Abstract

In pharmacokinetic studies of topical drugs, fluorescence microscopy methods can enable the direct visualization and quantification of fluorescent drugs within the skin. One potential limitation of this approach, however, is the strong endogenous fluorescence of skin tissues that makes straightforward identification of specific drug molecules challenging. To study this effect and quantify endogenous skin fluorescence in the context of topical pharmacokinetics, an integrating sphere-based screening tool was designed to collect fluorescence yield data from human skin specimens. Such information could be utilized to select specific donors in the investigation of drug uptake and distribution. Results indicated human facial skin specimens from a group of more than 35 individuals exhibited an at least 6-fold difference in endogenous fluorescence. In visualizing drug distributions, the negative impact of autofluorescence could be exacerbated in cases where there are overlapping spatial distributions or spectral emission profiles between endogenous fluorophores and the exogenous fluorophore of interest. We demonstrated the feasibility of this approach in measuring the range of tissue endogenous fluorescence and selecting specimens for the study of drug pharmacokinetics with fluorescence microscopy.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visualization of drug distribution of a topical minocycline gel in human facial skin

Sinyoung Jeong, Maiko Hermsmeier, Sam Osseiran, Akira Yamamoto, Usha Nagavarapu, Kin F. Chan, and Conor L. Evans
Biomed. Opt. Express 9(7) 3434-3448 (2018)

Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence

Chunqiang Li, Riikka K. Pastila, Costas Pitsillides, Judith M. Runnels, Mehron Puoris’haag, Daniel Côté, and Charles P. Lin
Opt. Express 18(2) 988-999 (2010)

Quantitative two-photon microscopy imaging analysis of human skin to evaluate enhanced transdermal delivery by hybrid-type multi-lamellar nanostructure

