, “Geodesic image normalization in the space of diffeomorphisms,” in 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, (2006), pp. 125–135.
  34. B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
    [Crossref]
  35. J.-P. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s demons,” Med. Image Analysis 2, 243–260 (1998).
    [Crossref]
  36. A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
    [Crossref] [PubMed]
  37. E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
    [Crossref]
  38. M. I. Miller, A. Trouve, and L. Younes, “On the metrics and euler-lagrange equations of computational anatomy,” Annu. Rev. Biomed. Eng. 4, 375–405 (2002).
    [Crossref] [PubMed]
  39. D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. microscopy 135, 275–286 (1984).
    [Crossref]
  40. D. Robinson and P. Milanfar, “Fundamental performance limits in image registration,” IEEE Transactions on Image Process. 13, 1185–1199 (2004).
    [Crossref]
  41. B. E. Bayer, “Color imaging array,” (1976). US Patent 3,971,065.

2017 (3)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cdpc),” PLOS ONE 12, 1–14 (2017).
[Crossref]

W. Lee, D. Jung, S. Ryu, and C. Joo, “Single-exposure quantitative phase imaging in color-coded led microscopy,” Opt. Express 25, 8398–8411 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (3)

2014 (1)

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

2012 (1)

2010 (3)

2009 (2)

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. letters 34, 1924–1926 (2009).
[Crossref]

2008 (1)

B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
[Crossref]

2005 (1)

Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
[Crossref]

2004 (1)

D. Robinson and P. Milanfar, “Fundamental performance limits in image registration,” IEEE Transactions on Image Process. 13, 1185–1199 (2004).
[Crossref]

2002 (1)

M. I. Miller, A. Trouve, and L. Younes, “On the metrics and euler-lagrange equations of computational anatomy,” Annu. Rev. Biomed. Eng. 4, 375–405 (2002).
[Crossref] [PubMed]

1999 (1)

1998 (3)

A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[Crossref]

J. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. image analysis 2, 1–36 (1998).
[Crossref]

J.-P. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s demons,” Med. Image Analysis 2, 243–260 (1998).
[Crossref]

1995 (1)

1992 (1)

L. G. Brown, “A survey of image registration techniques,” ACM computing surveys (CSUR) 24, 325–376 (1992).
[Crossref]

1991 (1)

M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. models image processing 53, 231–239 (1991).

1984 (3)

D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. microscopy 133, 27–39 (1984).
[Crossref]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. communications 49, 6–10 (1984).
[Crossref]

D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. microscopy 135, 275–286 (1984).
[Crossref]

1981 (1)

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. intelligence 17, 185–203 (1981).
[Crossref]

1955 (1)

G. Nomarski, “Nouveau dispositif pour lobservation en contraste de phase differentiel,” J. de Physique et le Radium 16S88 (1955).

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part ii,” Physica 9, 974–986 (1942).
[Crossref]

Allman, B. E.

B. E. Allman, K. Nugent, and C. Porter, “An optical system for producing differently focused images,” Tech. rep. (2010).

Amirbekian, B.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Andersson, J.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Arai, Y.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Ardekani, B. A.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Ashburner, J.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Avants, B.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
[Crossref]

B. Avants, C. Epstein, and J. C. Gee, “Geodesic image normalization in the space of diffeomorphisms,” in 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, (2006), pp. 125–135.

Awatsuji, Y.

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Barbastathis, G.

Barty, A.

Bayer, B. E.

B. E. Bayer, “Color imaging array,” (1976). US Patent 3,971,065.

Bentoutou, Y.

Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
[Crossref]

Bhaduri, B.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).

Bogoni, L.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Bousquet, G.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Brett, M.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Brinicombe, A. M.

Brock, N.

N. Brock, C. Crandall, and J. Millerd, “Snap-shot imaging polarimeter: Performance and applications,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 9099 (2014), pp. 9099–10003.

Brown, L. G.

L. G. Brown, “A survey of image registration techniques,” ACM computing surveys (CSUR) 24, 325–376 (1992).
[Crossref]

Cai, J.-F.

J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a single image using sparse approximation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009), pp. 104–111.
[Crossref]

Chaudhuri, K.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Chef d’hotel, C.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Chen, M.

