Abstract

Vasomotor reactivity, which is important to estimate neurogenic regulation of blood vessels in patients with different pathologies, is still assessed by occlusion plethysmography using sensors contacting the limbs. Recently we proposed a contactless approach for measuring blood flow changes during venous occlusion using imaging photoplethysmography [Kamshilin et al., Sci. Rep. 7, 4642017]. In this work, the response of the vascular system on the occlusion was studied simultaneously by contact air-plethysmography system and remote optical system under illumination by incoherent polarized green light. A high correlation (r > 0.93) between the waveforms measured by both system was observed. Moreover, we found that the response of the optical system on the venous occlusion is uniform at the whole area of the forearm. The new optical technique is more convenient for assessment of the blood flow dynamics because it can be used for measurements in any part of the body. Method of imaging photoplethysmography is very promising for use in equipment intended for evaluation of neurogenic mechanisms of regulation of vascular blood flow.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive in vivo characterization of erythrocyte motion in human retinal capillaries using high-speed adaptive optics near-confocal imaging

Boyu Gu, Xiaolin Wang, Michael D. Twa, Johnny Tam, Christopher A. Girkin, and Yuhua Zhang
Biomed. Opt. Express 9(8) 3653-3677 (2018)

Spectral and spatial dependence of diffuse optical signals in response to peripheral nerve stimulation

Debbie K. Chen, M. Kelley Erb, Yunjie Tong, Yang Yu, Angelo Sassaroli, Peter R. Bergethon, and Sergio Fantini
Biomed. Opt. Express 1(3) 923-942 (2010)

Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation.

P. T. Goedhart, M. Khalilzada, R. Bezemer, J. Merza, and C. Ince
Opt. Express 15(23) 15101-15114 (2007)

References

  • View by:
  • |
  • |
  • |

  1. I. B. Wilkinson and D. J. Webb, “Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications,” Br. J. Clin. Pharmacol. 52(6), 631–646 (2001).
    [Crossref] [PubMed]
  2. M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
    [Crossref] [PubMed]
  3. O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
    [Crossref] [PubMed]
  4. F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
    [Crossref] [PubMed]
  5. S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
    [Crossref] [PubMed]
  6. R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
    [Crossref] [PubMed]
  7. W. A. Marston, “PPG, APG, duplex: which noninvasive tests are most appropriate for the management of patients with chronic venous insufficiency?” Semin. Vasc. Surg. 15(1), 13–20 (2002).
    [Crossref] [PubMed]
  8. T. Y. Abay and P. A. Kyriacou, “Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion,” IEEE Trans. Biomed. Eng. 62(9), 2187–2195 (2015).
    [Crossref] [PubMed]
  9. K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
    [Crossref] [PubMed]
  10. A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
    [Crossref] [PubMed]
  11. B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
    [Crossref] [PubMed]
  12. A. Trumpp, P. L. Bauer, S. Rasche, H. Malberg, and S. Zaunseder, “The value of polarization in camera-based photoplethysmography,” Biomed. Opt. Express 8(6), 2822–2834 (2017).
    [Crossref] [PubMed]
  13. A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
    [Crossref] [PubMed]
  14. M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
    [Crossref] [PubMed]
  15. A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).
    [Crossref] [PubMed]
  16. K. Hamedani, Z. Bahmani, and A. Mohammadian, “Spatio-temporal filtering of thermal video sequences for heart rate estimation,” Expert Syst. Appl. 54, 88–94 (2016).
    [Crossref]
  17. H. E. Tasli, A. Gudi, and M. den Uyl, “Remote PPG based vital sign measurement using adaptive facial regions,” in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 1410–1414.
    [Crossref]
  18. M.-Z. Poh, D. J. McDuff, and R. W. Picard, “Non-contact, automated cardiac pulse measurements using video imaging and blind source separation,” Opt. Express 18(10), 10762–10774 (2010).
    [Crossref] [PubMed]
  19. D. Wedekind, A. Trumpp, F. Andreotti, F. Gaetjen, S. Rasche, K. Matschke, H. Malberg, and S. Zaunseder, “Assessment of source separation techniques to extract vital parameters from videos,” in 2015 23rd European Signal Processing Conference (EUSIPCO) (IEEE, 2015), pp. 434–438.
  20. C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiol. Meas. 26(1), R15–R39 (2005).
    [Crossref] [PubMed]
  21. M. Lewandowska, J. Ruminski, T. Kocejko, and J. Novak, “Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2011), pp. 405–410.
  22. B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
    [Crossref]
  23. D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed. (John Wiley & Sons, 2010).
  24. I. S. Sidorov, M. A. Volynsky, and A. A. Kamshilin, “Influence of polarization filtration on the information readout from pulsating blood vessels,” Biomed. Opt. Express 7(7), 2469–2474 (2016).
    [Crossref] [PubMed]
  25. K. Dohn, J. S. Gravenhorst, and N. V. Jarlov, “Volume recorder usable during functional states,” Rep.Steno.Memo.Hosp. 6, 141–168 (1956).
  26. I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016).
  27. J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
    [Crossref] [PubMed]
  28. M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” J. Appl. Physiol. 91(6), 2431–2441 (2001).
    [Crossref] [PubMed]
  29. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
    [Crossref]
  30. Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
    [Crossref] [PubMed]
  31. L.-G. Lindberg and P. Å. Oberg, “Optical properties of blood in motion,” Opt. Eng. 32(2), 253–257 (1993).
    [Crossref]
  32. A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
    [Crossref] [PubMed]
  33. A. V. Moço, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
    [Crossref] [PubMed]
  34. C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
    [Crossref]
  35. C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation, 2nd ed. (Cambridge University Press, 2012), Chap. 13.
  36. E. Witzleb, “Functions of the vascular system,” in Human Physiology, R. F. Schmidt and G. Thews, eds. (Springer, 1989), pp. 480–542.

