Abstract

Little work has been done on the information flow in functional brain imaging and none so far in fNIRS. In this work, alterations in the directionality of net information flow induced by a short-duration, low-current (2 min 40 s; 0.5 mA) and a longer-duration, high-current (8 min; 1 mA) anodal tDCS applied over the Broca’s area of the dominant language hemisphere were studied by fNIRS. The tDCS-induced patterns of information flow, quantified by a novel directed phase transfer entropy (dPTE) analysis, were distinct for different hemodynamic frequency bands and were qualitatively similar between low and high-current tDCS. In the endothelial band (0.003–0.02 Hz), the stimulated Broca’s area became the strongest hub of outgoing information flow, whereas in the neurogenic band (0.02–0.04 Hz) the contralateral homologous area became the strongest information outflow source. In the myogenic band (0.04–0.15 Hz), only global patterns were seen, independent of tDCS stimulation that were interpreted as Mayer waves. These findings showcase dPTE analysis in fNIRS as a novel, complementary tool for studying cortical activity reorganization after an intervention.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reduced interhemispheric functional connectivity of children with autism spectrum disorder: evidence from functional near infrared spectroscopy studies

Huilin Zhu, Yuebo Fan, Huan Guo, Dan Huang, and Sailing He
Biomed. Opt. Express 5(4) 1262-1274 (2014)

Optical imaging of resting-state functional connectivity in a novel arterial stiffness model

Edgar Guevara, Nataliya Sadekova, Hélène Girouard, and Frédéric Lesage
Biomed. Opt. Express 4(11) 2332-2346 (2013)

Distinction of directional coupling in sensorimotor networks between active and passive finger movements using fNIRS

Seung Hyun Lee, Sang Hyeon Jin, and Jinung An
Biomed. Opt. Express 9(6) 2859-2870 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol. 527(3), 633–639 (2000).
    [Crossref] [PubMed]
  2. M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology 57(10), 1899–1901 (2001).
    [Crossref] [PubMed]
  3. F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
    [Crossref] [PubMed]
  4. T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
    [Crossref] [PubMed]
  5. R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
    [Crossref] [PubMed]
  6. B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
    [PubMed]
  7. J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke 41(6), 1229–1236 (2010).
    [Crossref] [PubMed]
  8. J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
    [Crossref] [PubMed]
  9. V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
    [Crossref] [PubMed]
  10. A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
    [Crossref] [PubMed]
  11. R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
    [Crossref] [PubMed]
  12. M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
    [Crossref] [PubMed]
  13. P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
    [Crossref] [PubMed]
  14. R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
    [Crossref] [PubMed]
  15. M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
    [Crossref] [PubMed]
  16. M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
    [Crossref] [PubMed]
  17. A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
    [Crossref] [PubMed]
  18. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
    [Crossref] [PubMed]
  19. B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
    [Crossref] [PubMed]
  20. A. Villringer, “Understanding functional neuroimaging methods based on neurovascular coupling,” in Optical Imaging of Brain Function and Metabolism 2 (Springer, 1997), pp. 177–193.
  21. B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
    [Crossref] [PubMed]
  22. C. Aalkjær, D. Boedtkjer, and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol. (Oxf.) 202(3), 253–269 (2011).
    [Crossref] [PubMed]
  23. T. Sakurai and N. Terui, “Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1761–H1767 (2006).
    [Crossref] [PubMed]
  24. H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
    [Crossref] [PubMed]
  25. A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
    [Crossref] [PubMed]
  26. H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
    [Crossref] [PubMed]
  27. H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
    [Crossref] [PubMed]
  28. R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
    [Crossref] [PubMed]
  29. A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
    [Crossref] [PubMed]
  30. F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
    [Crossref] [PubMed]
  31. J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
    [Crossref] [PubMed]
  32. F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).
  33. W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols, Statistical Parametric Mapping: the Analysis of Functional Brain Images (Elsevier, 2011).
  34. G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
    [PubMed]
  35. A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
    [Crossref] [PubMed]
  36. B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. Stowe, and G. Alexandrakis, “Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements,” in SPIE BiOS, (International Society for Optics and Photonics, 2015), 93051A.
  37. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
    [Crossref] [PubMed]
  38. Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
    [Crossref] [PubMed]
  39. Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
    [Crossref] [PubMed]
  40. X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).
    [Crossref] [PubMed]
  41. J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
    [Crossref] [PubMed]
  42. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
    [Crossref] [PubMed]
  43. X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
    [Crossref] [PubMed]
  44. M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, and P. A. Tass, “Phase synchronization: from theory to data analysis,” Handbook of Biological Physics, Vol. 4 (Elsevier, 2001), pp. 279–321.
  45. M. Staniek and K. Lehnertz, “Symbolic transfer entropy: inferring directionality in biosignals,” Biomed. Tech. (Berl.) 54(6), 323–328 (2009).
    [Crossref] [PubMed]
  46. F. Tian, Z.-J. Lin, and H. Liu, “EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas,” in Proc. of SPIE Vol, 2013), 85782J.
    [Crossref]
  47. M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human brain connectomics,” PLoS One 8(7), e68910 (2013).
    [Crossref] [PubMed]
  48. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
    [Crossref] [PubMed]
  49. M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
    [Crossref] [PubMed]
  50. M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
    [Crossref] [PubMed]
  51. A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
    [Crossref] [PubMed]
  52. M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
    [PubMed]
  53. T. J. Teyler and P. DiScenna, “Long-term potentiation,” Annu. Rev. Neurosci. 10(1), 131–161 (1987).
    [Crossref] [PubMed]
  54. S. J. Pelletier and F. Cicchetti, “Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models,” Int. J. Neuropsychopharmacol. 18(2), pyu047 (2015).
    [Crossref] [PubMed]
  55. J. P. Brasil-Neto, “Learning, memory, and transcranial direct current stimulation,” Front. Psychiatry 3, 80 (2012).
    [Crossref] [PubMed]
  56. C. Repper-Day, “Mapping dynamic brain connectivity using EEG, TMS, and Transfer Entropy,” (University of Manchester, 2017).
  57. C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
    [PubMed]
  58. A. D. Friederici, “Pathways to language: fiber tracts in the human brain,” Trends Cogn. Sci. 13(4), 175–181 (2009).
    [Crossref] [PubMed]
  59. J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
    [Crossref] [PubMed]
  60. A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
    [Crossref] [PubMed]
  61. N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
    [Crossref] [PubMed]
  62. E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
    [Crossref] [PubMed]
  63. D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
    [Crossref] [PubMed]
  64. A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
    [Crossref] [PubMed]
  65. M. Catani, D. K. Jones, and D. H. ffytche, “Perisylvian language networks of the human brain,” Ann. Neurol. 57(1), 8–16 (2005).
    [Crossref] [PubMed]
  66. M. Catani and M. T. de Schotten, Atlas of human brain connections (Oxford University Press, 2012).
  67. A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
    [Crossref] [PubMed]
  68. J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
    [Crossref] [PubMed]
  69. W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
    [Crossref] [PubMed]
  70. E. H. Nijhuis, A. M. van Cappellen van Walsum, and D. G. Norris, “Topographic hub maps of the human structural neocortical network,” PLoS One 8(6), e65511 (2013).
    [Crossref] [PubMed]
  71. T. Akam and D. M. Kullmann, “Oscillations and filtering networks support flexible routing of information,” Neuron 67(2), 308–320 (2010).
    [Crossref] [PubMed]
  72. E. Bullmore and O. Sporns, “The economy of brain network organization,” Nat. Rev. Neurosci. 13(5), 336–349 (2012).
    [Crossref] [PubMed]
  73. S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
    [Crossref] [PubMed]
  74. S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
    [Crossref]
  75. U. Förstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” Eur. Heart J. 33(7), 829–837, 837a–837d (2012).
    [Crossref] [PubMed]
  76. D. P. Trivedi, K. J. Hallock, and P. R. Bergethon, “Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production,” Bioelectromagnetics 34(1), 22–30 (2013).
    [Crossref] [PubMed]
  77. M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clin. Neurophysiol. 120(6), 1033–1034 (2009).
    [Crossref] [PubMed]
  78. M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
    [Crossref] [PubMed]
  79. J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
    [Crossref] [PubMed]
  80. J. Cao and H. Liu, “Modulating the resting-state functional connectivity patterns of language processing areas in the human brain with anodal transcranial direct current stimulation applied over the Broca’s area,” Neurophotonics 5(2), 025002 (2018).
    [Crossref] [PubMed]
  81. V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
    [Crossref] [PubMed]
  82. D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
    [Crossref] [PubMed]
  83. T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
    [Crossref] [PubMed]
  84. T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
    [Crossref] [PubMed]
  85. R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage 55(4), 1679–1685 (2011).
    [Crossref] [PubMed]
  86. L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
    [Crossref] [PubMed]
  87. F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
    [Crossref] [PubMed]
  88. G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
    [Crossref] [PubMed]
  89. G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
    [Crossref] [PubMed]
  90. S. B. Erdoğan, M. A. Yücel, and A. Akın, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” Neuroimage 87, 490–504 (2014).
    [Crossref] [PubMed]
  91. S. Patel, T. Katura, A. Maki, and I. Tachtsidis, “Quantification of systemic interference in optical topography data during frontal lobe and motor cortex activation: an independent component analysis,” in Oxygen Transport to Tissue XXXII (Springer, 2011), pp. 45–51.
  92. N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
    [Crossref] [PubMed]
  93. I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
    [Crossref] [PubMed]

