Abstract

It is challenging to recover local optic axis orientation from samples probed with fiber-based polarization-sensitive optical coherence tomography (PS-OCT). In addition to the effect of preceding tissue layers, the transmission through fiber and system elements, and imperfect system alignment, need to be compensated. Here, we present a method to retrieve the required correction factors from measurements with depth-multiplexed PS-OCT, which accurately measures the full Jones matrix. The correction considers both retardation and diattenuation and is applied in the wavenumber domain, preserving the axial resolution of the system. The robustness of the method is validated by measuring a birefringence phantom with a misaligned system. Imaging ex-vivo lamb trachea and human bronchus demonstrates the utility of reconstructing the local optic axis orientation to assess smooth muscle, which is expected to be useful in the assessment of airway smooth muscle thickness in asthma, amongst other fiber-based applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography

Shuguang Guo, Jun Zhang, Lei Wang, J. Stuart Nelson, and Zhongping Chen
Opt. Lett. 29(17) 2025-2027 (2004)

Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method

Masahiro Yamanari, Shuichi Makita, Violeta Dimitrova Madjarova, Toyohiko Yatagai, and Yoshiaki Yasuno
Opt. Express 14(14) 6502-6515 (2006)

In vivo multifunctional optical coherence tomography at the periphery of the lungs

Fabio Feroldi, Joy Willemse, Valentina Davidoiu, Maximilian G. O. Gräfe, Dirck J. van Iperen, Annika W. M. Goorsenberg, Jouke T. Annema, Johannes M. A. Daniels, Peter I. Bonta, and Johannes F. de Boer
Biomed. Opt. Express 10(6) 3070-3091 (2019)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref] [PubMed]
  3. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  4. C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
    [Crossref] [PubMed]
  5. P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
    [Crossref]
  6. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
    [Crossref] [PubMed]
  7. B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. (Basel) 7(5), 474 (2017).
    [Crossref]
  8. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
    [Crossref]
  9. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
    [Crossref] [PubMed]
  10. T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
    [Crossref]
  11. W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
    [Crossref] [PubMed]
  12. P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
    [Crossref] [PubMed]
  13. E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
    [Crossref] [PubMed]
  14. H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
    [Crossref] [PubMed]
  15. H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
    [Crossref] [PubMed]
  16. M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).
  17. J. Li, F. Feroldi, J. de Lange, J. M. A. Daniels, K. Grünberg, and J. F. de Boer, “Polarization sensitive optical frequency domain imaging system for endobronchial imaging,” Opt. Express 23(3), 3390–3402 (2015).
    [Crossref] [PubMed]
  18. D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
    [Crossref] [PubMed]
  19. C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
    [Crossref] [PubMed]
  20. C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography”,” BiomedOpt. Express 4(3), 460–465 (2013).
    [Crossref]
  21. M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29(20), 2402–2404 (2004).
    [Crossref]
  22. L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
    [Crossref]
  23. Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
    [Crossref] [PubMed]
  24. Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
    [Crossref] [PubMed]
  25. M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).
  26. Y. S. Prakash, “Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease,” Am. J. Physiol. Lung Cell. Mol. Physiol. 311(6), L1113–L1140 (2016).
    [Crossref] [PubMed]
  27. G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
    [Crossref] [PubMed]
  28. M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
    [Crossref] [PubMed]
  29. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
    [Crossref] [PubMed]
  30. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
    [Crossref] [PubMed]
  31. B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
    [Crossref] [PubMed]
  32. M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
    [Crossref] [PubMed]
  33. N. Vansteenkiste, P. Vignolo, and A. Aspect,“Optical reversibility theorems for polarization: application to remote control of polarization,” J. Opt. Soc. Am. A 10(10), 2240–2245 (1993).
    [Crossref]
  34. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  35. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
    [Crossref] [PubMed]
  36. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
    [Crossref] [PubMed]
  37. J. Li and J. F. de Boer, “Coherent signal composition and global phase determination in signal multiplexed polarization sensitive optical coherence tomography,” Opt. Express 22(18), 21382–21392 (2014).
    [Crossref] [PubMed]
  38. Y. Furuhashi, Y. Kimura, and H. Yamane, “Higher order structural analysis of stereocomplex-type poly (lactic acid) melt-spun fibers,” J. Polym. Sci., B, Polym. Phys. 45(2), 218–228 (2007).
    [Crossref]
  39. N. Lippok, M. Villiger, and B. E. Bouma,“Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
    [Crossref] [PubMed]
  40. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
    [Crossref] [PubMed]
  41. R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
    [Crossref] [PubMed]
  42. R. A. Carlton, “Polarized Light Microscopy,” in Pharmaceutical Microscopy, R. A. Carlton, ed. (Springer, 2011), pp. 7–64.
    [Crossref]
  43. M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem.  23(1), 21–50 (1975).
    [Crossref] [PubMed]
  44. T. Tudor, “Vectorial Pauli algebraic approach in polarization optics. I. Device and state operators,” Optik 121(13), 1226–1235 (2010).
    [Crossref]