2018 (4)

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

A. V. Moço, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref] [PubMed]

C. E. Dunn, B. Lertsakdadet, C. Crouzet, A. Bahani, and B. Choi, “Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and in vivo measurements,” Biomed. Opt. Express 9(9), 4306–4316 (2018).
[Crossref]

2017 (3)

A. Trumpp, P. L. Bauer, S. Rasche, H. Malberg, and S. Zaunseder, “The value of polarization in camera-based photoplethysmography,” Biomed. Opt. Express 8(6), 2822–2834 (2017).
[Crossref] [PubMed]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).
[Crossref] [PubMed]

2016 (4)

K. Hamedani, Z. Bahmani, and A. Mohammadian, “Spatio-temporal filtering of thermal video sequences for heart rate estimation,” Expert Syst. Appl. 54, 88–94 (2016).
[Crossref]

I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016).

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

I. S. Sidorov, M. A. Volynsky, and A. A. Kamshilin, “Influence of polarization filtration on the information readout from pulsating blood vessels,” Biomed. Opt. Express 7(7), 2469–2474 (2016).
[Crossref] [PubMed]

2015 (2)

T. Y. Abay and P. A. Kyriacou, “Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion,” IEEE Trans. Biomed. Eng. 62(9), 2187–2195 (2015).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

2013 (1)

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

2011 (1)

2010 (1)

2007 (2)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

2006 (1)

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

2005 (2)

C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiol. Meas. 26(1), R15–R39 (2005).
[Crossref] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

2004 (1)

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

2002 (1)

W. A. Marston, “PPG, APG, duplex: which noninvasive tests are most appropriate for the management of patients with chronic venous insufficiency?” Semin. Vasc. Surg. 15(1), 13–20 (2002).
[Crossref] [PubMed]

2001 (2)

I. B. Wilkinson and D. J. Webb, “Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications,” Br. J. Clin. Pharmacol. 52(6), 631–646 (2001).
[Crossref] [PubMed]