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cdpc),” PLOS ONE 12, 1–14 (2017).
[Crossref]

L. Tian, Z. Liu, L.-H. Yeh, M. Chen, J. Zhong, and L. Waller, “Computational illumination for high-speed in vitro fourier ptychographic microscopy,” Optica 2, 904–911 (2015).
[Crossref]

Chiang, M.-C.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Choi, W.

Christensen, G. E.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Claus, R. A.

Cohen, O.

Collins, D. L.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Crandall, C.

N. Brock, C. Crandall, and J. Millerd, “Snap-shot imaging polarimeter: Performance and applications,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 9099 (2014), pp. 9099–10003.

Cuche, E.

Dasari, R. R.

Depeursinge, C.

Descoteaux, M.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Dorn, A.

Eckert, R.

Z. F. Phillips, R. Eckert, and L. Waller, “Quasi-dome: A self-calibrated high-na led illuminator for fourier ptychography,” in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), (Optical Society of America, 2017), p. IW4E.5.
[Crossref]

Epstein, C.

B. Avants, C. Epstein, and J. C. Gee, “Geodesic image normalization in the space of diffeomorphisms,” in 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, (2006), pp. 125–135.

Epstein, C. L.

B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
[Crossref]

Feld, M. S.

Fischer, D. R.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Fish, D. A.

Fu, D.

Garyfallidis, E.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Gee, J.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Gee, J. C.

B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
[Crossref]

B. Avants, C. Epstein, and J. C. Gee, “Geodesic image normalization in the space of diffeomorphisms,” in 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, (2006), pp. 125–135.

Geppert, C.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Grossman, M.

B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
[Crossref]

Hamilton, D.

D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. microscopy 133, 27–39 (1984).
[Crossref]

D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. microscopy 135, 275–286 (1984).
[Crossref]

Hellier, P.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Hermosillo, G.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Herrmann, K.-H.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Horn, B. K.

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. intelligence 17, 185–203 (1981).
[Crossref]

Irani, M.

M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. models image processing 53, 231–239 (1991).

Janka, R.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Ji, H.

J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a single image using sparse approximation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009), pp. 104–111.
[Crossref]

Joo, C.

Jung, D.

Kakue, T.

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Kanade, T.

B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” (1981), pp. 674–679.

Kanno, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Klein, A.

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Kou, S. S.

Kpalma, K.

Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
[Crossref]

Krishnan, A.

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

Kubota, T.

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Lee, W.

Liu, C.

J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a single image using sparse approximation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009), pp. 104–111.
[Crossref]

Liu, Z.

Lucas, B. D.

B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” (1981), pp. 674–679.

Maintz, J. A.

J. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. image analysis 2, 1–36 (1998).
[Crossref]

Marquet, P.

Matoba, O.

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Mehta, S. B.

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. letters 34, 1924–1926 (2009).
[Crossref]

Milanfar, P.

D. Robinson and P. Milanfar, “Fundamental performance limits in image registration,” IEEE Transactions on Image Process. 13, 1185–1199 (2004).
[Crossref]

Miller, M. I.

M. I. Miller, A. Trouve, and L. Younes, “On the metrics and euler-lagrange equations of computational anatomy,” Annu. Rev. Biomed. Eng. 4, 375–405 (2002).
[Crossref] [PubMed]

Millerd, J.

N. Brock, C. Crandall, and J. Millerd, “Snap-shot imaging polarimeter: Performance and applications,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 9099 (2014), pp. 9099–10003.

Mir, M.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).

Naulleau, P. P.

Neureuther, A. R.

Nimmo-Smith, I.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Nishio, K.

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Nomarski, G.

G. Nomarski, “Nouveau dispositif pour lobservation en contraste de phase differentiel,” J. de Physique et le Radium 16S88 (1955).

Nugent, K.

B. E. Allman, K. Nugent, and C. Porter, “An optical system for producing differently focused images,” Tech. rep. (2010).

Nugent, K. A.

Oh, S.

Ozawa, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

Paganin, D.

Peleg, S.

M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. models image processing 53, 231–239 (1991).

Pham, H.

Phillips, Z. F.

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cdpc),” PLOS ONE 12, 1–14 (2017).
[Crossref]

Z. F. Phillips, R. Eckert, and L. Waller, “Quasi-dome: A self-calibrated high-na led illuminator for fourier ptychography,” in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), (Optical Society of America, 2017), p. IW4E.5.
[Crossref]

Pike, E. R.