2018 (1)

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

2017 (7)

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. (Basel) 7(5), 474 (2017).
[Crossref]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref] [PubMed]

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

2016 (7)

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Y. S. Prakash, “Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease,” Am. J. Physiol. Lung Cell. Mol. Physiol. 311(6), L1113–L1140 (2016).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (2)

2012 (4)

2011 (2)

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

2010 (2)

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

T. Tudor, “Vectorial Pauli algebraic approach in polarization optics. I. Device and state operators,” Optik 121(13), 1226–1235 (2010).
[Crossref]

2007 (1)

Y. Furuhashi, Y. Kimura, and H. Yamane, “Higher order structural analysis of stereocomplex-type poly (lactic acid) melt-spun fibers,” J. Polym. Sci., B, Polym. Phys. 45(2), 218–228 (2007).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

2000 (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

1996 (2)

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1975 (1)

M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem.  23(1), 21–50 (1975).
[Crossref] [PubMed]

Abosch, A.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Adams, D. C.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Akkin, T.

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref] [PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Al-Qaisi, M. K.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Arganda-Carreras, I.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Aspect, A.

Austen, W. G.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Azinfar, L.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

Baumann, B.

Black, A. J.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Boas, D.

Bouma, B. E.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma,“Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Braaf, B.

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

Broelsch, G. F.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Cardona, A.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Carlton, R. A.

R. A. Carlton, “Polarized Light Microscopy,” in Pharmaceutical Microscopy, R. A. Carlton, ed. (Springer, 2011), pp. 7–64.
[Crossref]

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, C.-L.

Chen, T. C.

Chin, L.

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Chipman, R. A.

Cho, J. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Choi, W.

Cramer, A.

Daemen, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Daniels, J. M. A.

Darling, C. L.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

de Boer, J. F.

de Groot, M.

de Lange, J.

Diletti, R.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Donovan, G. M.

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

Doradla, P.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Duan, D.

Duan, L.

Dubb, J.

Duker, J. S.

Eliceiri, K.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Elliot, J. G.

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

Es’haghian, S.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Fan, C.

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography”,” BiomedOpt. Express 4(3), 460–465 (2013).
[Crossref]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref] [PubMed]

Feroldi, F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fried, D.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Frise, E.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Fujimoto, J. G.

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Furuhashi, Y.

Y. Furuhashi, Y. Kimura, and H. Yamane, “Higher order structural analysis of stereocomplex-type poly (lactic acid) melt-spun fibers,” J. Polym. Sci., B, Polym. Phys. 45(2), 218–228 (2007).
[Crossref]

Geuns, R.-J. van

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Golberg, A.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Gong, P.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Green, F. H. Y.

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Griffith, J. W.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Grünberg, K.

Hamilos, D. L.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hariri, L. P.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Harms, K. A.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Hartenstein, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hirasuna, K.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Hitzenberger, C. K.

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Holz, J. A.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Hong, Y.-J.

Hsu, D.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Huang, D.

B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source/Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20(9), 10229–10241 (2012).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

James, A. L.

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

Jiao, S.

Karanasos, A.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Kasaragod, D.

Kaynig, V.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Kennedy, B. F.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Khan, S.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Kimura, Y.

Y. Furuhashi, Y. Kimura, and H. Yamane, “Higher order structural analysis of stereocomplex-type poly (lactic acid) melt-spun fibers,” J. Polym. Sci., B, Polym. Phys. 45(2), 218–228 (2007).
[Crossref]

Kirk, R. W.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Kostis, W. J.