M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” J. Appl. Physiol. 91(6), 2431–2441 (2001).
[Crossref] [PubMed]

2000 (1)

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

1994 (1)

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

1993 (1)

L.-G. Lindberg and P. Å. Oberg, “Optical properties of blood in motion,” Opt. Eng. 32(2), 253–257 (1993).
[Crossref]

1966 (1)

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

1956 (1)

K. Dohn, J. S. Gravenhorst, and N. V. Jarlov, “Volume recorder usable during functional states,” Rep.Steno.Memo.Hosp. 6, 141–168 (1956).

Abay, T. Y.

T. Y. Abay and P. A. Kyriacou, “Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion,” IEEE Trans. Biomed. Eng. 62(9), 2187–2195 (2015).
[Crossref] [PubMed]

Allen, J.

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

Alnaeb, M. E.

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

Alobaid, N.

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

Amelin, A. V.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

Aoki, Y.

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

Atnip, R. G.

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

Attinà, T.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

Babayan, L.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

Bahani, A.

Bahmani, Z.

K. Hamedani, Z. Bahmani, and A. Mohammadian, “Spatio-temporal filtering of thermal video sequences for heart rate estimation,” Expert Syst. Appl. 54, 88–94 (2016).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Bauer, A.

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

Bauer, P. L.

Bays, R. A.

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

Bolscher, L.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

Brügger, D.

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

Buus, N. H.

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

Cadima, J.

I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016).

Choi, B.

Christ, F.

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

Christensen, K. L.

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

Chung, M.-L.

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

Crouzet, C.

de Haan, G.

A. V. Moço, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref] [PubMed]

den Uyl, M.

H. E. Tasli, A. Gudi, and M. den Uyl, “Remote PPG based vital sign measurement using adaptive facial regions,” in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 1410–1414.
[Crossref]

Denvir, M. A.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

Dietz, N. M.

M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” J. Appl. Physiol. 91(6), 2431–2441 (2001).
[Crossref] [PubMed]

Dohn, K.

K. Dohn, J. S. Gravenhorst, and N. V. Jarlov, “Volume recorder usable during functional states,” Rep.Steno.Memo.Hosp. 6, 141–168 (1956).

Dunn, C. E.

Erofeev, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

Fallow, B. A.

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Fung, Y. C.

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Gamble, J.

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

Gartside, I. B.

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Giniatullin, R.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

Gravenhorst, J. S.

K. Dohn, J. S. Gravenhorst, and N. V. Jarlov, “Volume recorder usable during functional states,” Rep.Steno.Memo.Hosp. 6, 141–168 (1956).

Grossman, M.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

Gudi, A.

H. E. Tasli, A. Gudi, and M. den Uyl, “Remote PPG based vital sign measurement using adaptive facial regions,” in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 1410–1414.
[Crossref]

Gurov, I. P.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

Hamedani, K.

K. Hamedani, Z. Bahmani, and A. Mohammadian, “Spatio-temporal filtering of thermal video sequences for heart rate estimation,” Expert Syst. Appl. 54, 88–94 (2016).
[Crossref]

Hamilton, G.

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

Healy, D. A.

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

Hesse, C. W.

C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiol. Meas. 26(1), R15–R39 (2005).
[Crossref] [PubMed]

Huang, P.-W.

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

Hultsch, E.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

Intaglietta, M.

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

James, C. J.

C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiol. Meas. 26(1), R15–R39 (2005).
[Crossref] [PubMed]

Jarlov, N. V.

K. Dohn, J. S. Gravenhorst, and N. V. Jarlov, “Volume recorder usable during functional states,” Rep.Steno.Memo.Hosp. 6, 141–168 (1956).

Jolliffe, I. T.

I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016).

Joyner, M. J.