Jinhyo Ahn, Kyeong Hu Kim, Kibaek Choe, Joo Hyuck Lim, Seung Ki Lee, Yeon Sook Kim, and Pilhan Kim
Biomed. Opt. Express 9(8) 3974-3982 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Zhang and S. Surapaneni, ADME-Enabling Technologies in Drug Design and Development (John Wiley & Sons, Inc. 2012).
  2. E. G. Solon, “Autoradiography techniques and quantification of drug distribution,” Cell Tissue Res. 360(1), 87–107 (2015).
    [Crossref] [PubMed]
  3. E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
    [Crossref] [PubMed]
  4. V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
    [Crossref] [PubMed]
  5. C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
    [Crossref] [PubMed]
  6. J. Ling, S. D. Weitman, M. A. Miller, R. V. Moore, and A. C. Bovik, “Direct Raman imaging techniques for study of the subcellular distribution of a drug,” Appl. Opt. 41(28), 6006–6017 (2002).
    [Crossref] [PubMed]
  7. C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
    [Crossref] [PubMed]
  8. S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
    [Crossref] [PubMed]
  9. T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
    [Crossref] [PubMed]
  10. G. S. Herron, D. Lac, M. Hermsmeier, X. Chen, S. Y. Huang, N. Yam, A. Yamamoto, U. Nagavarapu, and K. F. Chan, “BPX-01: A Novel Hydrophilic Formulation for Treatment of Acne Vulgaris,” SDEF 11th Annual Women’s and Pediatric Dermatology Seminar, Newport Beach, October 23–24, 2015.
  11. S. Jeong, M. Hermsmeier, S. Osseiran, A. Yamamoto, U. Nagavarapu, K. F. Chan, and C. L. Evans, “Visualization of drug distribution of a topical minocycline gel in human facial skin,” Biomed. Opt. Express 9(7), 3434–3448 (2018).
    [Crossref] [PubMed]
  12. R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
    [Crossref] [PubMed]
  13. M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).
  14. K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
    [Crossref]
  15. A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
    [Crossref] [PubMed]
  16. R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
    [Crossref] [PubMed]
  17. L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
    [Crossref] [PubMed]
  18. D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
    [Crossref] [PubMed]
  19. C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
    [Crossref] [PubMed]
  20. F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
    [Crossref] [PubMed]
  21. R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).
  22. S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
    [Crossref] [PubMed]
  23. J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
    [Crossref] [PubMed]
  24. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  25. Integrating Sphere Theory and Applications, Technical Guide, Labsphere a Halma Company.
  26. B. G. Grant, Field Guide to Radiometry (SPIE Press, 2011).
  27. R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
    [Crossref] [PubMed]
  28. A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
    [Crossref] [PubMed]
  29. N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
    [Crossref]
  30. L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
    [Crossref] [PubMed]
  31. V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
    [Crossref] [PubMed]
  32. U. A. Gamm, C. L. Hoy, F. van Leeuwen-van Zaane, H. J. Sterenborg, S. C. Kanick, D. J. Robinson, and A. Amelink, “Extraction of intrinsic fluorescence from single fiber fluorescence measurements on a turbid medium: experimental validation,” Biomed. Opt. Express 5(6), 1913–1925 (2014).
    [Crossref] [PubMed]
  33. Y. Zhang, H. Hou, Y. Zhang, Y. Wang, L. Zhu, M. Dong, and Y. Liu, “Tissue intrinsic fluorescence recovering by an empirical approach based on the PSO algorithm and its application in type 2 diabetes screening,” Biomed. Opt. Express 9(4), 1795–1808 (2018).
    [Crossref] [PubMed]
  34. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  35. D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
    [Crossref] [PubMed]
  36. Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
    [Crossref] [PubMed]
  37. G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
    [Crossref] [PubMed]
  38. J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
    [Crossref] [PubMed]
  39. W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
    [Crossref] [PubMed]
  40. V. N. Du Le, Z. Nie, J. E. Hayward, T. J. Farrell, and Q. Fang, “Measurements of extrinsic fluorescence in Intralipid and polystyrene microspheres,” Biomed. Opt. Express 5(8), 2726–2735 (2014).
    [Crossref] [PubMed]
  41. E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
    [Crossref] [PubMed]
  42. L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
    [Crossref] [PubMed]
  43. M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
    [Crossref] [PubMed]
  44. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  45. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
    [Crossref] [PubMed]
  46. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  47. M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
    [Crossref] [PubMed]
  48. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]

2018 (2)

2017 (4)

T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
[Crossref] [PubMed]

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

2016 (4)

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
[Crossref] [PubMed]

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

2015 (3)

E. G. Solon, “Autoradiography techniques and quantification of drug distribution,” Cell Tissue Res. 360(1), 87–107 (2015).
[Crossref] [PubMed]

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
[Crossref] [PubMed]

2014 (5)

2012 (1)

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

2011 (3)

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref] [PubMed]

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

2010 (3)

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref] [PubMed]

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

2008 (1)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

2006 (3)

L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref] [PubMed]

V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
[Crossref] [PubMed]

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

2005 (3)

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2004 (1)

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

2003 (1)

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
[Crossref] [PubMed]

2000 (1)

M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref] [PubMed]

1997 (1)

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

1993 (1)

K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]

1992 (1)

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref] [PubMed]

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1988 (1)

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref] [PubMed]

Ahmad, M. S.

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

Amelink, A.

Armoiry, X.

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Bazin, R.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Bos, D. C.

D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref] [PubMed]

Bovik, A. C.

Brakenhoff, G. J.

M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref] [PubMed]

Brehm, G.

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Bückle, R.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Burczynski, F. J.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Cardoso-Palacios, C.

C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
[Crossref] [PubMed]

Chan, K. F.

Chang, C. T.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Chang, K. C.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Chang, Y. L.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Chen, H. C.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Chen, W. Y.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Colonna, A.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Dagnelie, P. C.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Damanhouri, Z. A.

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

Dancik, Y.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Davenport, A.

A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
[Crossref] [PubMed]

de Lange, R. P. J.