2018 (1)

J. Cao and H. Liu, “Modulating the resting-state functional connectivity patterns of language processing areas in the human brain with anodal transcranial direct current stimulation applied over the Broca’s area,” Neurophotonics 5(2), 025002 (2018).
[Crossref] [PubMed]

2017 (1)

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

2016 (8)

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).
[Crossref] [PubMed]

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

2015 (5)

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
[Crossref] [PubMed]

S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
[Crossref] [PubMed]

S. J. Pelletier and F. Cicchetti, “Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models,” Int. J. Neuropsychopharmacol. 18(2), pyu047 (2015).
[Crossref] [PubMed]

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

2014 (8)

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
[Crossref] [PubMed]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
[Crossref] [PubMed]

G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
[Crossref] [PubMed]

S. B. Erdoğan, M. A. Yücel, and A. Akın, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” Neuroimage 87, 490–504 (2014).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

2013 (7)

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
[PubMed]

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human brain connectomics,” PLoS One 8(7), e68910 (2013).
[Crossref] [PubMed]

E. H. Nijhuis, A. M. van Cappellen van Walsum, and D. G. Norris, “Topographic hub maps of the human structural neocortical network,” PLoS One 8(6), e65511 (2013).
[Crossref] [PubMed]

D. P. Trivedi, K. J. Hallock, and P. R. Bergethon, “Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production,” Bioelectromagnetics 34(1), 22–30 (2013).
[Crossref] [PubMed]

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

2012 (6)

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

J. P. Brasil-Neto, “Learning, memory, and transcranial direct current stimulation,” Front. Psychiatry 3, 80 (2012).
[Crossref] [PubMed]

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

E. Bullmore and O. Sporns, “The economy of brain network organization,” Nat. Rev. Neurosci. 13(5), 336–349 (2012).
[Crossref] [PubMed]

U. Förstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” Eur. Heart J. 33(7), 829–837, 837a–837d (2012).
[Crossref] [PubMed]

2011 (9)

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage 55(4), 1679–1685 (2011).
[Crossref] [PubMed]

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

C. Aalkjær, D. Boedtkjer, and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol. (Oxf.) 202(3), 253–269 (2011).
[Crossref] [PubMed]

J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
[Crossref] [PubMed]

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

2010 (6)

T. Akam and D. M. Kullmann, “Oscillations and filtering networks support flexible routing of information,” Neuron 67(2), 308–320 (2010).
[Crossref] [PubMed]

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke 41(6), 1229–1236 (2010).
[Crossref] [PubMed]

