Abstract

By integrating a phase-only Spatial Light Modulator (SLM) into the illumination arm of a cylindrical-lens-based Selective Plane Illumination Microscope (SPIM), we have created a versatile system able to deliver high quality images by operating in a wide variety of different imaging modalities. When placed in a Fourier plane, the SLM permits modulation of the microscope’s light-sheet to implement imaging techniques such as structured illumination, tiling, pivoting, autofocusing and pencil beam scanning. Previous publications on dedicated microscope setups have shown how these techniques can deliver improved image quality by rejecting out-of-focus light (structured illumination and pencil beam scanning), reducing shadowing (light-sheet pivoting), and obtaining a more uniform illumination by moving the highest-resolution region of the light-sheet across the imaging Field of View (tiling). Our SLM-SPIM configuration is easy to build and use, and has been designed to allow all of these techniques to be employed on an easily reconfigurable optical setup, compatible with the OpenSPIM design. It offers the possibility to choose between three different light-sheets, in thickness and height, which can be selected according to the characteristics of the sample and the imaging technique to be applied. We demonstrate the flexibility and performance of the system with results obtained by applying a variety of different imaging techniques on samples of fluorescent beads, zebrafish embryos, and optically cleared whole mouse brain samples. Thus our approach allows easy implementation of advanced imaging techniques while retaining the simplicity of a cylindrical-lens-based light-sheet microscope.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles

Omar E. Olarte, Jacob Licea-Rodriguez, Jonathan A. Palero, Emilio J. Gualda, David Artigas, Jürgen Mayer, Jim Swoger, James Sharpe, Israel Rocha-Mendoza, Raul Rangel-Rojo, and Pablo Loza-Alvarez
Biomed. Opt. Express 3(7) 1492-1505 (2012)

Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope

Dean Wilding, Paolo Pozzi, Oleg Soloviev, Gleb Vdovin, and Michel Verhaegen
Opt. Express 24(22) 24896-24906 (2016)

Miniature scanning light-sheet illumination implemented in a conventional microscope

Anjan Bhat Kashekodi, Tobias Meinert, Rebecca Michiels, and Alexander Rohrbach
Biomed. Opt. Express 9(9) 4263-4274 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  2. S. Daetwyler and J. Huisken, “Fast Fluorescence Microscopy with Light Sheets,” Biol. Bull. 231(1), 14–25 (2016).
    [Crossref] [PubMed]
  3. P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
    [Crossref] [PubMed]
  4. J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
    [Crossref] [PubMed]
  5. R. Itoh, J. R. Landry, S. S. Hamann, and O. Solgaard, “Light sheet fluorescence microscopy using high-speed structured and pivoting illumination,” Opt. Lett. 41(21), 5015–5018 (2016).
    [Crossref] [PubMed]
  6. O. E. Olarte, J. Licea-Rodriguez, J. A. Palero, E. J. Gualda, D. Artigas, J. Mayer, J. Swoger, J. Sharpe, I. Rocha-Mendoza, R. Rangel-Rojo, and P. Loza-Alvarez, “Image formation by linear and nonlinear digital scanned light- sheet fluorescence microscopy with Gaussian and Bessel beam profiles,” Biomed. Opt. Express 3(7), 1492–1505 (2012).
    [Crossref] [PubMed]
  7. F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
    [Crossref] [PubMed]
  8. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [Crossref] [PubMed]
  9. T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
    [Crossref] [PubMed]
  10. E. Baumgart and U. Kubitscheck, “Scanned light sheet microscopy with confocal slit detection,” Opt. Express 20(19), 21805–21814 (2012).
    [Crossref] [PubMed]
  11. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
    [Crossref] [PubMed]
  12. T. Breuninger, K. Greger, and E. H. K. Stelzer, “Lateral modulation boosts image quality in single plane illumination fluorescence microscopy,” Opt. Lett. 32(13), 1938–1940 (2007).
    [Crossref] [PubMed]
  13. L. Gao, “Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet,” Opt. Express 23(5), 6102–6111 (2015).
    [Crossref] [PubMed]
  14. D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
    [Crossref] [PubMed]
  15. T. J. Mitchell, “Adaptive beam control and analysis in fluorescence microscopy,” PhD thesis, University of Durham (2015).
  16. R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
    [Crossref]
  17. C. Garbellotto and J. M. Taylor, “SLM-SPIM data http://dx.doi.org/10.5525/gla.researchdata.648 ,” (2018).
  18. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
    [Crossref]
  19. S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
    [Crossref] [PubMed]
  20. M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541-16551 (2013).
    [Crossref] [PubMed]
  21. P. Zammit, A. Harvey, and G. Carles, “Extended depth-of-field imaging and ranging in a snapshot,” Optica 1(4), 209–2016 (2014).
    [Crossref]
  22. M. Aakhte, E. A. Akhlaghi, and H. A. J. Müller, “SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy,” Sci. Rep. 8(1), 10067 (2018).
    [Crossref] [PubMed]
  23. P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
    [Crossref] [PubMed]
  24. K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
    [Crossref] [PubMed]
  25. T. J. Schröter, S. B. Johnson, K. John, and P. A. Santi, “Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection,” Biomed. Opt. Express 3(1), 170–177 (2012).
    [Crossref] [PubMed]
  26. M. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(240), 1905–1907 (1997).
    [Crossref]
  27. M. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1–3), 1–4 (1998).
    [Crossref]
  28. P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
    [Crossref] [PubMed]
  29. B. Judkewitz and C. Yang, “Axial standing-wave illumination frequency-domain imaging (SWIF),” Opt. Express 24(9), 11001–11010 (2014).
    [Crossref]
  30. Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
    [Crossref] [PubMed]
  31. K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE 7468, 74680O (2009).
    [Crossref]
  32. C. Bourgenot, C. D. Saunter, J. M. Taylor, J. M. Girkin, and G. D. Love, “3D adaptive optics in a light sheet microscope,” Opt. Express 20(12), 13252 (2012).
    [Crossref] [PubMed]