L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref] [PubMed]

de Ranitz-Greven, W. L.

D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref] [PubMed]

de Valk, H. W.

D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref] [PubMed]

Deckelbaum, L. I.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Denollet, J.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Dong, M.

Du Le, V. N.

El-Mashtoly, S. F.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Estanislao, R. B.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

Evans, C. L.

S. Jeong, M. Hermsmeier, S. Osseiran, A. Yamamoto, U. Nagavarapu, K. F. Chan, and C. L. Evans, “Visualization of drug distribution of a topical minocycline gel in human facial skin,” Biomed. Opt. Express 9(7), 3434–3448 (2018).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Fang, Q.

Farrell, T. J.

Flament, F.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Fleig, J.

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Fletcher, I. W.

L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref] [PubMed]

Fluhr, J. W.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Gamm, U. A.

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Gerwert, K.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Graaff, R.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

Grice, J. E.

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

Gridelli, C.

T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
[Crossref] [PubMed]

Guyotat, J.

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

Hancewicz, T. M.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

Hayward, J. E.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heeren, R. M. A.

L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref] [PubMed]

Henry, R. M.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Hermsmeier, M.

Heydenreich, J.

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

Holmes, E.

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Holzlechner, G.

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Hou, H.

Hoy, C. L.

Hupple, C. W.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Hutter, H.

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Jansen, E. D.

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

Jeong, S.

Johnson, M. L.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref] [PubMed]

Kaatz, M.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kanick, S. C.

Kaplan, P. D.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

Kawai, M.

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

Khaiat, A.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

Kimhofer, T.

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kollias, N.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]

König, K.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]

Konopka, M.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Koster, A.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Kötting, C.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Kraus, L.

E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
[Crossref] [PubMed]

Kubicek, M.

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Laiho, L. H.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

Laizé, F.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref] [PubMed]

Lanekoff, I.

C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
[Crossref] [PubMed]

Larisegger, S.

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Le Harzic, R.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Lee, A. S.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Leffell, D. J.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref] [PubMed]

Li, J.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Ling, J.

Liou, S. Y.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Liu, B.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Liu, Q.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Liu, X.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Liu, Y.

Losanno, T.

T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Lutgers, H. L.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Masters, D. B.

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

Matousek, P.

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Mavon, A.

V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
[Crossref] [PubMed]

McDonald, L.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

McDonnell, L. A.

L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref] [PubMed]

Medley, G.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Metellus, P.

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

Meyer, H.

K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]

Miller, M. A.

Milstone, L. M.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moes, C. J. M.

Moore, R. V.

Mosig, A.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Mosli, H. H.

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

Muller, M.

M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref] [PubMed]

Nagavarapu, U.

Nie, Z.

Nongnuch, A.

A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
[Crossref] [PubMed]

Nowaczyk, K.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref] [PubMed]

Ohsu, H.

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

Oliver, J.

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Opitz, A. K.

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Osanai, O.

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

Osseiran, S.

Pallud, J.

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

Pang, Y.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Paterson, A. D.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

Pavlov, V.

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

Pelet, S.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

Petersen, D.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Philipsen, P. A.

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

Piot, B.

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Pouwer, F.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Prahl, S. A.

Prideaux, B.

E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref] [PubMed]

Prow, T. W.

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Rajaram, N.

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Raufast, V.

V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
[Crossref] [PubMed]

Reiher, M.

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Reinacher-Schick, A.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Rivera, Z. S.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

Roberts, M. S.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

Robertson, T. A.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Robinson, D. J.

Rück, A.

K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]

Rylander, H. G.

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Sanchez, W. H.

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

Sanchez, W. Y.

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

Sandby-Møller, J.

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

Schalkwijk, C. G.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Schaper, N. C.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Schmitt, M. O.

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Schneckenburger, H.

K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]

Schneider, S.

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Schram, M. T.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Schweitzer, A.