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[Crossref] [PubMed]

2009 (7)

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

M. Staniek and K. Lehnertz, “Symbolic transfer entropy: inferring directionality in biosignals,” Biomed. Tech. (Berl.) 54(6), 323–328 (2009).
[Crossref] [PubMed]

A. D. Friederici, “Pathways to language: fiber tracts in the human brain,” Trends Cogn. Sci. 13(4), 175–181 (2009).
[Crossref] [PubMed]

S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
[Crossref]

M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clin. Neurophysiol. 120(6), 1033–1034 (2009).
[Crossref] [PubMed]

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

2008 (3)

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

2007 (2)

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
[Crossref] [PubMed]

2006 (1)

T. Sakurai and N. Terui, “Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1761–H1767 (2006).
[Crossref] [PubMed]

2005 (4)

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[Crossref] [PubMed]

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

M. Catani, D. K. Jones, and D. H. ffytche, “Perisylvian language networks of the human brain,” Ann. Neurol. 57(1), 8–16 (2005).
[Crossref] [PubMed]

2004 (2)

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

2003 (5)

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[Crossref] [PubMed]

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

2002 (1)

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

2001 (1)

M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology 57(10), 1899–1901 (2001).
[Crossref] [PubMed]

2000 (2)

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol. 527(3), 633–639 (2000).
[Crossref] [PubMed]

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

1999 (2)

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
[PubMed]

1997 (1)

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

1995 (1)

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

1994 (1)

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

1987 (1)

T. J. Teyler and P. DiScenna, “Long-term potentiation,” Annu. Rev. Neurosci. 10(1), 131–161 (1987).
[Crossref] [PubMed]

Aalkjær, C.

C. Aalkjær, D. Boedtkjer, and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol. (Oxf.) 202(3), 253–269 (2011).
[Crossref] [PubMed]

Aalkjaer, C.

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[Crossref] [PubMed]

Ackermann, H.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Aguilar, J.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Akam, T.

T. Akam and D. M. Kullmann, “Oscillations and filtering networks support flexible routing of information,” Neuron 67(2), 308–320 (2010).
[Crossref] [PubMed]

Akin, A.

S. B. Erdoğan, M. A. Yücel, and A. Akın, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” Neuroimage 87, 490–504 (2014).
[Crossref] [PubMed]

Alexandrakis, G.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

Amunts, K.

S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
[Crossref]

Antal, A.

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

Antonenko, D.

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

Atsumori, H.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Avirame, K.

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

Azadbakht, H.

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Bajada, C. J.

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Baker, J. M.

J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
[Crossref] [PubMed]

J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke 41(6), 1229–1236 (2010).
[Crossref] [PubMed]

Barban, F.

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Barbareschi, M.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Bártfai, O.

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

Bauernfeind, G.

G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
[Crossref] [PubMed]

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[Crossref] [PubMed]

Beaucousin, V.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Behrens, T. E.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Berger, A. J.

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage 55(4), 1679–1685 (2011).
[Crossref] [PubMed]

Bergethon, P. R.

D. P. Trivedi, K. J. Hallock, and P. R. Bergethon, “Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production,” Bioelectromagnetics 34(1), 22–30 (2013).
[Crossref] [PubMed]

Bermpohl, F.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Bikson, M.

M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clin. Neurophysiol. 120(6), 1033–1034 (2009).
[Crossref] [PubMed]

Binder, J. R.

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

Biswal, B.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Blain-Moraes, S.

J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
[Crossref] [PubMed]

Boas, D. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
[Crossref] [PubMed]

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Boedtkjer, D.

C. Aalkjær, D. Boedtkjer, and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol. (Oxf.) 202(3), 253–269 (2011).
[Crossref] [PubMed]

Boggio, P. S.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Bonifazi, S.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Bonnì, S.

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Bosch, B. M.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Brasil-Neto, J. P.

J. P. Brasil-Neto, “Learning, memory, and transcranial direct current stimulation,” Front. Psychiatry 3, 80 (2012).
[Crossref] [PubMed]

Bray, S.

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

Breitenstein, C.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

Brigadoi, S.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Bringard, A.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Brooks, D. H.

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[Crossref] [PubMed]

Bullmore, E.

E. Bullmore and O. Sporns, “The economy of brain network organization,” Nat. Rev. Neurosci. 13(5), 336–349 (2012).
[Crossref] [PubMed]

Bunce, S.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

Caltagirone, C.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Cao, J.

J. Cao and H. Liu, “Modulating the resting-state functional connectivity patterns of language processing areas in the human brain with anodal transcranial direct current stimulation applied over the Broca’s area,” Neurophotonics 5(2), 025002 (2018).
[Crossref] [PubMed]

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

Carbo, E. W.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Carlesimo, G. A.

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Catani, M.

M. Catani, D. K. Jones, and D. H. ffytche, “Perisylvian language networks of the human brain,” Ann. Neurol. 57(1), 8–16 (2005).
[Crossref] [PubMed]

Ceravolo, M. G.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Chioffi, F.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Chute, D.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

Cicchetti, F.

S. J. Pelletier and F. Cicchetti, “Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models,” Int. J. Neuropsychopharmacol. 18(2), pyu047 (2015).
[Crossref] [PubMed]

Clegg, N. J.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Cloutman, L. L.

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Coccia, M.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Cooper, R. J.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
[Crossref] [PubMed]

Cordes, D.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Corsini, F.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Costa, A.

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Cotelli, M.

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

Cox, R. W.

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

Craik, F. I.

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

Crandall, C. G.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Crinion, J.

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Crivello, F.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Croarkin, P. E.

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

Cui, X.

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

Culver, J. P.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Cutini, S.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Dafotakis, M.

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

Dallabona, M.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Daly, I.

G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
[Crossref] [PubMed]

Datta, A.

M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clin. Neurophysiol. 120(6), 1033–1034 (2009).
[Crossref] [PubMed]

De Benedictis, A.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

de Haan, W.

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

De Pasquale, G.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

Dechent, P.