Popescu, G.

B. Bhaduri, H. Pham, M. Mir, and G. Popescu, “Diffraction phase microscopy with white light,” Opt. Lett. 37, 1094–1096 (2012).
[Crossref] [PubMed]

G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill biophotonics (McGraw-Hill Education, 2011).

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).

Porter, C.

B. E. Allman, K. Nugent, and C. Porter, “An optical system for producing differently focused images,” Tech. rep. (2010).

Roberts, A.

Robinson, D.

D. Robinson and P. Milanfar, “Fundamental performance limits in image registration,” IEEE Transactions on Image Process. 13, 1185–1199 (2004).
[Crossref]

Rokem, A.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Ronsin, J.

Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
[Crossref]

Ryu, S.

Schunck, B. G.

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. intelligence 17, 185–203 (1981).
[Crossref]

Shen, Z.

J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a single image using sparse approximation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009), pp. 104–111.
[Crossref]

Sheppard, C.

D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. microscopy 133, 27–39 (1984).
[Crossref]

D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. microscopy 135, 275–286 (1984).
[Crossref]

Sheppard, C. J.

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. letters 34, 1924–1926 (2009).
[Crossref]

Sheppard, C. J. R.

Sidorenko, P.

Streibl, N.

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. communications 49, 6–10 (1984).
[Crossref]

Tahara, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Taleb, N.

Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
[Crossref]

Thirion, J.-P.

J.-P. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s demons,” Med. Image Analysis 2, 243–260 (1998).
[Crossref]

Tian, L.

Trouve, A.

M. I. Miller, A. Trouve, and L. Younes, “On the metrics and euler-lagrange equations of computational anatomy,” Annu. Rev. Biomed. Eng. 4, 375–405 (2002).
[Crossref] [PubMed]

Ura, S.

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

Van Der Walt, S.

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

Viergever, M. A.

J. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. image analysis 2, 1–36 (1998).
[Crossref]

Walker, J. G.

Waller, L.

Wang, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).

Wilson, T.

D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. microscopy 135, 275–286 (1984).
[Crossref]

Yamauchi, T.

Yaqoob, Z.

Yeh, L.-H.

Younes, L.

M. I. Miller, A. Trouve, and L. Younes, “On the metrics and euler-lagrange equations of computational anatomy,” Annu. Rev. Biomed. Eng. 4, 375–405 (2002).
[Crossref] [PubMed]

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part ii,” Physica 9, 974–986 (1942).
[Crossref]

Zhong, J.

Zhu, R.

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).

3D Res. (1)

T. Tahara, T. Kakue, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting color digital holographic microscopy,” 3D Res. 1, 5 (2010).
[Crossref]

ACM computing surveys (CSUR) (1)

L. G. Brown, “A survey of image registration techniques,” ACM computing surveys (CSUR) 24, 325–376 (1992).
[Crossref]

Annu. Rev. Biomed. Eng. (1)

M. I. Miller, A. Trouve, and L. Younes, “On the metrics and euler-lagrange equations of computational anatomy,” Annu. Rev. Biomed. Eng. 4, 375–405 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Artif. intelligence (1)

B. K. Horn and B. G. Schunck, “Determining optical flow,” Artif. intelligence 17, 185–203 (1981).
[Crossref]

CVGIP: Graph. models image processing (1)

M. Irani and S. Peleg, “Improving resolution by image registration,” CVGIP: Graph. models image processing 53, 231–239 (1991).

Front. neuroinformatics (1)

E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem, S. Van Der Walt, M. Descoteaux, and I. Nimmo-Smith, “Dipy, a library for the analysis of diffusion mri data,” Front. neuroinformatics 8, 8 (2014).
[Crossref]

IEEE Transactions on Geosci. Remote. Sens. (1)

Y. Bentoutou, N. Taleb, K. Kpalma, and J. Ronsin, “An automatic image registration for applications in remote sensing,” IEEE Transactions on Geosci. Remote. Sens. 43, 2127–2137 (2005).
[Crossref]

IEEE Transactions on Image Process. (1)

D. Robinson and P. Milanfar, “Fundamental performance limits in image registration,” IEEE Transactions on Image Process. 13, 1185–1199 (2004).
[Crossref]

J. de Physique et le Radium (1)

G. Nomarski, “Nouveau dispositif pour lobservation en contraste de phase differentiel,” J. de Physique et le Radium 16S88 (1955).