E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref] [PubMed]

Sep, S. J.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Shen, M. Y.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Shriver, L. P.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Slagter, S. N.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

So, P. T. C.

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

Solon, E. G.

E. G. Solon, “Autoradiography techniques and quantification of drug distribution,” Cell Tissue Res. 360(1), 87–107 (2015).
[Crossref] [PubMed]

E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref] [PubMed]

E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
[Crossref] [PubMed]

Squier, J.

M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref] [PubMed]

Stamatas, G. N.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]

Stehouwer, C. D.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Sterenborg, H. J.

Stetz, M. L.

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref] [PubMed]

Stoeckli, M.

E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Suero, M.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

Szmacinski, H.

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref] [PubMed]

Takema, Y.

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

Taraboletti, A.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Thieden, E.

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

Thorling, C. A.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

Towrie, M.

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Tunnell, J. W.

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

van Beek, A. P.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

van der Kallen, C. J.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

van der Klauw, M. M.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

van Dooren, F. E.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

van Gemert, M. J. C.

van Leeuwen-van Zaane, F.

van Marie, J.

van Staveren, H. J.

van Vliet-Ostaptchouk, J. V.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

van Waateringe, R. P.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

Verhey, F. R.

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Walsh, A.

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Walsh, A. J.

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

Wang, C. C.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Wang, G. J.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Wang, Y.

Wang, Y. C.

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weitman, S. D.

Welch, A. J.

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Whiddon, K.

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

Wolffenbuttel, B. H. R.

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

Wulf, H. C.

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Yamamoto, A.

Yorimoto, Y.

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

Yosef, H. K.

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Zaman, R. T.

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

Zhang, Y.

Zhu, L.

Zonios, G.

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]

Zvyagin, A. V.

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

AAPS J. (1)

E. G. Solon, A. Schweitzer, M. Stoeckli, and B. Prideaux, “Autoradiography, MALDI-MS, and SIMS-MS Imaging in Pharmaceutical Discovery and Development,” AAPS J. 12(1), 11–26 (2010).
[Crossref] [PubMed]

Adv. Tech. Stand. Neurosurg. (1)

J. Guyotat, J. Pallud, X. Armoiry, V. Pavlov, and P. Metellus, “5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review,” Adv. Tech. Stand. Neurosurg. 43, 61–90 (2016).
[Crossref] [PubMed]

Analyst (Lond.) (1)

S. F. El-Mashtoly, D. Petersen, H. K. Yosef, A. Mosig, A. Reinacher-Schick, C. Kötting, and K. Gerwert, “Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy,” Analyst (Lond.) 139(5), 1155–1161 (2014).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Surf. Sci. (1)

M. Kubicek, G. Holzlechner, A. K. Opitz, S. Larisegger, H. Hutter, and J. Fleig, “A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance,” Appl. Surf. Sci. 289(100), 407–416 (2014).
[Crossref] [PubMed]

Arch. Dermatol. (1)

D. J. Leffell, M. L. Stetz, L. M. Milstone, and L. I. Deckelbaum, “In vivo fluorescence of human skin. A potential marker of photoaging,” Arch. Dermatol. 124(10), 1514–1518 (1988).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Br. J. Dermatol. (1)

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154(1), 125–132 (2006).
[Crossref] [PubMed]

Br. J. Nutr. (1)

A. Nongnuch and A. Davenport, “The effect of vegetarian diet on skin autofluorescence measurements in haemodialysis patients,” Br. J. Nutr. 113(7), 1040–1043 (2015).
[Crossref] [PubMed]

Cardiovasc. Diabetol. (1)

C. C. Wang, Y. C. Wang, G. J. Wang, M. Y. Shen, Y. L. Chang, S. Y. Liou, H. C. Chen, A. S. Lee, K. C. Chang, W. Y. Chen, and C. T. Chang, “Skin autofluorescence is associated with inappropriate left ventricular mass and diastolic dysfunction in subjects at risk for cardiovascular disease,” Cardiovasc. Diabetol. 16(1), 15 (2017).
[Crossref] [PubMed]

