Abstract

Propagation-based phase-contrast computed tomography has become a valuable tool for visualization of three-dimensional biological samples, due to its high contrast between materials with similar attenuation properties. However, one of the most-widely used phase-retrieval algorithms imposes a homogeneity assumption onto the sample, which leads to artifacts for numerous applications where this assumption is violated. Prominent examples are biological samples with highly-absorbing implants. Using synchrotron radiation, we demonstrate by the example of a guinea pig inner ear with a cochlear implant electrode, how a recently developed model-based iterative algorithm for propagation-based phase-contrast computed tomography yields distinct benefits for such a task. We find that the model-based approach improves the overall image quality, removes the detrimental influence of the implant and accurately visualizes the cochlea.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of quantitative multi-material phase-retrieval algorithms in propagation-based phase-contrast X-ray tomography

Ilian Häggmark, William Vågberg, Hans M. Hertz, and Anna Burvall
Opt. Express 25(26) 33543-33558 (2017)

Soft tissue 3D imaging in the lab through optimised propagation-based phase contrast computed tomography

Berit Zeller-Plumhoff, Joshua L. Mead, Deck Tan, Tiina Roose, Geraldine F. Clough, Richard P. Boardman, and Philipp Schneider
Opt. Express 25(26) 33451-33468 (2017)

Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography

Masih Nilchian, Zhentian Wang, Thomas Thuering, Michael Unser, and Marco Stampanoni
Opt. Express 23(8) 10631-10642 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1 (2013).
    [Crossref]
  2. S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
    [Crossref] [PubMed]
  3. M. Endrizzi, “X-ray phase-contrast imaging,” Nucl. Instr. Meth. Phys. Res. A 878, 88–98 (2018).
  4. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [Crossref]
  5. P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
    [Crossref]
  6. A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011).
    [Crossref] [PubMed]
  7. A. V. Bronnikov, “Reconstruction formulas in phase-contrast tomography,” Opt. Commun. 171, 239–244 (1999).
    [Crossref]
  8. D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
    [Crossref] [PubMed]
  9. R. A. Lewis, “Medical phase contrast X-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
    [Crossref] [PubMed]
  10. M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18, 6423–6436 (2010).
    [Crossref] [PubMed]
  11. M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
    [Crossref] [PubMed]
  12. I. Häggmark, W. Vågberg, H. M. Hertz, and A. Burvall, “Comparison of quantitative multi-material phase-retrieval algorithms in propagation-based phase-contrast X-ray tomography,” Opt. Express 25, 33543–33558 (2017).
    [Crossref]
  13. M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, “X-ray in-line phase tomography of multimaterial objects,” Opt. Lett. 37, 2151–2153 (2012).
    [Crossref] [PubMed]
  14. M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
    [Crossref]
  15. L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
    [Crossref]
  16. G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
    [Crossref] [PubMed]
  17. B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
    [Crossref]
  18. J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
    [Crossref]
  19. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [Crossref]
  20. D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, 2006).
    [Crossref]
  21. J. A. Fessler, “Statistical image reconstruction methods for transmission tomography,” in “Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis,” J. M. Fitzpatrick and M. Sonka, eds. (SPIE Press, 2000), pp. 1–70.
  22. S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
    [Crossref]
  23. S. Tilley, J. H. Siewerdsen, and J. W. Stayman, “Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise,” Phys. Med. Biol. 61, 296–319 (2016).
    [Crossref]
  24. P. J. Huber, “Robust statistics,” in “International Encyclopedia of Statistical Science” (Springer, 2011), pp. 1248–1251.
    [Crossref]
  25. F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
    [Crossref]
  26. S. Irvine, R. Mokso, P. Modregger, Z. Wang, F. Marone, and M. Stampanoni, “Simple merging technique for improving resolution in qualitative single image phase contrast tomography,” Opt. Express 22, 27257–27269 (2014).
    [Crossref] [PubMed]
  27. J. Nocedal, “Updating quasi-newton matrices with limited storage,” Math. Comput. 35, 773–782 (1980).
    [Crossref]
  28. F. E. Boas and D. Fleischmann, “Evaluation of two iterative techniques for reducing metal artifacts in computed tomography,” Radiology 259, 894–902 (2011).
    [Crossref] [PubMed]
  29. B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
    [Crossref]
  30. J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
    [Crossref]
  31. J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
    [Crossref]
  32. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  33. E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Medicine & Biol. 53, 4777 (2008).
    [Crossref]
  34. E. Y. Sidky, M. A. Anastasio, and X. Pan, “Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography,” Opt. Express 18, 10404–10422 (2010).
    [Crossref] [PubMed]
  35. F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
    [Crossref]
  36. P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
    [Crossref] [PubMed]
  37. J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
    [Crossref] [PubMed]
  38. A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
    [Crossref]