2018 (1)

M. Aakhte, E. A. Akhlaghi, and H. A. J. Müller, “SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy,” Sci. Rep. 8(1), 10067 (2018).
[Crossref] [PubMed]

2016 (4)

Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
[Crossref] [PubMed]

R. Itoh, J. R. Landry, S. S. Hamann, and O. Solgaard, “Light sheet fluorescence microscopy using high-speed structured and pivoting illumination,” Opt. Lett. 41(21), 5015–5018 (2016).
[Crossref] [PubMed]

S. Daetwyler and J. Huisken, “Fast Fluorescence Microscopy with Light Sheets,” Biol. Bull. 231(1), 14–25 (2016).
[Crossref] [PubMed]

D. Wilding, P. Pozzi, O. Soloviev, G. Vdovin, and M. Verhaegen, “Adaptive illumination based on direct wavefront sensing in a light-sheet fluorescence microscope,” Opt. Express 24(22), 24896–24906 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (4)

R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
[Crossref]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

P. Zammit, A. Harvey, and G. Carles, “Extended depth-of-field imaging and ranging in a snapshot,” Optica 1(4), 209–2016 (2014).
[Crossref]

B. Judkewitz and C. Yang, “Axial standing-wave illumination frequency-domain imaging (SWIF),” Opt. Express 24(9), 11001–11010 (2014).
[Crossref]

2013 (4)

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541-16551 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (2)

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

2010 (2)

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

2009 (1)

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE 7468, 74680O (2009).
[Crossref]

2008 (1)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

2007 (2)

2004 (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

1998 (1)

M. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1–3), 1–4 (1998).
[Crossref]

1997 (1)

Aakhte, M.

M. Aakhte, E. A. Akhlaghi, and H. A. J. Müller, “SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy,” Sci. Rep. 8(1), 10067 (2018).
[Crossref] [PubMed]

Akhlaghi, E. A.

M. Aakhte, E. A. Akhlaghi, and H. A. J. Müller, “SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy,” Sci. Rep. 8(1), 10067 (2018).
[Crossref] [PubMed]

Andalman, A. S.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Artigas, D.

Bao, Z.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Baumgart, E.

Bernet, S.

M. P. Lee, G. M. Gibson, R. Bowman, S. Bernet, D. B. Phillips, and M. J. Padgett, “A multi-modal stereo microscope based on a spatial light modulator,” Opt. Express 21(14), 16541-16551 (2013).
[Crossref] [PubMed]

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

Bernstein, H.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Bourgenot, C.

Bowman, R.

Breuninger, T.

Carles, G.

Chung, K.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Cižmár, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Coll-Llado, C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Daetwyler, S.

S. Daetwyler and J. Huisken, “Fast Fluorescence Microscopy with Light Sheets,” Biol. Bull. 231(1), 14–25 (2016).
[Crossref] [PubMed]

Dalgarno, H. I. C.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Davidson, T. J.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Deisseroth, K.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Denisin, A. K.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Dholakia, K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Eliceiri, K. W.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Fahrbach, F. O.

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
[Crossref] [PubMed]

Ferrier, D. E. K.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Fu, Q.

Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
[Crossref] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gao, L.

Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
[Crossref] [PubMed]

L. Gao, “Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet,” Opt. Express 23(5), 6102–6111 (2015).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gibson, G. M.

Girkin, J. M.

Gradinaru, V.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Greger, K.

Grosenick, L.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Gualda, E. J.

Gunn-Moore, F. J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Hamann, S. S.

Harvey, A.

Huisken, J.

S. Daetwyler and J. Huisken, “Fast Fluorescence Microscopy with Light Sheets,” Biol. Bull. 231(1), 14–25 (2016).
[Crossref] [PubMed]

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

J. Huisken and D. Y. R. Stainier, “Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM),” Opt. Lett. 32(17), 2608–2610 (2007).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Itoh, R.

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

John, K.

Johnson, S. B.

Judkewitz, B.

B. Judkewitz and C. Yang, “Axial standing-wave illumination frequency-domain imaging (SWIF),” Opt. Express 24(9), 11001–11010 (2014).
[Crossref]

Juškaitis, R.

M. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1–3), 1–4 (1998).
[Crossref]

M. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(240), 1905–1907 (1997).
[Crossref]

Kalyanasundaram, S.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Keller, P. J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Khairy, K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Kim, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

Kim, S. Y.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Kubitscheck, U.

Landry, J. R.

Lee, M. P.

Li, R.

R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
[Crossref]

Licea-Rodriguez, J.

Love, G. D.

Loza-Alvarez, P.

Martin, B. L.

Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
[Crossref] [PubMed]

Mattis, J.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Matus, D. Q.

Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
[Crossref] [PubMed]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

Mayer, J.

Mertz, J.

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Mirzabekov, J. J.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Mitchell, T. J.

T. J. Mitchell, “Adaptive beam control and analysis in fluorescence microscopy,” PhD thesis, University of Durham (2015).

Müller, H. A. J.

M. Aakhte, E. A. Akhlaghi, and H. A. J. Müller, “SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy,” Sci. Rep. 8(1), 10067 (2018).
[Crossref] [PubMed]

Neil, M. A.

M. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1–3), 1–4 (1998).
[Crossref]

M. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(240), 1905–1907 (1997).
[Crossref]

Nylk, J.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Olarte, O. E.

Padgett, M. J.

Pak, S.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Palero, J. A.

Peng, T.

R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
[Crossref]

Peterka, D. S.

Phillips, D. B.

Pitrone, P. G.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Pozzi, P.

Preibisch, S.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Quirin, S.

Ramakrishnan, C.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Rangel-Rojo, R.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

Rocha-Mendoza, I.

Rohrbach, A.

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
[Crossref] [PubMed]

Santella, A.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

Santi, P. A.

Saunter, C. D.

Schindelin, J.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Schmidt, A. D.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

Schröter, T. J.

Sharpe, J.

Solgaard, O.

Soloviev, O.

Stainier, D. Y. R.

Stelzer, E. H. K.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

T. Breuninger, K. Greger, and E. H. K. Stelzer, “Lateral modulation boosts image quality in single plane illumination fluorescence microscopy,” Opt. Lett. 32(13), 1938–1940 (2007).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Stuyvenberg, L.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Swoger, J.

Taylor, J. M.

Toman-cak, P.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Tyson, R. K.

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE 7468, 74680O (2009).
[Crossref]

Vdovin, G.

Verhaegen, M.

Vettenburg, T.

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Walker, K. N.

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE 7468, 74680O (2009).
[Crossref]

Wallace, J.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Weber, M.

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

Wilding, D.

Wilson, T.

M. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1–3), 1–4 (1998).
[Crossref]

M. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(240), 1905–1907 (1997).
[Crossref]

Wittbrodt, J.

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Wu, D.

R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
[Crossref]

Yang, C.

B. Judkewitz and C. Yang, “Axial standing-wave illumination frequency-domain imaging (SWIF),” Opt. Express 24(9), 11001–11010 (2014).
[Crossref]

Yuste, R.

Zalocusky, K. A.

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Zammit, P.

Zhou, X.