M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” J. Appl. Physiol. 91(6), 2431–2441 (2001).
[Crossref] [PubMed]

Kamshilin, A. A.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).
[Crossref] [PubMed]

I. S. Sidorov, M. A. Volynsky, and A. A. Kamshilin, “Influence of polarization filtration on the information readout from pulsating blood vessels,” Biomed. Opt. Express 7(7), 2469–2474 (2016).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
[Crossref] [PubMed]

Khayrutdinova, O.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

Kocejko, T.

M. Lewandowska, J. Ruminski, T. Kocejko, and J. Novak, “Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2011), pp. 405–410.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Kyriacou, P. A.

T. Y. Abay and P. A. Kyriacou, “Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion,” IEEE Trans. Biomed. Eng. 62(9), 2187–2195 (2015).
[Crossref] [PubMed]

Larsen, M. L.

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

Lertsakdadet, B.

Leslie, S. J.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

Lewandowska, M.

M. Lewandowska, J. Ruminski, T. Kocejko, and J. Novak, “Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2011), pp. 405–410.

Lin, C.-H.

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

Lindberg, L.-G.

L.-G. Lindberg and P. Å. Oberg, “Optical properties of blood in motion,” Opt. Eng. 32(2), 253–257 (1993).
[Crossref]

Malberg, H.

Mamontov, O. V.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).
[Crossref] [PubMed]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

Margaryants, N. B.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

Marston, W. A.

W. A. Marston, “PPG, APG, duplex: which noninvasive tests are most appropriate for the management of patients with chronic venous insufficiency?” Semin. Vasc. Surg. 15(1), 13–20 (2002).
[Crossref] [PubMed]

Mathiassen, O. N.

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

McDuff, D. J.

Mikhailidis, D. P.

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

Miridonov, S.

Moço, A. V.

A. V. Moço, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref] [PubMed]

Mohammadian, A.

K. Hamedani, Z. Bahmani, and A. Mohammadian, “Spatio-temporal filtering of thermal video sequences for heart rate estimation,” Expert Syst. Appl. 54, 88–94 (2016).
[Crossref]

Mulvany, M. J.

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

Nakano, K.

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

Neumyer, M.

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

Niklas, M.

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

Nippolainen, E.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

A. A. Kamshilin, S. Miridonov, V. Teplov, R. Saarenheimo, and E. Nippolainen, “Photoplethysmographic imaging of high spatial resolution,” Biomed. Opt. Express 2(4), 996–1006 (2011).
[Crossref] [PubMed]

Nishidate, I.

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

Novak, J.

M. Lewandowska, J. Ruminski, T. Kocejko, and J. Novak, “Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2011), pp. 405–410.

Nurkhametova, D.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

Oberg, P. Å.

L.-G. Lindberg and P. Å. Oberg, “Optical properties of blood in motion,” Opt. Eng. 32(2), 253–257 (1993).
[Crossref]

Olsen, H. W.

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

Picard, R. W.

Podolian, N. P.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

Poh, M.-Z.

Potemkin, A. V.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

Rasche, S.

Romashko, R. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

Ruminski, J.

M. Lewandowska, J. Ruminski, T. Kocejko, and J. Novak, “Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2011), pp. 405–410.

Saarenheimo, R.

Satoh, R.

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

Seifalian, A. M.

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

Shepherd, J. T.

M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” J. Appl. Physiol. 91(6), 2431–2441 (2001).
[Crossref] [PubMed]

Sidorov, I. S.

I. S. Sidorov, M. A. Volynsky, and A. A. Kamshilin, “Influence of polarization filtration on the information readout from pulsating blood vessels,” Biomed. Opt. Express 7(7), 2469–2474 (2016).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

Stuijk, S.

A. V. Moço, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref] [PubMed]

Suzuki, H.

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

Tanaka, H.

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Tarumi, T.

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

Tasli, H. E.

H. E. Tasli, A. Gudi, and M. den Uyl, “Remote PPG based vital sign measurement using adaptive facial regions,” in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 1410–1414.
[Crossref]

Teplov, V.