2018 (4)

M. Endrizzi, “X-ray phase-contrast imaging,” Nucl. Instr. Meth. Phys. Res. A 878, 88–98 (2018).

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
[Crossref]

2017 (2)

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

I. Häggmark, W. Vågberg, H. M. Hertz, and A. Burvall, “Comparison of quantitative multi-material phase-retrieval algorithms in propagation-based phase-contrast X-ray tomography,” Opt. Express 25, 33543–33558 (2017).
[Crossref]

2016 (2)

S. Tilley, J. H. Siewerdsen, and J. W. Stayman, “Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise,” Phys. Med. Biol. 61, 296–319 (2016).
[Crossref]

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

2014 (5)

S. Irvine, R. Mokso, P. Modregger, Z. Wang, F. Marone, and M. Stampanoni, “Simple merging technique for improving resolution in qualitative single image phase contrast tomography,” Opt. Express 22, 27257–27269 (2014).
[Crossref] [PubMed]

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

2013 (4)

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1 (2013).
[Crossref]

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

A. Burvall, U. Lundström, P. A. C. Takman, D. H. Larsson, and H. M. Hertz, “Phase retrieval in X-ray phase-contrast imaging suitable for tomography,” Opt. Express 19, 10359–10376 (2011).
[Crossref] [PubMed]

F. E. Boas and D. Fleischmann, “Evaluation of two iterative techniques for reducing metal artifacts in computed tomography,” Radiology 259, 894–902 (2011).
[Crossref] [PubMed]

2010 (2)

2008 (2)

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Medicine & Biol. 53, 4777 (2008).
[Crossref]

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

2005 (1)

F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
[Crossref]

2004 (1)

R. A. Lewis, “Medical phase contrast X-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
[Crossref] [PubMed]

2002 (1)

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

1999 (2)

A. V. Bronnikov, “Reconstruction formulas in phase-contrast tomography,” Opt. Commun. 171, 239–244 (1999).
[Crossref]

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

1996 (1)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

1983 (1)

1980 (1)

J. Nocedal, “Updating quasi-newton matrices with limited storage,” Math. Comput. 35, 773–782 (1980).
[Crossref]

Anastasio, M. A.

Barrett, R.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Baruchel, J.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Beckmann, F.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Beekman, F. J.

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

Beltran, M. A.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18, 6423–6436 (2010).
[Crossref] [PubMed]

Bidola, P.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

Boas, F. E.

F. E. Boas and D. Fleischmann, “Evaluation of two iterative techniques for reducing metal artifacts in computed tomography,” Radiology 259, 894–902 (2011).
[Crossref] [PubMed]

Bravin, A.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1 (2013).
[Crossref]

Brehler, M.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

Bronnikov, A. V.

A. V. Bronnikov, “Reconstruction formulas in phase-contrast tomography,” Opt. Commun. 171, 239–244 (1999).
[Crossref]

Buchman, C. A.

J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
[Crossref]

Burmester, H.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Burvall, A.

Cao, Q.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

Carey, J. P.

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Carlson, M. L.