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

Delgado, M. R.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Dell’acqua, R.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Descoteaux, M.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Desikan, M.

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Diamond, S. G.

Dick, A. S.

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

Diekhof, E.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

DiScenna, P.

T. J. Teyler and P. DiScenna, “Long-term potentiation,” Annu. Rev. Neurosci. 10(1), 131–161 (1987).
[Crossref] [PubMed]

Douw, L.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Dronkers, N. F.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

Eickhoff, S. B.

S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
[Crossref]

Einhäupl, K.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Elger, C.

G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
[PubMed]

Elsner, B.

B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
[PubMed]

Elwassif, M.

M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clin. Neurophysiol. 120(6), 1033–1034 (2009).
[Crossref] [PubMed]

Erb, M.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Erdogan, S. B.

S. B. Erdoğan, M. A. Yücel, and A. Akın, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” Neuroimage 87, 490–504 (2014).
[Crossref] [PubMed]

Ethofer, T.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Fantini, S.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Feredoes, E.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Ferretti, G.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Fertonani, A.

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

ffytche, D. H.

M. Catani, D. K. Jones, and D. H. ffytche, “Perisylvian language networks of the human brain,” Ann. Neurol. 57(1), 8–16 (2005).
[Crossref] [PubMed]

Fink, G. R.

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

Fiori, V.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Flaisch, T.

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

Flöel, A.

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

Foffani, G.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Förstermann, U.

U. Förstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” Eur. Heart J. 33(7), 829–837, 837a–837d (2012).
[Crossref] [PubMed]

Franceschini, M. A.

T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–D298 (2009).
[Crossref] [PubMed]

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Fregni, F.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Fridriksson, J.

J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
[Crossref] [PubMed]

J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke 41(6), 1229–1236 (2010).
[Crossref] [PubMed]

Friederici, A. D.

A. D. Friederici, “Pathways to language: fiber tracts in the human brain,” Trends Cogn. Sci. 13(4), 175–181 (2009).
[Crossref] [PubMed]

Frost, J. A.

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

Fukuda, M.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Funane, T.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Gagnon, L.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
[Crossref] [PubMed]

Galea, J. M.

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Gili, T.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

Glasser, M. F.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Glynn, P. A.

S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
[Crossref] [PubMed]

Goldin-Meadow, S.

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

Gouw, A. A.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Greicius, M. D.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Grodd, W.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Gruber, O.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Habib, R.

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

Hallock, K. J.

D. P. Trivedi, K. J. Hallock, and P. R. Bergethon, “Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production,” Bioelectromagnetics 34(1), 22–30 (2013).
[Crossref] [PubMed]

Hammeke, T. A.

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

Harnish, S.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

Haroon, H. A.

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Hasson, U.

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

Haughton, V.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Haughton, V. M.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

He, Y.

M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human brain connectomics,” PLoS One 8(7), e68910 (2013).
[Crossref] [PubMed]

Heim, S.

S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
[Crossref]

Henseler, I.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Hertrich, I.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Hervé, P.-Y.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Hervey, N.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

Hetzer, S.

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

Hillebrand, A.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Hirsch, J.

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).
[Crossref] [PubMed]

Hodics, T.

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

Holland, R.

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Houle, S.

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

Hu, X.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Huppert, T. J.

Husain, M. M.

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

Hyde, J. S.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Iglói, K.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Irani, F.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

Iwasaki, K.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Jaeger, J. J.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

Jang, J.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Jang, K. E.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Jasper, H. H.

G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
[PubMed]

Jones, D. K.

M. Catani, D. K. Jones, and D. H. ffytche, “Perisylvian language networks of the human brain,” Ann. Neurol. 57(1), 8–16 (2005).
[Crossref] [PubMed]

Josephs, O.

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Jung, J.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Kaiser, J.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Kapse, K. J.

S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
[Crossref] [PubMed]

Kapur, S.

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

Kasai, K.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Katura, T.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Keil, M.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Khan, B.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

Khatami, R.

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

Kiguchi, M.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Kincses, T. Z.

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

Kinoshita, A.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Kiran, S.

S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
[Crossref] [PubMed]

Kirkebøen, K. A.

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Klem, G. H.

G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
[PubMed]

Knecht, S.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

Koch, G.

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Kohl, M.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Koizumi, H.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Kondraske, G.

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

Kozel, F. A.

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

Krasnow, B.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Kugler, J.

B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
[PubMed]

Kullmann, D. M.

T. Akam and D. M. Kullmann, “Oscillations and filtering networks support flexible routing of information,” Neuron 67(2), 308–320 (2010).
[Crossref] [PubMed]

Kvernebo, K.

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Kvernmo, H. D.

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Lang, N.

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

Lee, U.

J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
[Crossref] [PubMed]

Leff, A. P.

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Lehnertz, K.

M. Staniek and K. Lehnertz, “Symbolic transfer entropy: inferring directionality in biosignals,” Biomed. Tech. (Berl.) 54(6), 323–328 (2009).
[Crossref] [PubMed]

Levine, B. D.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Lewandowski, M.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Liebetanz, D.

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

Lin, Z.-J.

F. Tian, Z.-J. Lin, and H. Liu, “EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas,” in Proc. of SPIE Vol, 2013), 85782J.
[Crossref]

Lindenberg, R.

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

Lindner, M.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Liu, H.

J. Cao and H. Liu, “Modulating the resting-state functional connectivity patterns of language processing areas in the human brain with anodal transcranial direct current stimulation applied over the Broca’s area,” Neurophotonics 5(2), 025002 (2018).
[Crossref] [PubMed]

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

F. Tian, Z.-J. Lin, and H. Liu, “EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas,” in Proc. of SPIE Vol, 2013), 85782J.
[Crossref]

Lobier, M.

M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
[Crossref] [PubMed]

Lüders, H. O.

G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
[PubMed]

Ma, X.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

MacFarlane, D.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Mapes, K. S.

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

Marangolo, P.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Marcolin, M. A.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Marinelli, C. V.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Markowitsch, H. J.

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

Marras, C. E.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Mashour, G. A.