Larin, K. V.

Lee, C.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Li, E.

Li, J.

Lian, C. G.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Libby, P.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Liew, Y. M.

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Lim, Y.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Lippok, N.

N. Lippok, M. Villiger, and B. E. Bouma,“Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Lo, W. C.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Longair, M.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Lorenser, D.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Louie, T.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Lu, S.-Y.

Luster, A. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Magnain, C.

Makita, S.

Manesh, S.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

McLaughlin, R. A.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Medoff, B. D.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Miller, A. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Murray, A.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Nadkarni, S. K.

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Netoff, T. I.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Noble, P. B.

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

Oh, W.-Y.

Oldenbourg, R.

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

Otsuka, K.

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Park, B. H.

Pierce, M. C.

Pietzsch, T.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Pircher, M.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Potsaid, B.

Prakash, Y. S.

Y. S. Prakash, “Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease,” Am. J. Physiol. Lung Cell. Mol. Physiol. 311(6), L1113–L1140 (2016).
[Crossref] [PubMed]

Preibisch, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Quirk, B. C.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Ravanfar, M.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

Rea, S.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

Regar, E.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Ren, J.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Rueden, C.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Saalfeld, S.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Sakadžic, S.

Sampson, D. D.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Schindelin, J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmid, B.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Scott Harris, R.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Shishkov, M.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Soest, G. van

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Staninec, M.

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Stigen, T. W.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Stoica, G.

Suter, M. J.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szabari, M. V.

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Tinevez, J.-Y.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Todorovic, M.

Tomancak, P.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Tudor, T.

T. Tudor, “Vectorial Pauli algebraic approach in polarization optics. I. Device and state operators,” Optik 121(13), 1226–1235 (2010).
[Crossref]

Vakoc, B. J.

Vansteenkiste, N.

Vermeer, K. A.

Vienola, K. V.

Vignolo, P.

Villiger, M.

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

N. Lippok, M. Villiger, and B. E. Bouma,“Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

M. Villiger, E. Z. Zhang, S. K. Nadkarni, W.-Y. Oh, B. J. Vakoc, and B. E. Bouma, “Spectral binning for mitigation of polarization mode dispersion artifacts in catheter-based optical frequency domain imaging,” Opt. Express 21(14), 16353–16369 (2013).
[Crossref] [PubMed]

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Wang, H.

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref] [PubMed]

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Wang, L. V.

Wang, R.

Wang, R. K.

Wang, Y.

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref] [PubMed]

Wasala, N. B.

White, D. J.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Wijesinghe, P.

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Wolman, M.

M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem.  23(1), 21–50 (1975).
[Crossref] [PubMed]

Wood, F. M.

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

Yamanari, M.

Yamane, H.

Y. Furuhashi, Y. Kimura, and H. Yamane, “Higher order structural analysis of stereocomplex-type poly (lactic acid) melt-spun fibers,” J. Polym. Sci., B, Polym. Phys. 45(2), 218–228 (2007).
[Crossref]

Yao, G.

Yarmush, M.

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

Yaseen, M. A.

Yasuno, Y.

Zhang, E. Z.

Zhang, K.

Zhu, J.

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Zijlstra, F.

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

Am. J. Physiol. Lung Cell. Mol. Physiol. (1)

Y. S. Prakash, “Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease,” Am. J. Physiol. Lung Cell. Mol. Physiol. 311(6), L1113–L1140 (2016).
[Crossref] [PubMed]

Am. J. Respir. Cell Mol. Biol. (1)

G. M. Donovan, J. G. Elliot, F. H. Y. Green, A. L. James, and P. B. Noble, “Unravelling a clinical paradox - why does bronchial thermoplasty work in asthma?” Am. J. Respir. Cell Mol. Biol. 59(3), 355–362; e-pub ahead of print (2018).
[Crossref] [PubMed]

Appl. Sci. (Basel) (1)

B. Baumann, “Polarization sensitive optical coherence tomography: a review of technology and applications,” Appl. Sci. (Basel) 7(5), 474 (2017).
[Crossref]

Biomed. Opt. Express (7)

J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography - a review [Invited],” Biomed. Opt. Express 8(3), 1838–1873 (2017).
[Crossref] [PubMed]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref] [PubMed]