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Cloetens, P.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, “X-ray in-line phase tomography of multimaterial objects,” Opt. Lett. 37, 2151–2153 (2012).
[Crossref] [PubMed]

F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
[Crossref]

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Coan, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1 (2013).
[Crossref]

Dang, H.

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Dawant, B.

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Dawant, B. M.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

De Man, B.

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

Dedmon, M. M.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

Dierolf, M.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

Dietrich, M. S.

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Dillon, W. P.

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

Dobritz, M.

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Dose, T.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Dupont, P.

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

Durakovic, N.

J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
[Crossref]

Endrizzi, M.

M. Endrizzi, “X-ray phase-contrast imaging,” Nucl. Instr. Meth. Phys. Res. A 878, 88–98 (2018).

Fehringer, A.

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

Fessler, J. A.

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

J. A. Fessler, “Statistical image reconstruction methods for transmission tomography,” in “Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis,” J. M. Fitzpatrick and M. Sonka, eds. (SPIE Press, 2000), pp. 1–70.

Fiebich, M.

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Fingerle, A. A.

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Fleischmann, D.

F. E. Boas and D. Fleischmann, “Evaluation of two iterative techniques for reducing metal artifacts in computed tomography,” Radiology 259, 894–902 (2011).
[Crossref] [PubMed]

Fouras, A.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

Funk, T.

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

Gifford, R. H.

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Gould, R.

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

Gradl, R.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

Greving, I.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Guigay, J.-P.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Gureyev, T.

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Gureyev, T. E.

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

Häggmark, I.

Hammel, J. U.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Haynes, D. S.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Hehn, L.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

Hertz, H. M.

Herzog, J.

J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
[Crossref]

Hesse, B.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

Hipp, A.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Holder, J. T.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

Hooper, S. B.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

Huber, P. J.

P. J. Huber, “Robust statistics,” in “International Encyclopedia of Statistical Science” (Springer, 2011), pp. 1248–1251.
[Crossref]

Hunter, J. B.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

Irvine, S.

Jacobson, M.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

Kak, A. C.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Khokhriakov, I.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Kitchen, M. J.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18, 6423–6436 (2010).
[Crossref] [PubMed]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Labadie, R.

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Labadie, R. F.

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Langer, M.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, “X-ray in-line phase tomography of multimaterial objects,” Opt. Lett. 37, 2151–2153 (2012).
[Crossref] [PubMed]

Larsson, D. H.

Lasser, T.

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

Létang, J. M.

F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
[Crossref]

Lewis, R. A.

R. A. Lewis, “Medical phase contrast X-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
[Crossref] [PubMed]

Lottermoser, L.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Lundström, U.

Lytaev, P.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Man, B. D.

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

Marchal, G.

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

Marone, F.

Mayo, S.

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Mayo, S. C.

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

McJunkin, J. L.

J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
[Crossref]

Miller, P. R.

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

Modregger, P.

Mokso, R.

Morgan, K.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

Müller, M.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Münzel, D.

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Nesterets, Y. I.

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Noble, J.

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Noble, J. H.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Nocedal, J.

J. Nocedal, “Updating quasi-newton matrices with limited storage,” Math. Comput. 35, 773–782 (1980).
[Crossref]

Noël, P. B.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Noichl, W.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

Nuyts, J.

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

O’Connell, B. P.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

Ogurreck, M.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Otake, Y.

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Pacureanu, A.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, “X-ray in-line phase tomography of multimaterial objects,” Opt. Lett. 37, 2151–2153 (2012).
[Crossref] [PubMed]

Paganin, D. M.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

M. A. Beltran, D. M. Paganin, K. Uesugi, and M. J. Kitchen, “2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance,” Opt. Express 18, 6423–6436 (2010).
[Crossref] [PubMed]

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, 2006).
[Crossref]

Pan, X.