J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
[Crossref] [PubMed]

Matchkov, V.

C. Aalkjær, D. Boedtkjer, and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol. (Oxf.) 202(3), 253–269 (2011).
[Crossref] [PubMed]

Mazoyer, B.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

McClintock, S. M.

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

Mehrholz, J.

B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
[PubMed]

Meier, E. L.

S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
[Crossref] [PubMed]

Meinzer, M.

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

Meister, I. G.

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

Melcher, T.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Menon, V.

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Merzagora, A. C.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Meyerand, M. E.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Michka, O.

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

Miniussi, C.

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

Moon, J.-Y.

J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
[Crossref] [PubMed]

Mordillo-Mateos, L.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Moritz, C.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Mott, K.

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

Müller-Putz, G. R.

G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
[Crossref] [PubMed]

Nachtigall, L.

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

Neufang, M.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Neuper, C.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[Crossref] [PubMed]

Nijhuis, E. H.

E. H. Nijhuis, A. M. van Cappellen van Walsum, and D. G. Norris, “Topographic hub maps of the human structural neocortical network,” PLoS One 8(6), e65511 (2013).
[Crossref] [PubMed]

Nilsson, H.

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[Crossref] [PubMed]

Nishimura, Y.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Nitsche, M.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Nitsche, M. A.

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology 57(10), 1899–1901 (2001).
[Crossref] [PubMed]

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol. 527(3), 633–639 (2000).
[Crossref] [PubMed]

Noah, J. A.

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).
[Crossref] [PubMed]

Norris, D. G.

E. H. Nijhuis, A. M. van Cappellen van Walsum, and D. G. Norris, “Topographic hub maps of the human structural neocortical network,” PLoS One 8(6), e65511 (2013).
[Crossref] [PubMed]

Obata, A. N.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Obrig, H.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Okada, E.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Oliveri, M.

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

Oliviero, A.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Onaral, B.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Palva, J. M.

M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
[Crossref] [PubMed]

Palva, S.

M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
[Crossref] [PubMed]

Panyavin, I.

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

Parker, G. J.

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Pascual-Leone, A.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Paulus, W.

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology 57(10), 1899–1901 (2001).
[Crossref] [PubMed]

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol. 527(3), 633–639 (2000).
[Crossref] [PubMed]

Pelletier, S. J.

S. J. Pelletier and F. Cicchetti, “Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models,” Int. J. Neuropsychopharmacol. 18(2), pyu047 (2015).
[Crossref] [PubMed]

Penny, W. D.

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

Petit, L.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Pfurtscheller, G.

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[Crossref] [PubMed]

Platek, S. M.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

Pohl, M.

B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
[PubMed]

Polania, R.

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

Preuss, T. M.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Price, C. J.

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Prieto, T.

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

Provinciali, L.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Quigley, M.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Rahm, B.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Ralph, M. A. L.

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Rao, S. M.

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

Razzano, C.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

Redfern, B. B.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

Reid, D.

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Reiss, A. L.

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

Richardson, J. D.

J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
[Crossref] [PubMed]

Riecker, A.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Rieder, M.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Rigonatti, S. P.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Rilling, J. K.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Roberts, H.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Rodriguez, A. D.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

Rorden, C.

J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
[Crossref] [PubMed]

J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke 41(6), 1229–1236 (2010).
[Crossref] [PubMed]

Rosini, S.

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

Rösser, N.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

Rossini, P. M.

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

Rothwell, J. C.

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Ruocco, A. C.

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

Saager, R. B.

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage 55(4), 1679–1685 (2011).
[Crossref] [PubMed]

Sabatini, U.

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

Sakurai, T.

T. Sakurai and N. Terui, “Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1761–H1767 (2006).
[Crossref] [PubMed]

Sarubbo, S.

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

Sato, H.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Scarpa, F.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Scatturin, P.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Scheltens, P.

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

Schmidt-Samoa, C.

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

Scholkmann, F.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

Schwartz, S.

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

Sessa, W. C.

U. Förstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” Eur. Heart J. 33(7), 829–837, 837a–837d (2012).
[Crossref] [PubMed]

Seth, R.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Shagman, L.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Shierk, A.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Siebenhühner, F.

M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
[Crossref] [PubMed]

Sieg, M. M.

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

Silva, M. T.

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Skipper, J. I.

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

Small, S. L.

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

Smith, L.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Sommer, J.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

Sparacino, G.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Sparing, R.

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

Sporns, O.

E. Bullmore and O. Sporns, “The economy of brain network organization,” Nat. Rev. Neurosci. 13(5), 336–349 (2012).
[Crossref] [PubMed]

Stam, C. J.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

Staniek, M.

M. Staniek and K. Lehnertz, “Symbolic transfer entropy: inferring directionality in biosignals,” Biomed. Tech. (Berl.) 54(6), 323–328 (2009).
[Crossref] [PubMed]

Stefanovska, A.

A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
[Crossref] [PubMed]

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Steinbrink, J.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Stowe, A. M.

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

Strelnikov, K.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Tachtsidis, I.

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

Tak, S.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Takizawa, R.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Tanikawa, Y.

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

Telleri, N. L.

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage 55(4), 1679–1685 (2011).
[Crossref] [PubMed]

Tergau, F.

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

Terui, N.

T. Sakurai and N. Terui, “Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1761–H1767 (2006).
[Crossref] [PubMed]

Tewarie, P.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Teyler, T. J.

T. J. Teyler and P. DiScenna, “Long-term potentiation,” Annu. Rev. Neurosci. 10(1), 131–161 (1987).
[Crossref] [PubMed]

Thirugnanasambandam, N.

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

Thompson, J. H.

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Tian, F.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

F. Tian, Z.-J. Lin, and H. Liu, “EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas,” in Proc. of SPIE Vol, 2013), 85782J.
[Crossref]

Tomaiuolo, F.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Trivedi, D. P.

D. P. Trivedi, K. J. Hallock, and P. R. Bergethon, “Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production,” Bioelectromagnetics 34(1), 22–30 (2013).
[Crossref] [PubMed]

Tulchin-Francis, K.