Thiele, B. L.

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

Trumpp, A.

Tsou, T.-Y.

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

Vasilev, P. V.

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

Volkov, M. V.

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

Volynsky, M. A.

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

I. S. Sidorov, M. A. Volynsky, and A. A. Kamshilin, “Influence of polarization filtration on the information readout from pulsating blood vessels,” Biomed. Opt. Express 7(7), 2469–2474 (2016).
[Crossref] [PubMed]

Webb, D. J.

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

I. B. Wilkinson and D. J. Webb, “Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications,” Br. J. Clin. Pharmacol. 52(6), 631–646 (2001).
[Crossref] [PubMed]

Wilkinson, I. B.

I. B. Wilkinson and D. J. Webb, “Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications,” Br. J. Clin. Pharmacol. 52(6), 631–646 (2001).
[Crossref] [PubMed]

Wu, B.-F.

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

Wu, Y.-L.

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

Zaunseder, S.

Zaytsev, V. V.

A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).
[Crossref] [PubMed]

Zweifach, B. W.

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Acta Physiol. (Oxf.) (1)

O. N. Mathiassen, N. H. Buus, H. W. Olsen, M. L. Larsen, M. J. Mulvany, and K. L. Christensen, “Forearm plethysmography in the assessment of vascular tone and resistance vasculature design: new methodological insights,” Acta Physiol. (Oxf.) 188(2), 91–101 (2006).
[Crossref] [PubMed]

Biomed. Opt. Express (4)

Br. J. Clin. Pharmacol. (1)

I. B. Wilkinson and D. J. Webb, “Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications,” Br. J. Clin. Pharmacol. 52(6), 631–646 (2001).
[Crossref] [PubMed]

Circ. Res. (1)

Y. C. Fung, B. W. Zweifach, and M. Intaglietta, “Elastic environment of the capillary bed,” Circ. Res. 19(2), 441–461 (1966).
[Crossref] [PubMed]

Curr. Vasc. Pharmacol. (1)

M. E. Alnaeb, N. Alobaid, A. M. Seifalian, D. P. Mikhailidis, and G. Hamilton, “Optical techniques in the assessment of peripheral arterial disease,” Curr. Vasc. Pharmacol. 5(1), 53–59 (2007).
[Crossref] [PubMed]

Expert Syst. Appl. (1)

K. Hamedani, Z. Bahmani, and A. Mohammadian, “Spatio-temporal filtering of thermal video sequences for heart rate estimation,” Expert Syst. Appl. 54, 88–94 (2016).
[Crossref]

IEEE Access (1)

B.-F. Wu, P.-W. Huang, C.-H. Lin, M.-L. Chung, T.-Y. Tsou, and Y.-L. Wu, “Motion resistant image-photoplethysmography based on spectral peak tracking algorithm,” IEEE Access 6, 21621–21634 (2018).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

T. Y. Abay and P. A. Kyriacou, “Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion,” IEEE Trans. Biomed. Eng. 62(9), 2187–2195 (2015).
[Crossref] [PubMed]

J. Appl. Physiol. (3)

F. Christ, A. Bauer, D. Brügger, M. Niklas, I. B. Gartside, and J. Gamble, “Description and validation of a novel liquid metal-free device for venous congestion plethysmography,” J. Appl. Physiol. 89(4), 1577–1583 (2000).
[Crossref] [PubMed]

S. J. Leslie, T. Attinà, E. Hultsch, L. Bolscher, M. Grossman, M. A. Denvir, and D. J. Webb, “Comparison of two plethysmography systems in assessment of forearm blood flow,” J. Appl. Physiol. 96(5), 1794–1799 (2004).
[Crossref] [PubMed]

M. J. Joyner, N. M. Dietz, and J. T. Shepherd, “From Belfast to Mayo and beyond: the use and future of plethysmography to study blood flow in human limbs,” J. Appl. Physiol. 91(6), 2431–2441 (2001).
[Crossref] [PubMed]