C.-L. Chen and R. K. Wang, “Optical coherence tomography based angiography [Invited],” Biomed. Opt. Express 8(2), 1056–1082 (2017).
[Crossref] [PubMed]

E. Li, S. Makita, Y.-J. Hong, D. Kasaragod, and Y. Yasuno, “Three-dimensional multi-contrast imaging of in vivo human skin by Jones matrix optical coherence tomography,” Biomed. Opt. Express 8(3), 1290–1305 (2017).
[Crossref] [PubMed]

Y. Wang, K. Zhang, N. B. Wasala, D. Duan, and G. Yao, “Optical polarization tractography revealed significant fiber disarray in skeletal muscles of a mouse model for Duchenne muscular dystrophy,” Biomed. Opt. Express 6(2), 347–352 (2015).
[Crossref] [PubMed]

Y. Wang, M. Ravanfar, K. Zhang, D. Duan, and G. Yao, “Mapping 3D fiber orientation in tissue using dual-angle optical polarization tractography,” Biomed. Opt. Express 7(10), 3855–3870 (2016).
[Crossref] [PubMed]

B. Braaf, K. A. Vermeer, M. de Groot, K. V. Vienola, and J. F. de Boer, “Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions,” Biomed. Opt. Express 5(8), 2736–2758 (2014).
[Crossref] [PubMed]

BiomedOpt. Express (1)

C. Fan and G. Yao, “Imaging myocardial fiber orientation using polarization sensitive optical coherence tomography”,” BiomedOpt. Express 4(3), 460–465 (2013).
[Crossref]

J. Biomed. Opt. (1)

P. Gong, L. Chin, S. Es’haghian, Y. M. Liew, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking,” J. Biomed. Opt. 19(12), 126014 (2014).
[Crossref] [PubMed]

J. Biophotonics (2)

P. Gong, S. Es’haghian, K. A. Harms, A. Murray, S. Rea, B. F. Kennedy, F. M. Wood, D. D. Sampson, and R. A. McLaughlin, “Optical coherence tomography for longitudinal monitoring of vasculature in scars treated with laser fractionation,” J. Biophotonics 9(6), 626–636 (2016).
[Crossref]

L. Azinfar, M. Ravanfar, Y. Wang, K. Zhang, D. Duan, and G. Yao, “High resolution imaging of the fibrous microstructure in bovine common carotid artery using optical polarization tractography,” J. Biophotonics 10(2), 231–241 (2017).
[Crossref]

J. Histochem. Cytochem (1)

M. Wolman, “Polarized light microscopy as a tool of diagnostic pathology,” J. Histochem. Cytochem.  23(1), 21–50 (1975).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

W. C. Lo, M. Villiger, A. Golberg, G. F. Broelsch, S. Khan, C. G. Lian, W. G. Austen, M. Yarmush, and B. E. Bouma, “Longitudinal, 3D imaging of collagen remodeling in murine hypertrophic scars in vivo using polarization-sensitive optical frequency domain imaging,” J. Invest. Dermatol. 136(1), 84–92 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (2)

J. Polym. Sci., B, Polym. Phys. (1)

Y. Furuhashi, Y. Kimura, and H. Yamane, “Higher order structural analysis of stereocomplex-type poly (lactic acid) melt-spun fibers,” J. Polym. Sci., B, Polym. Phys. 45(2), 218–228 (2007).
[Crossref]

Lasers Surg. Med. (1)

T. Louie, C. Lee, D. Hsu, K. Hirasuna, S. Manesh, M. Staninec, C. L. Darling, and D. Fried, “Clinical assessment of early tooth demineralization using polarization sensitive optical coherence tomography,” Lasers Surg. Med. 42(10), 738–745 (2010).
[Crossref]

Nat. Methods (1)

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona, “Fiji: an open-source platform for biological-image analysis,” Nat. Methods 9(7), 676–682 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Nature (1)

R. Oldenbourg, “A new view on polarization microscopy,” Nature 381(6585), 811–812 (1996).
[Crossref] [PubMed]

Neuroimage (1)

H. Wang, A. J. Black, J. Zhu, T. W. Stigen, M. K. Al-Qaisi, T. I. Netoff, A. Abosch, and T. Akkin, “Reconstructing micrometer-scale fiber pathways in the brain: multi-contrast optical coherence tomography based tractography,” Neuroimage 58(4), 984–992 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (7)