E. Y. Sidky, M. A. Anastasio, and X. Pan, “Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography,” Opt. Express 18, 10404–10422 (2010).
[Crossref] [PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Medicine & Biol. 53, 4777 (2008).
[Crossref]

Peix, G.

F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
[Crossref]

Peyrin, F.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

M. Langer, P. Cloetens, A. Pacureanu, and F. Peyrin, “X-ray in-line phase tomography of multimaterial objects,” Opt. Lett. 37, 2151–2153 (2012).
[Crossref] [PubMed]

Pfeiffer, F.

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

Pogany, A.

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Prevrhal, S.

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

Raum, K.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

Renger, B.

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Reser, D. H.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

Rinkel, J.

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

Rummeny, E. J.

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Schlenker, M.

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Schreyer, A.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Sidky, E. Y.

E. Y. Sidky, M. A. Anastasio, and X. Pan, “Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography,” Opt. Express 18, 10404–10422 (2010).
[Crossref] [PubMed]

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Medicine & Biol. 53, 4777 (2008).
[Crossref]

Siewerdsen, J. H.

S. Tilley, J. H. Siewerdsen, and J. W. Stayman, “Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise,” Phys. Med. Biol. 61, 296–319 (2016).
[Crossref]

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Sisniega, A.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

Siu, K. K. W.

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

Slaney, M.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

Stampanoni, M.

Stayman, J. W.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

S. Tilley, J. H. Siewerdsen, and J. W. Stayman, “Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise,” Phys. Med. Biol. 61, 296–319 (2016).
[Crossref]

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

Stevenson, A.

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Suetens, P.

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

Suhonen, H.

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

Suortti, P.

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1 (2013).
[Crossref]

Takman, P. A. C.

Teague, M. R.

Tilley, S.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

S. Tilley, J. H. Siewerdsen, and J. W. Stayman, “Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise,” Phys. Med. Biol. 61, 296–319 (2016).
[Crossref]

Uesugi, K.

Vågberg, W.

Vidal, F. P.

F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
[Crossref]

Wang, Z.

Wanna, G. B.

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

Wilde, F.

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

Wilkins, S.

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Wilkins, S. W.

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

Zanette, I.

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

Zbijewski, W.

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

AIP Conf. Proc. (1)

F. Wilde, M. Ogurreck, I. Greving, J. U. Hammel, F. Beckmann, A. Hipp, L. Lottermoser, I. Khokhriakov, P. Lytaev, T. Dose, H. Burmester, M. Müller, and A. Schreyer, “Micro-CT at the imaging beamline P05 at PETRA III,” AIP Conf. Proc. 1741, 030035 (2016).
[Crossref]

APL Bioeng. (1)

L. Hehn, K. Morgan, P. Bidola, W. Noichl, R. Gradl, M. Dierolf, P. B. Noël, and F. Pfeiffer, “Nonlinear statistical iterative reconstruction for propagation-based phase-contrast tomography,” APL Bioeng. 2, 016105 (2018).
[Crossref]

IEEE Transactions on Med. Imaging (1)

S. Tilley, M. Jacobson, Q. Cao, M. Brehler, A. Sisniega, W. Zbijewski, and J. W. Stayman, “Penalized-likelihood reconstruction with high-fidelity measurement models for high-resolution cone-beam imaging,” IEEE Transactions on Med. Imaging 37, 988–999 (2018).
[Crossref]

IEEE Transactions on Nucl. Sci. (1)

B. D. Man, J. Nuyts, P. Dupont, G. Marchal, and P. Suetens, “Metal streak artifacts in x-ray computed tomography: a simulation study,” IEEE Transactions on Nucl. Sci. 46, 691–696 (1999).
[Crossref]

J. computer assisted tomography (1)

J. Rinkel, W. P. Dillon, T. Funk, R. Gould, and S. Prevrhal, “Computed tomographic metal artifact reduction for the detection and quantitation of small features near large metallic implants: a comparison of published methods,” J. computer assisted tomography 32, 621–629 (2008).
[Crossref]