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

Tulving, E.

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

Turski, P.

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Tzourio-Mazoyer, N.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Ulm, L.

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

van Cappellen van Walsum, A. M.

E. H. Nijhuis, A. M. van Cappellen van Walsum, and D. G. Norris, “Topographic hub maps of the human structural neocortical network,” PLoS One 8(6), e65511 (2013).
[Crossref] [PubMed]

van Dellen, E.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

van Straaten, E. C.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

Van Valin, R. D.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

Vecchi, V.

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

Vicente, R.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Vieker, H.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Villringer, A.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Wang, J.

M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human brain connectomics,” PLoS One 8(7), e68910 (2013).
[Crossref] [PubMed]

Wenzel, R.

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

Westerhoff, U.

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

Wibral, M.

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Wildgruber, D.

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

Wilkins, D. P.

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

Wilson, T. E.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Wriessnegger, S. C.

G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
[Crossref] [PubMed]

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[Crossref] [PubMed]

Xia, M.

M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human brain connectomics,” PLoS One 8(7), e68910 (2013).
[Crossref] [PubMed]

Yahata, N.

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

Ye, J. C.

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

Yennu, A.

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

Yetkin, F. Z.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Yu, M.

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Yücel, M. A.

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
[Crossref] [PubMed]

S. B. Erdoğan, M. A. Yücel, and A. Akın, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” Neuroimage 87, 490–504 (2014).
[Crossref] [PubMed]

Zago, L.

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Zhang, R.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[Crossref] [PubMed]

Zhang, Z.

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

Zhao, T.

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Zilles, D.

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Zilles, K.

S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
[Crossref]

Zorzi, M.

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

Zuckerman, J. H.

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Acta Physiol. (Oxf.) (1)

C. Aalkjær, D. Boedtkjer, and V. Matchkov, “Vasomotion - what is currently thought?” Acta Physiol. (Oxf.) 202(3), 253–269 (2011).
[Crossref] [PubMed]

AJNR Am. J. Neuroradiol. (1)

M. Quigley, D. Cordes, P. Turski, C. Moritz, V. Haughton, R. Seth, and M. E. Meyerand, “Role of the corpus callosum in functional connectivity,” AJNR Am. J. Neuroradiol. 24(2), 208–212 (2003).
[PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

T. Sakurai and N. Terui, “Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange,” Am. J. Physiol. Heart Circ. Physiol. 291(4), H1761–H1767 (2006).
[Crossref] [PubMed]

Ann. Neurol. (1)

M. Catani, D. K. Jones, and D. H. ffytche, “Perisylvian language networks of the human brain,” Ann. Neurol. 57(1), 8–16 (2005).
[Crossref] [PubMed]

Annu. Rev. Neurosci. (1)

T. J. Teyler and P. DiScenna, “Long-term potentiation,” Annu. Rev. Neurosci. 10(1), 131–161 (1987).
[Crossref] [PubMed]

Appl. Opt. (1)

Behav. Brain Res. (1)

A. Fertonani, S. Rosini, M. Cotelli, P. M. Rossini, and C. Miniussi, “Naming facilitation induced by transcranial direct current stimulation,” Behav. Brain Res. 208(2), 311–318 (2010).
[Crossref] [PubMed]

Bioelectromagnetics (1)

D. P. Trivedi, K. J. Hallock, and P. R. Bergethon, “Electric fields caused by blood flow modulate vascular endothelial electrophysiology and nitric oxide production,” Bioelectromagnetics 34(1), 22–30 (2013).
[Crossref] [PubMed]

Biomed. Tech. (Berl.) (1)

M. Staniek and K. Lehnertz, “Symbolic transfer entropy: inferring directionality in biosignals,” Biomed. Tech. (Berl.) 54(6), 323–328 (2009).
[Crossref] [PubMed]

Brain Res. (1)

V. Beaucousin, L. Zago, P.-Y. Hervé, K. Strelnikov, F. Crivello, B. Mazoyer, and N. Tzourio-Mazoyer, “Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension,” Brain Res. 1390, 108–117 (2011).
[Crossref] [PubMed]

Circulation (1)

R. Zhang, J. H. Zuckerman, K. Iwasaki, T. E. Wilson, C. G. Crandall, and B. D. Levine, “Autonomic neural control of dynamic cerebral autoregulation in humans,” Circulation 106(14), 1814–1820 (2002).
[Crossref] [PubMed]

Clin. Neurophysiol. (2)

M. Bikson, A. Datta, and M. Elwassif, “Establishing safety limits for transcranial direct current stimulation,” Clin. Neurophysiol. 120(6), 1033–1034 (2009).
[Crossref] [PubMed]

M. A. Nitsche, D. Liebetanz, N. Lang, A. Antal, F. Tergau, and W. Paulus, “Safety criteria for transcranial direct current stimulation (tDCS) in humans,” Clin. Neurophysiol. 114(11), 2220–2222, author reply 2222–2223 (2003).
[Crossref] [PubMed]

Clin. Neuropsychol. (1)

F. Irani, S. M. Platek, S. Bunce, A. C. Ruocco, and D. Chute, “Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders,” Clin. Neuropsychol. 21(1), 9–37 (2007).
[Crossref] [PubMed]

Cochrane Database Syst. Rev. (1)

B. Elsner, J. Kugler, M. Pohl, and J. Mehrholz, “Transcranial direct current stimulation (tDCS) for improving function and activities of daily living in patients after stroke,” Cochrane Database Syst. Rev. 11(11), CD009645 (2013).
[PubMed]

Cognition (1)

N. F. Dronkers, D. P. Wilkins, R. D. Van Valin, B. B. Redfern, and J. J. Jaeger, “Lesion analysis of the brain areas involved in language comprehension,” Cognition 92(1-2), 145–177 (2004).
[Crossref] [PubMed]

Cortex (1)

C. J. Bajada, H. A. Haroon, H. Azadbakht, G. J. Parker, M. A. L. Ralph, and L. L. Cloutman, “The tract terminations in the temporal lobe: Their location and associated functions,” Cortex 97, 277–290 (2016).
[PubMed]