N. Lippok, M. Villiger, and B. E. Bouma,“Degree of polarization (uniformity) and depolarization index: unambiguous depolarization contrast for optical coherence tomography,” Opt. Lett. 40(17), 3954–3957 (2015).
[Crossref] [PubMed]

Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional Jones matrix swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37(11), 1958–1960 (2012).
[Crossref] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
[Crossref] [PubMed]

C. Fan and G. Yao, “Mapping local retardance in birefringent samples using polarization sensitive optical coherence tomography,” Opt. Lett. 37(9), 1415–1417 (2012).
[Crossref] [PubMed]

M. Todorović, S. Jiao, L. V. Wang, and G. Stoica, “Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography,” Opt. Lett. 29(20), 2402–2404 (2004).
[Crossref]

H. Wang, T. Akkin, C. Magnain, R. Wang, J. Dubb, W. J. Kostis, M. A. Yaseen, A. Cramer, S. Sakadžić, and D. Boas, “Polarization sensitive optical coherence microscopy for brain imaging,” Opt. Lett. 41(10), 2213–2216 (2016).
[Crossref] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[Crossref]

Optik (1)

T. Tudor, “Vectorial Pauli algebraic approach in polarization optics. I. Device and state operators,” Optik 121(13), 1226–1235 (2010).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A. 97(9), 4541–4550 (2000).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res. 30(6), 431–451 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Villiger, D. Lorenser, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, B. E. Bouma, and D. D. Sampson, “Deep tissue volume imaging of birefringence through fibre-optic needle probes for the delineation of breast tumour,” Sci. Rep. 6(1), 28771 (2016).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

D. C. Adams, L. P. Hariri, A. J. Miller, Y. Wang, J. L. Cho, M. Villiger, J. A. Holz, M. V. Szabari, D. L. Hamilos, R. Scott Harris, J. W. Griffith, B. E. Bouma, A. D. Luster, B. D. Medoff, and M. J. Suter, “Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo,” Sci. Transl. Med. 8(359), 359ra131 (2016).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

M. Villiger, K. Otsuka, A. Karanasos, P. Doradla, J. Ren, N. Lippok, M. Shishkov, J. Daemen, R. Diletti, R.-J. van Geuns, F. Zijlstra, G. van Soest, P. Libby, E. Regar, S. K. Nadkarni, and B. E. Bouma, “Coronary plaque microstructure and composition modify optical polarization: a new endogenous contrast mechanism for optical frequency domain imaging,” JACC: Cardiovasc. Imag., Dec., epub ahead of print (2017).

M. Villiger, B. Braaf, N. Lippok, K. Otsuka, S. K. Nadkarni, and B. E. Bouma, “Optic axis mapping with catheter-based polarization-sensitive optical coherence tomography, ” Optica (accepted).

R. A. Carlton, “Polarized Light Microscopy,” in Pharmaceutical Microscopy, R. A. Carlton, ed. (Springer, 2011), pp. 7–64.
[Crossref]

Supplementary Material (8)