R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
[Crossref]

Biol. Bull. (1)

S. Daetwyler and J. Huisken, “Fast Fluorescence Microscopy with Light Sheets,” Biol. Bull. 231(1), 14–25 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

J. Biomed. Opt. (1)

J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
[Crossref] [PubMed]

Laser Photon. Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5(1), 81–101 (2011).
[Crossref]

Nat. Commun. (2)

F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media,” Nat. Commun. 3, 632 (2012).
[Crossref] [PubMed]

Q. Fu, B. L. Martin, D. Q. Matus, and L. Gao, “Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy,” Nat. Commun. 7, 11088 (2016).
[Crossref] [PubMed]

Nat. Methods (4)

P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy, Z. Bao, J. Wittbrodt, and E. H. K. Stelzer, “Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy,” Nat. Methods 7(8), 637–642 (2010).
[Crossref] [PubMed]

P. G. Pitrone, J. Schindelin, L. Stuyvenberg, S. Preibisch, M. Weber, K. W. Eliceiri, J. Huisken, and P. Toman-cak, “OpenSPIM: an open-access light-sheet microscopy platform,” Nat. Methods 10(7), 598 (2013).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

T. Vettenburg, H. I. C. Dalgarno, J. Nylk, C. Coll-Llado, D. E. K. Ferrier, T. Cižmár, F. J. Gunn-Moore, and K. Dholakia, “Light-sheet microscopy using an Airy beam,” Nat. Methods 11(5), 541–544 (2014).
[Crossref] [PubMed]

Nature (1)

K. Chung, J. Wallace, S. Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497(7449), 332 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

M. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153(1–3), 1–4 (1998).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Optica (1)

Proc. SPIE (2)

R. Li, X. Zhou, D. Wu, and T. Peng, “Selective plane illumination microscopy with structured illumination based on spatial light modulators,” Proc. SPIE 8949, 89491S (2014).
[Crossref]

K. N. Walker and R. K. Tyson, “Wavefront correction using a Fourier-based image sharpness metric,” Proc. SPIE 7468, 74680O (2009).
[Crossref]

Sci. Rep. (1)

M. Aakhte, E. A. Akhlaghi, and H. A. J. Müller, “SSPIM: a beam shaping toolbox for structured selective plane illumination microscopy,” Sci. Rep. 8(1), 10067 (2018).
[Crossref] [PubMed]

Science (2)

P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. K. Stelzer, “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Other (2)