Curr. Biol. (1)

R. Holland, A. P. Leff, O. Josephs, J. M. Galea, M. Desikan, C. J. Price, J. C. Rothwell, and J. Crinion, “Speech facilitation by left inferior frontal cortex stimulation,” Curr. Biol. 21(16), 1403–1407 (2011).
[Crossref] [PubMed]

Electroencephalogr. Clin. Neurophysiol. Suppl. (1)

G. H. Klem, H. O. Lüders, H. H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 3–6 (1999).
[PubMed]

Eur. Heart J. (1)

U. Förstermann and W. C. Sessa, “Nitric oxide synthases: regulation and function,” Eur. Heart J. 33(7), 829–837, 837a–837d (2012).
[Crossref] [PubMed]

Eur. J. Neurosci. (1)

Z. Zhang and R. Khatami, “Predominant endothelial vasomotor activity during human sleep: a near-infrared spectroscopy study,” Eur. J. Neurosci. 40(9), 3396–3404 (2014).
[Crossref] [PubMed]

Exp. Brain Res. (1)

F. Fregni, P. S. Boggio, M. Nitsche, F. Bermpohl, A. Antal, E. Feredoes, M. A. Marcolin, S. P. Rigonatti, M. T. Silva, W. Paulus, and A. Pascual-Leone, “Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory,” Exp. Brain Res. 166(1), 23–30 (2005).
[Crossref] [PubMed]

Front. Aging Neurosci. (1)

M. Meinzer, R. Lindenberg, M. M. Sieg, L. Nachtigall, L. Ulm, and A. Flöel, “Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults,” Front. Aging Neurosci. 6, 253 (2014).
[Crossref] [PubMed]

Front. Hum. Neurosci. (1)

S. Kiran, E. L. Meier, K. J. Kapse, and P. A. Glynn, “Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia,” Front. Hum. Neurosci. 9, 316 (2015).
[Crossref] [PubMed]

Front. Psychiatry (1)

J. P. Brasil-Neto, “Learning, memory, and transcranial direct current stimulation,” Front. Psychiatry 3, 80 (2012).
[Crossref] [PubMed]

Hum. Brain Mapp. (2)

A. De Benedictis, L. Petit, M. Descoteaux, C. E. Marras, M. Barbareschi, F. Corsini, M. Dallabona, F. Chioffi, and S. Sarubbo, “New insights in the homotopic and heterotopic connectivity of the frontal portion of the human corpus callosum revealed by microdissection and diffusion tractography,” Hum. Brain Mapp. 37(12), 4718–4735 (2016).
[Crossref] [PubMed]

A. S. Dick, S. Goldin-Meadow, U. Hasson, J. I. Skipper, and S. L. Small, “Co-speech gestures influence neural activity in brain regions associated with processing semantic information,” Hum. Brain Mapp. 30(11), 3509–3526 (2009).
[Crossref] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

A. Stefanovska, “Coupled oscillators. Complex but not complicated cardiovascular and brain interactions,” IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007).
[Crossref] [PubMed]

Int. J. Neuropsychopharmacol. (1)

S. J. Pelletier and F. Cicchetti, “Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models,” Int. J. Neuropsychopharmacol. 18(2), pyu047 (2015).
[Crossref] [PubMed]

Int. J. Psychophysiol. (1)

G. Pfurtscheller, G. Bauernfeind, S. C. Wriessnegger, and C. Neuper, “Focal frontal (de)oxyhemoglobin responses during simple arithmetic,” Int. J. Psychophysiol. 76(3), 186–192 (2010).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt. 10(1), 011014 (2005).
[Crossref] [PubMed]

J. Cao, B. Khan, N. Hervey, F. Tian, M. R. Delgado, N. J. Clegg, L. Smith, H. Roberts, K. Tulchin-Francis, A. Shierk, L. Shagman, D. MacFarlane, H. Liu, and G. Alexandrakis, “Evaluation of cortical plasticity in children with cerebral palsy undergoing constraint-induced movement therapy based on functional near-infrared spectroscopy,” J. Biomed. Opt. 20(4), 046009 (2015).
[Crossref] [PubMed]

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. M. Stowe, and G. Alexandrakis, “Functional near-infrared spectroscopy maps cortical plasticity underlying altered motor performance induced by transcranial direct current stimulation,” J. Biomed. Opt. 18(11), 116003 (2013).
[Crossref] [PubMed]

F. Tian, F. A. Kozel, A. Yennu, P. E. Croarkin, S. M. McClintock, K. S. Mapes, M. M. Husain, and H. Liu, “Test-retest assessment of cortical activation induced by repetitive transcranial magnetic stimulation with brain atlas-guided optical topography,” J. Biomed. Opt. 17(11), 116020 (2012).

J. Cogn. Neurosci. (3)

V. Fiori, M. Coccia, C. V. Marinelli, V. Vecchi, S. Bonifazi, M. G. Ceravolo, L. Provinciali, F. Tomaiuolo, and P. Marangolo, “Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects,” J. Cogn. Neurosci. 23(9), 2309–2323 (2011).
[Crossref] [PubMed]

A. Flöel, N. Rösser, O. Michka, S. Knecht, and C. Breitenstein, “Noninvasive brain stimulation improves language learning,” J. Cogn. Neurosci. 20(8), 1415–1422 (2008).
[Crossref] [PubMed]

P. Marangolo, V. Fiori, U. Sabatini, G. De Pasquale, C. Razzano, C. Caltagirone, and T. Gili, “Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia,” J. Cogn. Neurosci. 28(5), 724–738 (2016).
[Crossref] [PubMed]

J. Neural Eng. (1)

G. Bauernfeind, S. C. Wriessnegger, I. Daly, and G. R. Müller-Putz, “Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).
[Crossref] [PubMed]

J. Neurosci. (2)

J. R. Binder, J. A. Frost, T. A. Hammeke, R. W. Cox, S. M. Rao, and T. Prieto, “Human brain language areas identified by functional magnetic resonance imaging,” J. Neurosci. 17(1), 353–362 (1997).
[Crossref] [PubMed]