NameDescription
» Visualization 1       3D rendering of the local optic axis orientation of a birefringence phantom with two layers
» Visualization 2       B-scan views of intensity, local phase retardation and local optic axis orientation of the lamb tracheal sample (Region 1A of Sample #1) measured ex vivo.
» Visualization 3       B-scan views of intensity, local phase retardation and local optic axis orientation of the lamb tracheal sample (Region 1B of Sample #1) measured ex vivo.
» Visualization 4       B-scan views of intensity, local phase retardation and local optic axis orientation of the lamb tracheal sample (Sample #2) measured ex vivo.
» Visualization 5       En face views of intensity, local phase retardation and local optic axis orientation of the lamb tracheal sample (Region 1A of Sample #1) measured ex vivo.
» Visualization 6       En face views of intensity, local phase retardation and local optic axis orientation of the lamb tracheal sample (Region 1B of Sample #1) measured ex vivo.
» Visualization 7       En face views of intensity, local phase retardation and local optic axis orientation of the lamb tracheal sample (Sample #2) measured ex vivo.
» Visualization 8       En face views of intensity, local phase retardation and local optic axis orientation of a human airway sample measured ex vivo, with surface flattening in post processing.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Example of symmetrization of full Jones matrix with an ex-vivo lamb trachea sample. (a) Cross-sectional intensity image of the sample. M: Mucosa; ASM: Airway smooth muscle; C: Cartilage. (b) Plots of retardation vectors rcor(p) (circles) and diattenuation vectors dcor(p) (stars) of Jcor(p) and their 3rd order polynomial fits rcor(k) (solid lines) and dcor(k) (dashed lines) across the full spectrum. kc is the central wavenumber. Normalized histogram of the circular (V) component of the retardation vectors (c) and diattenuation vectors (d) of the full Jones matrix before (red, Jtom(z)) and after (blue, J tom ( z )) symmetrization. Images of the retardation vectors of the full Jones matrix before (e) and after symmetrization (f). Images of the diattenuation vectors of the full Jones matrix before (g) and after symmetrization (h). Scale bar: 500 μm (physical length assuming refractive index of 1.40 of biological samples here and throughout this manuscript).
Fig. 2
Fig. 2 Compensation of system polarization distortions. (a) Retardation rcomp(p) (circles) and (b) diattenuation dcomp(p) (stars) components of the compensation matrix Jcomp(p) and their 3rd order polynomial fits across the full spectrum, rcomp(k) and dcomp(k) (solid lines). (c) The average of the squared Euclidean norm of the difference between the Jones matrices of each spectral bin J tom,scaled ( z , p ) and those of the central bin J tom,scaled ( z , k c ) before (red) and after (blue) compensation of system polarization distortions.
Fig. 3
Fig. 3 Generation and spatial filtering of cumulative SO(3). Image of cumulative retardance (a) and (b) diattenuation of the sample decomposed from the general Jones matrix. (c) Image of retardance of SO(3) after spatial averaging. (d) Retardance of the central A-line in the yellow box in (a) before (red) and in (b) after spatial averaging (blue). (e) Retardance of the central A-line in the green box in (a) before (red) and in (b) after spatial averaging (blue).
Fig. 4
Fig. 4 Validation with custom-made birefringence phantoms (Phantom #1 for (a-d), Phantom #2 for (e-i)). En face view of (a) OCT intensity image. Overlays on intensity image, respectively, of: (b) local phase retardation; (c) depolarization index; and (d) local optic axis orientation. (e) & (f) En face views of the local optic axis orientation of the top layer (e) and the bottom layer (f), corresponding to sections indicated by the red and blue dashed lines in (g) and (i), respectively. (g) Cross-sectional view through the green dashed line in (e) and (f). The white region in the upper left corner and the pink region in the upper right corner of (f) show the adhesive tape that fixes the phantom. (h) A frame from a 3D rendering (available online: Visualization 1) of the local optic axis orientation of Phantom #2. (i) Cross-sectional view through the pink dashed line in (e) and (f). Scale bars: 2 mm (physical length).
Fig. 5
Fig. 5 Local optic axis orientations with different system distortions. (a) The intensity of the reference signal in vertical (solid) and horizontal (dash) directions in different measurements. The optic axis orientation overlaid on the intensity images, processed, respectively, with the method in this manuscript (b) and the method in Villiger et al. [25] (c), where the OA orientations of the dashed green boxes are offset to match with their physical orientation. Plots of mean value and standard deviation of the acute (d) and obtuse (e) absolute optic axis orientation in ROIs of (b, red) and (c, blue). Scale bars: 1 mm (physical length).
Fig. 6
Fig. 6 Cross-sectional B-scan views of lamb tracheal samples measured ex vivo. (a), (d), (g) OCT intensity images. Overlay of (b), (e), (h) local phase retardation on intensity images. Overlay of (c), (f), (i) local optic axis orientation on intensity images. (a-c) Region 1A and (df) Region 1B from Sample #1 and (g-i) Sample #2. (Video clips available online: Visualization 2, Visualization 3, and Visualization 4). M: Mucosa; ASM: Airway smooth muscle; C: Cartilage. Scale bar: 500 μm (physical length).
Fig. 7
Fig. 7 En face views of lamb trachea samples measured ex vivo. OCT intensity, local phase retardation and local optic axis for: Regions 1A (a-c) and 1B (d-f) of Sample #1 and Sample #2 (g-i), corresponding to the layers indicated by the dashed yellow lines in Fig. 6, respectively. The dashed cyan lines indicate the locations of the B-scan in Fig. 6. The localized blue region in (b) and small white regions in (e) and (h) are artifacts due to strong reflections from the sample surface. M: Mucosa; ASM: Airway smooth muscle. (Video clips available online: Visualization 5, Visualization 6, and Visualization 7). Scale bar: 500 μm (physical length).
Fig. 8
Fig. 8 Human airway sample measured ex vivo. B-scan view of (a) OCT intensity image, (b) local phase retardation and (c) local optic axis orientation. En face views of (d, g) OCT intensity image, (e, h) local phase retardation and (f, i) local optic axis orientation of the layer approximately 180 μm and 420 μm deep into the sample from the tissue surface, respectively. (Full-depth en face view video clip available online: Visualization 8). (a-c) correspond to the dashed red lines in (d-i). (j) H&E histology image with ASM indicated by arrows. M: Mucosa; ASM: Airway smooth muscle. Small blue regions in (e) are artifacts due to strong reflections from the sample surface. Scale bar: 500 μm (physical length).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