Cell Tissue Res. (1)

E. G. Solon, “Autoradiography techniques and quantification of drug distribution,” Cell Tissue Res. 360(1), 87–107 (2015).
[Crossref] [PubMed]

Depress. Anxiety (1)

F. E. van Dooren, F. Pouwer, C. G. Schalkwijk, S. J. Sep, C. D. Stehouwer, R. M. Henry, P. C. Dagnelie, N. C. Schaper, C. J. van der Kallen, A. Koster, J. Denollet, F. R. Verhey, and M. T. Schram, “Advanced Glycation End Product (AGE) Accumulation in the Skin is Associated with Depression: The Maastricht Study,” Depress. Anxiety 34(1), 59–67 (2017).
[Crossref] [PubMed]

Diabetes Technol. Ther. (1)

D. C. Bos, W. L. de Ranitz-Greven, and H. W. de Valk, “Advanced glycation end products, measured as skin autofluorescence and diabetes complications: a systematic review,” Diabetes Technol. Ther. 13(7), 773–779 (2011).
[Crossref] [PubMed]

Diabetol. Metab. Syndr. (1)

R. P. van Waateringe, S. N. Slagter, A. P. van Beek, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Skin autofluorescence, a non-invasive biomarker for advanced glycation end products, is associated with the metabolic syndrome and its individual components,” Diabetol. Metab. Syndr. 9, 42 (2017).

Eur. J. Clin. Invest. (1)

R. P. van Waateringe, S. N. Slagter, M. M. van der Klauw, J. V. van Vliet-Ostaptchouk, R. Graaff, A. D. Paterson, H. L. Lutgers, and B. H. R. Wolffenbuttel, “Lifestyle and clinical determinants of skin autofluorescence in a population-based cohort study,” Eur. J. Clin. Invest. 46(5), 481–490 (2016).
[Crossref] [PubMed]

Expert Rev. Anticancer Ther. (1)

T. Losanno and C. Gridelli, “Recent advances in targeted advanced lung cancer therapy in the elderly,” Expert Rev. Anticancer Ther. 17(9), 787–797 (2017).
[Crossref] [PubMed]

Int. J. Cosmet. Sci. (1)

V. Raufast and A. Mavon, “Transfollicular delivery of linoleic acid in human scalp skin: permeation study and microautoradiographic analysis,” Int. J. Cosmet. Sci. 28(2), 117–123 (2006).
[Crossref] [PubMed]

J. Am. Soc. Mass Spectrom. (1)

L. A. McDonnell, R. M. A. Heeren, R. P. J. de Lange, and I. W. Fletcher, “Higher sensitivity secondary ion mass spectrometry of biological molecules for high resolution, chemically specific imaging,” J. Am. Soc. Mass Spectrom. 17(9), 1195–1202 (2006).
[Crossref] [PubMed]

J. Anal. Methods Chem. (1)

C. Cardoso-Palacios and I. Lanekoff, “Direct Analysis of Pharmaceutical Drugs Using Nano-DESI MS,” J. Anal. Methods Chem. 2016, 3591908 (2016).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

C. A. Thorling, Y. Dancik, C. W. Hupple, G. Medley, X. Liu, A. V. Zvyagin, T. A. Robertson, F. J. Burczynski, and M. S. Roberts, “Multiphoton microscopy and fluorescence lifetime imaging provide a novel method in studying drug distribution and metabolism in the rat liver in vivo,” J. Biomed. Opt. 16(8), 086013 (2011).
[Crossref] [PubMed]

L. H. Laiho, S. Pelet, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, “Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra,” J. Biomed. Opt. 10(2), 024016 (2005).
[Crossref] [PubMed]

W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 15(4), 046008 (2010).
[Crossref] [PubMed]