J. Clin. Monit. Comput. (1)

B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” J. Clin. Monit. Comput. 27(3), 313–317 (2013).
[Crossref] [PubMed]

J. Headache Pain (1)

A. A. Kamshilin, M. A. Volynsky, O. Khayrutdinova, D. Nurkhametova, L. Babayan, A. V. Amelin, O. V. Mamontov, and R. Giniatullin, “Novel capsaicin-induced parameters of microcirculation in migraine patients revealed by imaging photoplethysmography,” J. Headache Pain 19(1), 43 (2018).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys. 38(15), 2543–2555 (2005).
[Crossref]

J. Vasc. Surg. (1)

R. A. Bays, D. A. Healy, R. G. Atnip, M. Neumyer, and B. L. Thiele, “Validation of air plethysmography, photoplethysmography, and duplex ultrasonography in the evaluation of severe venous stasis,” J. Vasc. Surg. 20(5), 721–727 (1994).
[Crossref] [PubMed]

Opt. Eng. (1)

L.-G. Lindberg and P. Å. Oberg, “Optical properties of blood in motion,” Opt. Eng. 32(2), 253–257 (1993).
[Crossref]

Opt. Express (1)

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. (1)

I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent developments,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2065), 20150202 (2016).

Physiol. Meas. (2)

J. Allen, “Photoplethysmography and its application in clinical physiological measurement,” Physiol. Meas. 28(3), R1–R39 (2007).
[Crossref] [PubMed]

C. J. James and C. W. Hesse, “Independent component analysis for biomedical signals,” Physiol. Meas. 26(1), R15–R39 (2005).
[Crossref] [PubMed]

Rep.Steno.Memo.Hosp. (1)

K. Dohn, J. S. Gravenhorst, and N. V. Jarlov, “Volume recorder usable during functional states,” Rep.Steno.Memo.Hosp. 6, 141–168 (1956).

Sci. Rep. (4)

A. V. Moço, S. Stuijk, and G. de Haan, “New insights into the origin of remote PPG signals in visible light and infrared,” Sci. Rep. 8(1), 8501 (2018).
[Crossref] [PubMed]

A. A. Kamshilin, E. Nippolainen, I. S. Sidorov, P. V. Vasilev, N. P. Erofeev, N. P. Podolian, and R. V. Romashko, “A new look at the essence of the imaging photoplethysmography,” Sci. Rep. 5(1), 10494 (2015).
[Crossref] [PubMed]

M. V. Volkov, N. B. Margaryants, A. V. Potemkin, M. A. Volynsky, I. P. Gurov, O. V. Mamontov, and A. A. Kamshilin, “Video capillaroscopy clarifies mechanism of the photoplethysmographic waveform appearance,” Sci. Rep. 7(1), 13298 (2017).
[Crossref] [PubMed]

A. A. Kamshilin, V. V. Zaytsev, and O. V. Mamontov, “Novel contactless approach for assessment of venous occlusion plethysmography by video recordings at the green illumination,” Sci. Rep. 7(1), 464 (2017).
[Crossref] [PubMed]

Semin. Vasc. Surg. (1)

W. A. Marston, “PPG, APG, duplex: which noninvasive tests are most appropriate for the management of patients with chronic venous insufficiency?” Semin. Vasc. Surg. 15(1), 13–20 (2002).
[Crossref] [PubMed]

Sensors (Basel) (1)

K. Nakano, Y. Aoki, R. Satoh, H. Suzuki, and I. Nishidate, “Visualization of venous compliance of superficial veins using non-contact plethysmography based on digital red-green-blue images,” Sensors (Basel) 16(12), 1996 (2016).
[Crossref] [PubMed]

Other (6)

H. E. Tasli, A. Gudi, and M. den Uyl, “Remote PPG based vital sign measurement using adaptive facial regions,” in 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 1410–1414.
[Crossref]

D. S. Watkins, Fundamentals of Matrix Computations, 3rd ed. (John Wiley & Sons, 2010).

M. Lewandowska, J. Ruminski, T. Kocejko, and J. Novak, “Measuring pulse rate with a webcam - A non-contact method for evaluating cardiac activity,” in 2011 Federated Conference on Computer Science and Information Systems (FedCSIS) (IEEE, 2011), pp. 405–410.