J. Microsc. (1)

D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, “Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object,” J. Microsc. 206, 33–40 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

P. Cloetens, R. Barrett, J. Baruchel, J.-P. Guigay, and M. Schlenker, “Phase objects in synchrotron radiation hard X-ray imaging,” J. Phys. D 29, 133–146 (1996).
[Crossref]

Math. Comput. (1)

J. Nocedal, “Updating quasi-newton matrices with limited storage,” Math. Comput. 35, 773–782 (1980).
[Crossref]

Nucl. Instr. Meth. Phys. Res. A (1)

M. Endrizzi, “X-ray phase-contrast imaging,” Nucl. Instr. Meth. Phys. Res. A 878, 88–98 (2018).

Nucl. Instr. Meth. Phys. Res. B (1)

F. P. Vidal, J. M. Létang, G. Peix, and P. Cloetens, “Investigation of artefact sources in synchrotron microtomography via virtual x-ray imaging,” Nucl. Instr. Meth. Phys. Res. B 234, 333–348 (2005).
[Crossref]

Opt. Commun. (1)

A. V. Bronnikov, “Reconstruction formulas in phase-contrast tomography,” Opt. Commun. 171, 239–244 (1999).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Otol. Neurotol. (1)

J. L. McJunkin, N. Durakovic, J. Herzog, and C. A. Buchman, “Early outcomes with a slim, modiolar cochlear implant electrode array,” Otol. Neurotol. 39, e28–e33 (2018).
[Crossref]

Phil. Trans. R. Soc. A (1)

S. Wilkins, Y. I. Nesterets, T. Gureyev, S. Mayo, A. Pogany, and A. Stevenson, “On the evolution and relative merits of hard X-ray phase-contrast imaging methods,” Phil. Trans. R. Soc. A 372, 20130021 (2014).
[Crossref] [PubMed]

Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. (1)

M. Langer, P. Cloetens, B. Hesse, H. Suhonen, A. Pacureanu, K. Raum, and F. Peyrin, “Priors for X-ray in-line phase tomography of heterogeneous objects,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 372, 20130129 (2014).
[Crossref]

Phys. Med. Biol. (5)

M. A. Beltran, D. M. Paganin, K. K. W. Siu, A. Fouras, S. B. Hooper, D. H. Reser, and M. J. Kitchen, “Interface-specific X-ray phase retrieval tomography of complex biological organs,” Phys. Med. Biol. 56, 7353 (2011).
[Crossref] [PubMed]

A. Bravin, P. Coan, and P. Suortti, “X-ray phase-contrast imaging: from pre-clinical applications towards clinics,” Phys. Med. Biol. 58, R1 (2013).
[Crossref]

R. A. Lewis, “Medical phase contrast X-ray imaging: current status and future prospects,” Phys. Med. Biol. 49, 3573 (2004).
[Crossref] [PubMed]

S. Tilley, J. H. Siewerdsen, and J. W. Stayman, “Model-based iterative reconstruction for flat-panel cone-beam CT with focal spot blur, detector blur, and correlated noise,” Phys. Med. Biol. 61, 296–319 (2016).
[Crossref]

J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, “Modelling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58, R63 (2013).
[Crossref] [PubMed]

Phys. Medicine & Biol. (1)

E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization,” Phys. Medicine & Biol. 53, 4777 (2008).
[Crossref]

PLoS One (1)

P. B. Noël, B. Renger, M. Fiebich, D. Münzel, A. A. Fingerle, E. J. Rummeny, and M. Dobritz, “Does iterative reconstruction lower ct radiation dose: evaluation of 15,000 examinations,” PLoS One 8, e81141 (2013).
[Crossref] [PubMed]

Proc. SPIE (2)

J. W. Stayman, H. Dang, Y. Otake, W. Zbijewski, J. Noble, B. Dawant, R. Labadie, J. P. Carey, and J. H. Siewerdsen, “Overcoming nonlinear partial volume effects in known-component reconstruction of cochlear implants,” Proc. SPIE 6886, 86681L (2013).
[Crossref]