J. Dermatol. Sci. (1)

Y. Takema, Y. Yorimoto, H. Ohsu, O. Osanai, and M. Kawai, “Age-related discontinuous changes in the in vivo fluorescence of human facial skin,” J. Dermatol. Sci. 15(1), 55–58 (1997).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

L. McDonald, B. Liu, A. Taraboletti, K. Whiddon, L. P. Shriver, M. Konopka, Q. Liu, and Y. Pang, “Fluorescent flavonoids for endoplasmic reticulum cell imaging,” J. Mater. Chem. B Mater. Biol. Med. 4(48), 7902–7908 (2016).
[Crossref] [PubMed]

J. Microsc. (1)

M. Muller, J. Squier, and G. J. Brakenhoff, “CARS microscopy with folded BoxCARS phasematching,” J. Microsc. 197(2), 150–158 (2000).
[Crossref] [PubMed]

J. Pharmacol. Toxicol. Methods (1)

E. G. Solon and L. Kraus, “Quantitative whole-body autoradiography in the pharmaceutical industry. Survey results on study design, methods, and regulatory compliance,” J. Pharmacol. Toxicol. Methods 46(2), 73–81 (2001).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Lasers Med. Sci. (1)

K. König, H. Meyer, H. Schneckenburger, and A. Rück, “The Study of Endogenous Porphyrins in Human Skin and Their Potential for Photodynamic Therapy by Laser Induced Fluorescence Spectroscopy,” Lasers Med. Sci. 8(2), 127–132 (1993).
[Crossref]

Lasers Surg. Med. (2)

R. T. Zaman, N. Rajaram, A. Walsh, J. Oliver, H. G. Rylander, J. W. Tunnell, A. J. Welch, and A. Mahadevan-Jansen, “Variation of fluorescence in tissue with temperature,” Lasers Surg. Med. 43(1), 36–42 (2011).
[Crossref] [PubMed]

A. J. Walsh, D. B. Masters, E. D. Jansen, A. J. Welch, and A. Mahadevan-Jansen, “The effect of temperature on the autofluorescence of scattering and non-scattering tissue,” Lasers Surg. Med. 44(9), 712–718 (2012).
[Crossref] [PubMed]

Photochem. Photobiol. Sci. (1)

S. Schneider, M. O. Schmitt, G. Brehm, M. Reiher, P. Matousek, and M. Towrie, “Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+.,” Photochem. Photobiol. Sci. 2(11), 1107–1117 (2003).
[Crossref] [PubMed]

Photodermatol. Photoimmunol. Photomed. (1)

J. Sandby-Møller, E. Thieden, P. A. Philipsen, J. Heydenreich, and H. C. Wulf, “Skin autofluorescence as a biological UVR dosimeter,” Photodermatol. Photoimmunol. Photomed. 20(1), 33–40 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, and M. L. Johnson, “Fluorescence lifetime imaging of free and protein-bound NADH,” Proc. Natl. Acad. Sci. U.S.A. 89(4), 1271–1275 (1992).
[Crossref] [PubMed]

Sci. Rep. (1)

M. S. Ahmad, Z. A. Damanhouri, T. Kimhofer, H. H. Mosli, and E. Holmes, “A new gender-specific model for skin autofluorescence risk stratification,” Sci. Rep. 5, 10198 (2015).

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Skin Res. Technol. (1)

R. Bazin, F. Flament, A. Colonna, R. Le Harzic, R. Bückle, B. Piot, F. Laizé, M. Kaatz, K. König, and J. W. Fluhr, “Clinical study on the effects of a cosmetic product on dermal extracellular matrix components using a high-resolution multiphoton tomograph,” Skin Res. Technol. 16(3), 305–310 (2010).
[Crossref] [PubMed]

Vib. Spectrosc. (1)

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28(1), 17–23 (2002).
[Crossref]

Other (4)

Integrating Sphere Theory and Applications, Technical Guide, Labsphere a Halma Company.