J tot ( k ) = J out ( k ) [ 0 J sam T ( z ) J sam ( z ) exp ( i 2 k z ) d z ] J in ( k ) .
J tom ( z , p ) = F T [ J tot ( k ) w ( k , p ) ] J out ( p ) J sam T ( z ) J sam ( z ) J in ( p ) ,
J cor ( k ) = J in T ( k ) J out 1 ( k ) ,
J tom ( z , p ) = J cor ( p ) J tom ( z , p ) J in T ( p ) J sam T ( z ) J sam ( z ) J in ( p ) .
min J cor ( p ) B-Scan J tom T ( z , p ) J cor T ( p ) J cor ( p ) J tom ( z , p ) 2 2 ,
J t o t ( k ) = J comp T ( k ) J tot ( k ) J comp ( k ) = J in T ( k c ) [ 0 J sam T ( z ) J sam ( z ) exp ( i 2 k z ) d z ] J in ( k c ) ,
min J comp ( p ) B-Scan J comp T ( p ) J tom,scaled ( z , p ) J comp ( p ) J tom,scaled ( z , k c ) 2 2 ,
R st ( n d z ) = Q n Q 2 Q 1 Q 0 .
Q 0 = R rt ( 0 ) Q 1 = D Q 0 D R rt ( d z ) Q 0 T Q 2 = D Q 1 Q 0 D R rt ( 2 d z ) Q 0 T Q 1 T Q n = D R rt [ ( n 1 ) d z ] D R rt ( n d z ) R st T [ ( n 1 ) d z ] ,
J = exp ( i 1 2 n = 1 3 r n σ n + 1 2 n = 1 3 d n σ n ) ,
σ 0 = [ 1 0 0 1 ] , σ 1 = [ 1 0 0 1 ] , σ 2 = [ 0 1 1 0 ] , σ 3 = [ 0 i i 0 ] .
J = I + ( n = 1 3 f n σ n ) + 1 2 ! ( n = 1 3 f n σ n ) 2 + 1 3 ! ( n = 1 3 f n σ n ) 3 + = k = 0 1 k ! ( n = 1 3 f n σ n ) k ,
( n = 1 3 f n σ n ) 2 k = ( n = 1 3 f n 2 ) k c 2 I = c 2 k I , where k = 0 , 1 , 2
J = k = 0 ( n = 1 3 f n σ n ) 2 k ( 2 k ) ! + k = 0 ( n = 1 3 f n σ n ) 2 k + 1 ( 2 k + 1 ) ! = k = 0 c 2 k ( 2 k ) ! I + k = 0 c 2 k + 1 ( 2 k + 1 ) ! ( n = 1 f n c σ n ) = cosh ( c ) I + sinh ( c ) ( n = 1 3 f n c σ n ) .
q n = T r ( σ n J ) ,
d n i r n = q n c sinh ( c ) = q n cosh 1 ( q 0 / 2 ) sinh ( cosh 1 ( q 0 / 2 ) ) .
q n = T r ( σ n J exp ( i arg ( J 11 ) ) + det ( J exp ( i arg ( J 11 ) ) ) ) .

Metrics