J. microscopy (2)

D. Hamilton and C. Sheppard, “Differential phase contrast in scanning optical microscopy,” J. microscopy 133, 27–39 (1984).
[Crossref]

D. Hamilton, C. Sheppard, and T. Wilson, “Improved imaging of phase gradients in scanning optical microscopy,” J. microscopy 135, 275–286 (1984).
[Crossref]

J. Opt. (1)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19, 065705 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Med. image analysis (2)

B. Avants, C. L. Epstein, M. Grossman, and J. C. Gee, “Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain,” Med. image analysis 12, 26–41 (2008).
[Crossref]

J.-P. Thirion, “Image matching as a diffusion process: an analogy with maxwell’s demons,” Med. Image Analysis 2, 243–260 (1998).
[Crossref]

J. A. Maintz and M. A. Viergever, “A survey of medical image registration,” Med. image analysis 2, 1–36 (1998).
[Crossref]

Neuroimage (1)

A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, and et al., “Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration,” Neuroimage 46, 786–802 (2009).
[Crossref] [PubMed]

Opt. communications (1)

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. communications 49, 6–10 (1984).
[Crossref]

Opt. express (2)

Opt. Lett. (3)

Opt. letters (1)

S. B. Mehta and C. J. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. letters 34, 1924–1926 (2009).
[Crossref]

Optica (2)

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects part ii,” Physica 9, 974–986 (1942).
[Crossref]

PLOS ONE (1)

Z. F. Phillips, M. Chen, and L. Waller, “Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cdpc),” PLOS ONE 12, 1–14 (2017).
[Crossref]

Other (10)

M. Mir, B. Bhaduri, R. Wang, R. Zhu, and G. Popescu, Quantitative phase imaging, vol. 57 (ElsevierAmsterdam, The Netherlands, 2012).

G. Popescu, Quantitative Phase Imaging of Cells and Tissues, McGraw-Hill biophotonics (McGraw-Hill Education, 2011).

B. E. Allman, K. Nugent, and C. Porter, “An optical system for producing differently focused images,” Tech. rep. (2010).

Z. F. Phillips, R. Eckert, and L. Waller, “Quasi-dome: A self-calibrated high-na led illuminator for fourier ptychography,” in Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), (Optical Society of America, 2017), p. IW4E.5.
[Crossref]

G. Hermosillo, C. Chef d’hotel, K.-H. Herrmann, G. Bousquet, L. Bogoni, K. Chaudhuri, D. R. Fischer, C. Geppert, R. Janka, A. Krishnan, and et al., “Image registration in medical imaging: applications, methods, and clinical evaluation,” in Multi Modality State-of-the-Art Medical Image Segmentation and Registration Methodologies, (Springer, 2011), pp. 263–313.
[Crossref]

N. Brock, C. Crandall, and J. Millerd, “Snap-shot imaging polarimeter: Performance and applications,” in Proceedings of SPIE - The International Society for Optical Engineering, vol. 9099 (2014), pp. 9099–10003.

B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” (1981), pp. 674–679.

J.-F. Cai, H. Ji, C. Liu, and Z. Shen, “Blind motion deblurring from a single image using sparse approximation,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, (IEEE, 2009), pp. 104–111.
[Crossref]

B. Avants, C. Epstein, and J. C. Gee, “Geodesic image normalization in the space of diffeomorphisms,” in 1st MICCAI Workshop on Mathematical Foundations of Computational Anatomy: Geometrical, Statistical and Registration Methods for Modeling Biological Shape Variability, (2006), pp. 125–135.

B. E. Bayer, “Color imaging array,” (1976). US Patent 3,971,065.

Supplementary Material (1)