B. G. Grant, Field Guide to Radiometry (SPIE Press, 2011).

G. S. Herron, D. Lac, M. Hermsmeier, X. Chen, S. Y. Huang, N. Yam, A. Yamamoto, U. Nagavarapu, and K. F. Chan, “BPX-01: A Novel Hydrophilic Formulation for Treatment of Acne Vulgaris,” SDEF 11th Annual Women’s and Pediatric Dermatology Seminar, Newport Beach, October 23–24, 2015.

D. Zhang and S. Surapaneni, ADME-Enabling Technologies in Drug Design and Development (John Wiley & Sons, Inc. 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Fluorescence emission screening experimental setup. Concurrent image capture of tissue section within the same FOV (same as 386-nm excitation cross-section) was performed with conventional fluorescence microscopy. Lower left inset indicates Intralipid-10% photocurrent measurements for a 7-day period to monitor excitation source stability. PD: Photodetector; BP: Bandpass filter; LP: Longpass filter; BS: Dichroic Beamsplitter; xyz translation stage not shown diagrammatically; 40 × objective lens, 0.65NA.
Fig. 2
Fig. 2 Geometry of autofluorescence collection with an integrating sphere from tissue sample. Dimension of tissue sample in this figure is exaggerated for illustration purpose only, while the remainder of the drawing is to-scale. The ray-tracing in this figure is for illustration purpose only. The integrating sphere transfer function (Φid) value was analytically estimated to be 947 using Eq. (4), and confirmed with a measured value of 969 using a 532-nm diffused source, as indicated in Fig. 4 below.
Fig. 3
Fig. 3 Total fluorescence emission detection geometry. Fluorescence was collected within the angular acceptance as shown at wavelengths above 450 nm (≥ OD4.0 below cut-on). Excitation wavelength is centered at 386 nm with a passband of 27 nm at FWHM (≥ OD6.0 above cut-off) delivered with a 40 × objective lens, 0.65NA. LP: 450-nm longpass filter.
Fig. 4
Fig. 4 Calibration of integrating sphere with a 532-nm diffused source an integrating sphere transfer function (Φi /Φd) value of 969.
Fig. 5
Fig. 5 Fluorescence radiance emission ranges 1.09 mW/cm2.sr to 6.57mW/cm2.sr was measured among specimens from different donors (sample size n = 41 donor n = 36). These quantitative results allow for direct comparison to the qualitative fluorescence intensity among the co-registered images captured during the experiment in Figs. 8, 9, and 10 below.
Fig. 6
Fig. 6 Additional analyses (a) indicate that when grouped into ranges of fluorescence radiance emission (n = 41 samples), the mean autofluorescence in the population was approximately 3.38 mW/cm2.sr, with the population spread deviating from a normal distribution. (b) represent further distribution in a box-and-whisker plot where the population median was 3.10 mW/cm2.sr. Four measurements exist outside the 95% confidence interval.
Fig. 7
Fig. 7 Confirmation that sections with at least 150-μm intervals from previous measured section of the same donor show consistent measurements. *P≤ 0.05 by Student’s T-test.
Fig. 8
Fig. 8 Images of hair follicles from various donors exhibiting increasing autofluorescence (a) D01; 1.20 mW/cm2.sr, (b) D04; 1.69 mW/cm2.sr, (c) D12; 2.73 mW/cm2.sr, (d) D20; 3.15 mW/cm2.sr, (e) D25; 3.58 mW/cm2.sr, (f) D28; 4.07 mW/cm2.sr, (g) D31; 4.73 mW/cm2.sr, (h) D33; 5.78 mW/cm2.sr, and (i) D34; 6.35 mW/cm2.sr. Qualitative increase in fluorescence in these images are in correlation to quantitative measurements of fluorescence in Fig. 5. Autofluorescence from the blue spectrum appeared to dominate, with slight red-channel fluorescence in the epidermis (e). Fluorescence was measured and images captured with fluorescence originating from within the 500-µm circular FOV using a 40 × objective lens. Scale bar represents 50 μm.