A. Fehringer, T. Lasser, I. Zanette, P. B. Noël, and F. Pfeiffer, “A versatile tomographic forward- and back-projection approach on multi-GPUs,” Proc. SPIE 9034, 90344F (2014).
[Crossref]

Radiology (1)

F. E. Boas and D. Fleischmann, “Evaluation of two iterative techniques for reducing metal artifacts in computed tomography,” Radiology 259, 894–902 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of X-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[Crossref]

The Laryngoscope (2)

G. B. Wanna, J. H. Noble, M. L. Carlson, R. H. Gifford, M. S. Dietrich, D. S. Haynes, B. M. Dawant, and R. F. Labadie, “Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes,” The Laryngoscope 124, 24728 (2014).
[Crossref] [PubMed]

B. P. O’Connell, J. B. Hunter, D. S. Haynes, J. T. Holder, M. M. Dedmon, J. H. Noble, B. M. Dawant, and G. B. Wanna, “Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes,” The Laryngoscope 127, 2352–2357 (2017).
[Crossref]

Other (4)

P. J. Huber, “Robust statistics,” in “International Encyclopedia of Statistical Science” (Springer, 2011), pp. 1248–1251.
[Crossref]

D. M. Paganin, Coherent X-Ray Optics (Oxford University Press, 2006).
[Crossref]

J. A. Fessler, “Statistical image reconstruction methods for transmission tomography,” in “Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis,” J. M. Fitzpatrick and M. Sonka, eds. (SPIE Press, 2000), pp. 1–70.

A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 In (a) a photograph of the guinea pig cochlea is depicted. A flat-field corrected intensity measurement is shown in (b). The homogeneous character of the cochlea can be seen as well as the position of the strongly absorbing implant. The trace recovered by the single-material phase-retrieval algorithm applied to the corrected intensity measurement in (b) is depicted in (c).
Fig. 2
Fig. 2 Illustration of the two reconstruction approaches using the example of a simulated cylinder. Conventionally, for every projection the trace is recovered by means of the single-material phase-retrieval algorithm of Paganin et al. (PAG) [8]. The volume is then reconstructed using the filtered back-projection (FBP) algorithm. In comparison, we use a model-based iterative reconstruction algorithm (MBIR) [15], which recovers the volume directly from the measured intensities. Thereby, the whole image formation is modeled, including the statistical properties of the x-rays, attenuation, phase-shifts, propagation and prior knowledge about the sample.
Fig. 3
Fig. 3 Comparison of the two reconstruction approaches for a zoomed region of a tomographic slice. The positions of these views are depicted by the red rectangles in the small previews of the whole slices in the upper right corner. The density values - not quantitative on an absolute scale - are displayed using a linear grayscale. The result of the conventional approach is depicted in (a), whereas the iterative approach yields the result depicted in (b).
Fig. 4
Fig. 4 Rendering of the cochlea for the two reconstruction approaches. The position of the implant is segmented from a conventional FBP reconstruction on the measured intensities and depicted in red. In (a) the rendering of the cochlea is performed for the conventional reconstruction and (b) uses the model-based iterative approach. The inserts show zoomed excerpts detailing the degradation caused by the artifacts arising from the phase-retrieval step of the conventional approach.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

t = 1 μ ln [ 1 [ [ y ] z δ μ k T k + 1 ] ] ,
x = FBP [ t ]
y ¯ = D [ e μ Ax ] ( 1 + z δ LAx ) ,
x ^ = arg min x 1 2 ( y y ¯ ) T K y 1 D [ w ] ( y y ¯ ) + β γ ,
γ = i n N i 1 Δ i , n γ ( x i x n Δ i , n ) with γ ( t ) = { 1 / ( 2 γ ) t 2 for t < γ | t | γ / 2 else ,
N projections π 2 × N columns