NameDescription
» Visualization 1       The motion-resolved absorption and quantitative phase video reconstructions are compared side-by-side with traditional DPC’s absorption and quantitative phase video reconstructions.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Motion-resolved quantitative Differential Phase Contrast (mrDPC). (a) Coded-illumination microscope with RGB LED array as the illumination source. (b) Traditional four-image DPC acquisition with rotating half-circle sources. Because the polystyrene bead is moving, the reconstructed phase suffers from motion blur artifacts. (c) Our method, mrDPC, uses traditional DPC source patterns in the green color channel and an additional constant navigator source pattern (half-circle) in the red channel. The motion-resolved phase reconstructed corrects the effects of the sample’s non-rigid motion.
Fig. 2
Fig. 2 Motion-resolved DPC uses traditional DPC (rotating half-circle) illumination patterns in the green color channel and a constant half-circle navigator pattern in the red color channel. (a) Simulations of the captured DPC images (green box) and the navigator images (red box) for a sample comprised of three polystyrene beads: one stationary, one moving up, and one moving down. (b) Motion is estimated between each time point and the reference time point (T = t2). Estimates are used to correct for motion in the DPC measurements, then (c) a DPC phase reconstruction is performed, eliminating the motion artifacts.
Fig. 3
Fig. 3 Experimental Validation. Recovered quantitative phase images of live Amoeba proteus reconstructed (a) without motion (ground truth), (b) corrupted by sample motion as outlined in Sec. 3, and (c) motion resolved with mrDPC (Sec. 2). Insets highlight blurring of water vacuoles (bright spots) due to sample motion and its correction with mrDPC.
Fig. 4
Fig. 4 Experimental results for motion-resolved DPC with fast-moving live C. elegans. (a) Raw uncorrected DPC intensity images. Insets highlight significant non-rigid sample motion of the head (pink) and body (blue) during the four-image acquisition. (b) Quantitative absorption and phase reconstructions without (left) and with (right) motion correction. (c) Insets highlight spatial distortion and blurring artifacts due to head (pink) and body (blue) motion. Gold arrows indicate correction of head motion in the phase reconstructions. Red arrows indicate correction of internal body feature motion in the absorption reconstructions.
Fig. 5
Fig. 5 ColorDPC avoids motion blur by using a single image capture, but suffers loss of quality. Experimental comparison of phase reconstructions (12.5×, NA=0.25) for a stationary phase target (max 0.8 radians) using (a) traditional DPC, (b) motion-resolved DPC and (c) colorDPC. (d) Radial cross sections of the insets highlight the improved resolution and contrast achieved with traditional DPC (green) and navDPC (purple) over colorDPC (blue).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

max g 0 ( r , t ) , g 1 ( r , t ) 𝒮 ( I 0 ( g 0 ( r , 0.5 ) ) , I 1 ( g 1 ( r , 0.5 ) ) ( v 0 ( r , t ) ) ( v 1 ( r , t ) ) )
subject to , g i ( r , t ) t = v i ( g i ( r , t ) , t ) for each i { 0 , 1 }
g i ( r , t ) = r for each i { 0 , 1 } ,
y ˜ ( u ) = B δ ( u ) + H μ ( u ) μ ˜ ( u ) + H ϕ ( u ) ϕ ˜ ( u ) ,
H μ ( u ) = S ( u ) P ( u ) + P ( u ) S ( u )
H μ ( u ) = i ( S ( u ) P ( u ) P ( u ) S ( u ) ) ,
min μ ˜ , ϕ ˜ j = 0 3 y ˜ ( j ) H μ ( j ) μ ˜ H ϕ ( j ) ϕ ˜ 2 2 + λ μ μ ˜ 2 2 + λ ϕ ϕ ˜ 2 2 .
[ j = 0 3 H ¯ μ ( j ) H μ ( j ) + λ μ I j = 0 3 H ¯ μ ( j ) H ϕ ( j ) j = 0 3 H ¯ ϕ ( j ) H μ ( j ) j = 0 3 H ¯ ϕ ( j ) H ϕ ( j ) + λ ϕ I ] [ μ ˜ ϕ ˜ ] = [ j = 0 3 H ¯ μ ( j ) y ˜ ( j ) j = 0 3 H ¯ ϕ ( j ) y ˜ ( j ) ] ,
[ μ ˜ ϕ ˜ ] = [ j = 0 3 H ¯ μ ( j ) H μ ( j ) + λ μ I j = 0 3 H ¯ μ ( j ) H ϕ ( j ) j = 0 3 H ¯ ϕ ( j ) H μ ( j ) j = 0 3 H ¯ ϕ ( j ) H ϕ ( j ) + λ ϕ I ] [ j = 0 3 H ¯ μ ( j ) y ˜ ( j ) j = 0 3 H ¯ ϕ ( j ) y ˜ ( j ) ] .
[ I nav I dpc ] = C [ I r I g 1 I g 2 ]

Metrics