D. Wedekind, A. Trumpp, F. Andreotti, F. Gaetjen, S. Rasche, K. Matschke, H. Malberg, and S. Zaunseder, “Assessment of source separation techniques to extract vital parameters from videos,” in 2015 23rd European Signal Processing Conference (EUSIPCO) (IEEE, 2015), pp. 434–438.

C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation, 2nd ed. (Cambridge University Press, 2012), Chap. 13.

E. Witzleb, “Functions of the vascular system,” in Human Physiology, R. F. Schmidt and G. Thews, eds. (Springer, 1989), pp. 480–542.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Layout of the measuring setup for simultaneous recording of the vascular system reaction on the venous occlusion by IPPG and APG systems: (1) Digital cameras, (2) Illuminating green LEDs, (3) Film polarizers, (4) Cross-polarized analyzer, (5) Inflating cuff, (6) Measuring cuff of the Dohn plethysmograph; (a), (b), (c), and (d) are indexes of the video cameras.
Fig. 2
Fig. 2 Images of a subject’s forearm from four digital cameras: (a) the radial side viewed by the top camera, (b) the ulnar side viewed by the bottom camera, (c) and (d) the palmar and dorsal sides viewed by the right and left cameras, respectively. The measuring air-cuff of APG system and the hand support are marked by (1) and (2), respectively. Blue points show the random choice of 2048 samples in each view of the forearm skin.
Fig. 3
Fig. 3 Comparison of IPPG and APG waveforms in response to triple venous occlusion. (a) Two largest principal components calculated by SVD from the matrix S of video-signals from all 4 cameras. First and second PC are shown by blue and red curves, respectively. (b) Signal from the air-cuff plethysmography (black curve). Green and red arrows show the beginning and end of each event of venous occlusion.
Fig. 4
Fig. 4 RMS amplitudes of PCs from 2nd to 8th normalized by RMS amplitude of 1st PC obtained from 14 statistically independent measurements of the response on triple venous occlusion. Zero dB corresponds to the RMS of the first PC. Red horizontal lines, blue boxes, and whiskers show the mean, its standard deviation, and extreme values, respectively of the data for each PC order.
Fig. 5
Fig. 5 Spatial distribution of the amplitude of the light intensity variations in time corresponding to the first PC. The radial, ulnar, palmar, and dorsal sides of the forearm are shown in panels (a), (b), (c), and (d), respectively. The color scale on the right shows the amplitude in pixel values. Red-yellow colors are associated with the positive sign for in-phase modulations with the first PC, whereas blue-cyan colors represent the negative sign or counter-phase modulation.
Fig. 6
Fig. 6 Temporal evolution of the signals from individual cameras. (a) First PCs calculated from each camera, and (b) spatially averaged signals over the selected ROIs. Yellow, magenta, blue, and brown colors correspond to the signals from cameras aimed on radial, ulnar, palmar and dorsal sides of the forearm, respectively.
Fig. 7
Fig. 7 Normalized mean amplitude of the light intensity modulation caused by triple venous occlusion as a function of the forearm’s side. Distribution of the amplitude is presented as the mean (red lines), standard deviation (boxes), and extreme values (whiskers) measured in 14 experiments for 7 subjects. Labels at the X-axis show the part of forearm viewed by a camera.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s ij =s( t i , r j ).
S=VD U T ,
V T V=I    and     U T U=I,
s( t i , r j )= N f k v ik R k ( r j ),
R k ( r j )= 1 N f i=1 N f v ik s( t i , r j ).

Metrics