Fig. 9
Fig. 9 Images of sebaceous glands from various donors exhibiting increasing autofluorescence (a) D01; 1.20 mW/cm2.sr, (b) D04; 1.69 mW/cm2.sr, (c) D10; 2.60 mW/cm2.sr, (d) D18; 3.10 mW/cm2.sr, (e) D25; 3.58 mW/cm2.sr, (f) D28; 4.07 mW/cm2.sr, (g) D30; 4.60 mW/cm2.sr, (h) D33; 5.78 mW/cm2.sr, and (i) D36; 6.57 mW/cm2.sr. Qualitative increase in fluorescence in these images are in correlation to quantitative measurements of fluorescence in Fig. 5. Autofluorescence from the blue spectrum appeared to dominate, with no observable red fluorescence under the experimental conditions. Fluorescence was measured and images captured with fluorescence originating from within the 500-µm circular FOV using a 40 × objective lens. Scale bar represents 50 μm.
Fig. 10
Fig. 10 Images consisting of hair follicle with adjacent sebaceous glands from various donors exhibiting increasing autofluorescence (a) D01; 1.20 mW/cm2.sr, (b) D17; 3.07 mW/cm2.sr, (c) D31; 4.73 mW/cm2.sr, and (d) D34; 6.35 mW/cm2.sr. Qualitative increase in fluorescence in these images are in correlation to quantitative measurements of fluorescence in Fig. 5. Autofluorescence from the blue spectrum appeared to dominate, with red-channel fluorescence detected in the hair follicles (a,b,c). Fluorescence was measured and images captured with fluorescence originating from within the 500-µm circular FOV using a 40 × objective lens. Scale bar represents 50 μm.
Fig. 11
Fig. 11 Conventional fluorescence microscopy images of tissues from (a) low autofluorescence donor, D06, and (b) high autofluorescence donor, D32, in an ex vivo penetration study of 2.5 × , 8 × , and 25 × daily doses of a 2% topical minocycline gel along with vehicle and untreated controls. * arrows indicate mainly low (blue) autofluorescence of D06, while # arrows indicate mainly high autofluorescence of D32. Left columns in (a) and (b) are raw images, and right columns are segmentation of mainly (red) minocycline fluorescence from 610 to 680 nm. Note that no red fluorescence was detectable in the untreated and vehicle arms of D06, while slight red autofluorescence was noticeable in D32. Yellow dotted line areas in the treated D06 donor tissues indicated perceptible minocycline fluorescence matching the corresponding segmented images to the right. However, in the treated D32 donor tissues, the delivery into the deeper dermal layer, indicated by † arrows, was only perceptible after segmentation of the 610-680 nm signals. 10x objective, scale bar represents 200 μm. Both image sets were captured with the same acquisition parameters.
Fig. 12
Fig. 12 Autofluorescence spectral intensity of 15 donor tissue specimens with TPEF/spectrometer and conventional fluorescence microscopy/integrating sphere measurements. Results from the two data sets were compared using Pearson’s correlation. The analysis indicted fair relative agreement of single- and two-photon excited fluorescence yield (Pearson’s correlation coefficient, r = 0.613, p = 0.015).

Tables (1)

Tables Icon

Table 1 Physical parameters of fluorescence measurement setup. Theoretical estimate based on values in the table below produced an integrating sphere transfer function (Φi /Φd) value of 947.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Φ d = L sph A d Ω
(λ)=  i d d
L sph =  Φ i π. A s ρ [ 1 ρ( 1f ) ] =  Φ i π. A s M
Φ i Φ d = A s A d . 1 M. sin 2 θ d
Φ i = Φ s 2 . r ' 2 0 2π dϕ 0 θ i sin θdθ r ' 2 0 2π dϕ 0 π sinθdθ = Φ s 2 .γ
Φ s Φ d = 2 A s  γ A d . 1 M. sin 2 θ d
Φ s =12635 Φ d

Metrics