C. Garbellotto and J. M. Taylor, “SLM-SPIM data http://dx.doi.org/10.5525/gla.researchdata.648 ,” (2018).

T. J. Mitchell, “Adaptive beam control and analysis in fluorescence microscopy,” PhD thesis, University of Durham (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical scheme of our SLM-SPIM, with a top view of the system in (a) and a side view of its launching arm in (b) (see Table 1 for details of the individual components). Changing the position of the last two lenses before the illumination objective allows us to switch between three different setups, yielding different sheet heights and thicknesses, and changing the conjugation of the SLM with the sample plane. (a) View of the SLM-SPIM from above. The cylindrical lens has no optical power in this plane. A mirror placed before the SLM (bottom right corner) permits adjustment of the vertical position of the light-sheet in the sample plane. A second mirror can easily be inserted after L3 and used to redirect the laser beam to the side (upwards in this figure), onto a second illumination arm, (not included in this scheme) ending in the glycerol chamber. The glycerol illumination arm consists of (see Table 1 for details): L3 (shared with the water-imaging system) ← 160mm→ CL2 ←40mm→ L6 ←100mm → obj3 → glycerol chamber. The glycerol imaging arm is mounted vertically above the glycerol chamber and is composed of a glycerol dipping objective (obj4), a tube lens (L7) and the same camera used for the images in water. (b) Side view of the final part of the SLM-SPIM illumination arm, with three different possible configurations.
Fig. 2
Fig. 2 (a) Pattern displayed on the active area of the SLM to create a sinusoidally modulated light-sheet; the blue circle indicates the footprint of the collimated input beam. (b) Experimental image of a modulated light-sheet obtained with our method, imaged in aqueous Fluorescein dye diluted in water, revealing an interference pattern with a period of ∼10µm (white to white); scale bar: 50 µm. (c) Schematic showing the optical path (distances and sizes not to scale) of the light reflected off the SLM. The two beams follow the same optical path when viewed in the xz plane, forming two light-sheets on the same plane. (d) In the xy plane, the two sheets propagate at different angles, generating an interference pattern in the sample plane.
Fig. 3
Fig. 3 3-phase structured illumination performed using setup 1. (a) Cropped views of the three images, I1,2,3, taken with a modulated light-sheet (period = 20 µm on the sample plane). The sinusoidal pattern for the second and third images is shifted by a phase of 2 3 π and 4 3 π with respect to the first image. (b) Image acquired with a normal, non-modulated light-sheet. (c) Image obtained by combining I1, I2 and I3 using Equation 1. (d) Intensity profile along the same row in images (b) and (c), to visualize the achieved background reduction and improved image contrast (values normalized to the global maximum of the two plotted lines). Scale bars: 50 µm.
Fig. 4
Fig. 4 Tiling technique demonstrated with 0.2 µm fluorescent beads. We acquired eight images of the same plane of beads, each image with the light-sheet focused at a different position (laterally) in the FoV. Left: (a,b,c) Same horizontal stripe taken from the second, fifth and eighth of the eight images taken (only three images shown for sake of clarity): in each image the position of the sheet waist (indicated by the yellow arrowheads) can be recognized by the brightness of the beads and the reduced number of out-of-focus beads. (d) Image obtained tiling the eight images, i.e. retaining only the sharpest vertical stripe taken from each of them. Right: zooms on beads taken from three different lateral positions (1, 2, 3) in the images, with each row showing how the same beads appear in the corresponding image to the left. Each of these zoomed images has been normalized to its own maximum value for clarity. Notice how, looking at one column at a time (i.e. the same sets of beads), as the position of the sheet’s waist gets further away from the position of the beads, the relative amount of light illuminating out-of-focus features increases. The composite tiled image (d) gives the best optical sectioning (most of the light concentrated on in-focus features) throughout the entire FoV. Scale bars: 50 µm.
Fig. 5
Fig. 5 Shadow suppression using the light-sheet pivoting technique. (a) Image of a formalin-preserved Zebrafish embryo heart (4 dpf) acquired with a normal light-sheet, using setup 3. (b) Image obtained by computing the Maximum Intensity Projection (MIP) of a stack of seventeen images, acquired with the light-sheet propagating at different angles, equally spaced within ±8 degrees. (c) Image obtained by averaging the same seventeen images used for (b). (d–f) Zoomed-in views of the dashed line boxes in images (a–c). Each of these images has been normalized to its own maximum value. (g) Intensity profile of the same horizontal line in images (d–f). In order to obtain a reliable ground truth for comparison, in this specific case we selected a horizontal line that was already well-illuminated (not affected by shadows) in the normal light-sheet image (d), to which the profiles taken from (e) and (f) could be compared. This plot shows how the MIP allows to preserve the original image contrast and, with respect to averaging, a more accurate representation of the true intensity profile: notice how averaging (blue dashed line) distorts the relative intensity of the two peaks indicated by the black arrowheads, making the left peak appear as brighter than the one on the right. Intensity values in these plots are normalized to the global maximum of the three plotted lines. Scale bars: 50 µm.
Fig. 6
Fig. 6 Pencil beam scanning technique applied on a cleared whole mouse brain sample, imaged in glycerol. (a) Image acquired with a normal light-sheet. (b) Image generated with the scanning pencil beam technique, using our reconstruction procedure (based on a Maximum Intensity Projection) on a set of 200 raw images, each taken with the horizontal pencil beam focused at a different height in the sample plane. Scale bars: 50 µm. (c,d) Zoomed-in views of the dashed line rectangles in images (a,b), to highlight some of the faint features (left arrowhead) and fine structures (right arrowhead) revealed by the pencil beam scanning technique. Scale bars are here of 20 µm. (e) Cross section of the normalized intensity along the same column in images (a) and (b) (values normalized to the global maximum of the two plotted lines).
Fig. 7
Fig. 7 Autofocusing experiment using sharpness metric of Equation 5 on an ex-vivo 4 dpf Zebrafish embryo’s heart (using setup 1). In this illustration, eighty-one images of the same plane inside the sample were taken using the SLM to move the sheet to different positions with respect to the imaging objective, and the motorized stage to move the sample with the light-sheet (with steps of 0.5 µm, for a total range of 40 µm). (a) and (c) show images taken with the light-sheet in an out-of-focus plane, while (b) is the image identified as the one with best focus according to the sharpness metric (i.e. light-sheet at the correct distance from the imaging objective). (d) Sharpness values, one for each image, with highest value indicating the plane of best focus. Note that in practice a smaller number of images would be taken, and the sharpness interpolated using an appropriate function, to quickly find the optimum focus. Scale bars: 50 µm.

Tables (1)

Tables Icon

Table 1 List of components used (with reference to Fig. 1).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = 2 3 [ (I 1 I 2 ) 2 + ( I 1 I 3 ) 2 + ( I 2 I 3 ) 2 ] 1 / 2 ,
σ N i ( I i I ¯ I i ) 2 C 1 ,
sin ( θ 2 ) = f 1 f 3 f 2 f 4 sin ( θ ) ,
sin ( θ 2 ) = f 1 f 3 f 2 f 4 λ p ,
S = N p | [ I ( x , y ) ] | masked N p | [ I ( x , y ) ] | unmasked ,

Metrics