M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).
J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref]
[PubMed]
A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref]
[PubMed]
M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref]
[PubMed]
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
[Crossref]
[PubMed]
L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref]
[PubMed]
D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref]
[PubMed]
D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref]
[PubMed]
D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref]
[PubMed]
W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
S. Jeong, M. Hermsmeier, S. Osseiran, A. Yamamoto, U. Nagavarapu, K. F. Chan, and C. L. Evans, “Visualization of drug distribution of a topical minocycline gel in human facial skin,” Biomed. Opt. Express 9(7), 3434–3448 (2018).
[Crossref]
[PubMed]
C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref]
[PubMed]
L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref]
[PubMed]
T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
[Crossref]
[PubMed]
J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref]
[PubMed]
L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref]
[PubMed]
M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref]
[PubMed]
A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref]
[PubMed]
J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref]
[PubMed]
Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref]
[PubMed]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).
A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
[Crossref]
[PubMed]
M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref]
[PubMed]
L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref]
[PubMed]
C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
[Crossref]
[PubMed]
M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref]
[PubMed]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref]
[PubMed]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref]
[PubMed]
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref]
[PubMed]
V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref]
[PubMed]
K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]
D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).
M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
[Crossref]
[PubMed]
A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
[Crossref]
[PubMed]
J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref]
[PubMed]
Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref]
[PubMed]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref]
[PubMed]
Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref]
[PubMed]
J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref]
[PubMed]
L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref]
[PubMed]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref]
[PubMed]
R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref]
[PubMed]
C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref]
[PubMed]
W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref]
[PubMed]
C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref]
[PubMed]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
[Crossref]
[PubMed]
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref]
[PubMed]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref]
[PubMed]
W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref]
[PubMed]
J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref]
[PubMed]
K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref]
[PubMed]
E. G. Solon, “Autoradiography techniques and quantification of drug distribution,” Cell Tissue Res. 360(1), 87–107 (2015).
[Crossref]
[PubMed]
E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref]
[PubMed]
E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
[Crossref]
[PubMed]
M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref]
[PubMed]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref]
[PubMed]
E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref]
[PubMed]
W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]
[PubMed]
G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref]
[PubMed]
J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref]
[PubMed]
Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref]
[PubMed]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]
S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref]
[PubMed]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref]
[PubMed]
W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref]
[PubMed]
A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref]
[PubMed]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref]
[PubMed]
R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref]
[PubMed]
J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref]
[PubMed]
C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref]
[PubMed]
C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref]
[PubMed]
Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref]
[PubMed]
S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref]
[PubMed]
R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref]
[PubMed]
Y. Zhang, H. Hou, Y. Zhang, Y. Wang, L. Zhu, M. Dong, and Y. Liu, “Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening,” Biomed. Opt. Express 9(4), 1795–1808 (2018).
[Crossref]
[PubMed]
Y. Zhang, H. Hou, Y. Zhang, Y. Wang, L. Zhu, M. Dong, and Y. Liu, “Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening,” Biomed. Opt. Express 9(4), 1795–1808 (2018).
[Crossref]
[PubMed]
N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]
C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref]
[PubMed]