M. Meinzer, D. Antonenko, R. Lindenberg, S. Hetzer, L. Ulm, K. Avirame, T. Flaisch, and A. Flöel, “Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation,” J. Neurosci. 32(5), 1859–1866 (2012).
[Crossref] [PubMed]

J. Physiol. (1)

M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol. 527(3), 633–639 (2000).
[Crossref] [PubMed]

Magn. Reson. Med. (1)

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magn. Reson. Med. 34(4), 537–541 (1995).
[Crossref] [PubMed]

Microvasc. Res. (1)

H. D. Kvernmo, A. Stefanovska, K. A. Kirkebøen, and K. Kvernebo, “Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators,” Microvasc. Res. 57(3), 298–309 (1999).
[Crossref] [PubMed]

Mol. Interv. (1)

H. Nilsson and C. Aalkjaer, “Vasomotion: mechanisms and physiological importance,” Mol. Interv. 3(2), 79–89, 51 (2003).
[Crossref] [PubMed]

Nat. Neurosci. (1)

J. K. Rilling, M. F. Glasser, T. M. Preuss, X. Ma, T. Zhao, X. Hu, and T. E. Behrens, “The evolution of the arcuate fasciculus revealed with comparative DTI,” Nat. Neurosci. 11(4), 426–428 (2008).
[Crossref] [PubMed]

Nat. Rev. Neurosci. (1)

E. Bullmore and O. Sporns, “The economy of brain network organization,” Nat. Rev. Neurosci. 13(5), 336–349 (2012).
[Crossref] [PubMed]

Neuroimage (13)

T. Funane, H. Atsumori, T. Katura, A. N. Obata, H. Sato, Y. Tanikawa, E. Okada, and M. Kiguchi, “Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis,” Neuroimage 85(Pt 1), 150–165 (2014).
[Crossref] [PubMed]

R. B. Saager, N. L. Telleri, and A. J. Berger, “Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS,” Neuroimage 55(4), 1679–1685 (2011).
[Crossref] [PubMed]

L. Gagnon, M. A. Yücel, D. A. Boas, and R. J. Cooper, “Further improvement in reducing superficial contamination in NIRS using double short separation measurements,” Neuroimage 85(Pt 1), 127–135 (2014).
[Crossref] [PubMed]

F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’acqua, and G. Sparacino, “A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements,” Neuroimage 72, 106–119 (2013).
[Crossref] [PubMed]

S. B. Erdoğan, M. A. Yücel, and A. Akın, “Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI,” Neuroimage 87, 490–504 (2014).
[Crossref] [PubMed]

D. Wildgruber, A. Riecker, I. Hertrich, M. Erb, W. Grodd, T. Ethofer, and H. Ackermann, “Identification of emotional intonation evaluated by fMRI,” Neuroimage 24(4), 1233–1241 (2005).
[Crossref] [PubMed]

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, and A. Villringer, “Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults,” Neuroimage 12(6), 623–639 (2000).
[Crossref] [PubMed]

A. Antal, R. Polania, C. Schmidt-Samoa, P. Dechent, and W. Paulus, “Transcranial direct current stimulation over the primary motor cortex during fMRI,” Neuroimage 55(2), 590–596 (2011).
[Crossref] [PubMed]

J. C. Ye, S. Tak, K. E. Jang, J. Jung, and J. Jang, “NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy,” Neuroimage 44(2), 428–447 (2009).
[Crossref] [PubMed]

A. C. Merzagora, G. Foffani, I. Panyavin, L. Mordillo-Mateos, J. Aguilar, B. Onaral, and A. Oliviero, “Prefrontal hemodynamic changes produced by anodal direct current stimulation,” Neuroimage 49(3), 2304–2310 (2010).
[Crossref] [PubMed]

R. Holland, A. P. Leff, W. D. Penny, J. C. Rothwell, and J. Crinion, “Modulation of frontal effective connectivity during speech,” Neuroimage 140, 126–133 (2016).
[Crossref] [PubMed]

M. Lobier, F. Siebenhühner, S. Palva, and J. M. Palva, “Phase transfer entropy: a novel phase-based measure for directed connectivity in networks coupled by oscillatory interactions,” Neuroimage 85(Pt 2), 853–872 (2014).
[Crossref] [PubMed]

Neurology (1)

M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology 57(10), 1899–1901 (2001).
[Crossref] [PubMed]

Neuron (1)

T. Akam and D. M. Kullmann, “Oscillations and filtering networks support flexible routing of information,” Neuron 67(2), 308–320 (2010).
[Crossref] [PubMed]

Neurophotonics (6)

J. Cao and H. Liu, “Modulating the resting-state functional connectivity patterns of language processing areas in the human brain with anodal transcranial direct current stimulation applied over the Broca’s area,” Neurophotonics 5(2), 025002 (2018).
[Crossref] [PubMed]

T. Funane, H. Sato, N. Yahata, R. Takizawa, Y. Nishimura, A. Kinoshita, T. Katura, H. Atsumori, M. Fukuda, K. Kasai, H. Koizumi, and M. Kiguchi, “Concurrent fNIRS-fMRI measurement to validate a method for separating deep and shallow fNIRS signals by using multidistance optodes,” Neurophotonics 2(1), 015003 (2015).
[Crossref] [PubMed]

N. Hervey, B. Khan, L. Shagman, F. Tian, M. R. Delgado, K. Tulchin-Francis, A. Shierk, H. Roberts, L. Smith, D. Reid, N. J. Clegg, H. Liu, D. MacFarlane, and G. Alexandrakis, “Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy,” Neurophotonics 1(2), 025009 (2014).
[Crossref] [PubMed]

I. Tachtsidis and F. Scholkmann, “False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward,” Neurophotonics 3(3), 031405 (2016).
[Crossref] [PubMed]

B. M. Bosch, A. Bringard, G. Ferretti, S. Schwartz, and K. Iglói, “Effect of cerebral vasomotion during physical exercise on associative memory, a near-infrared spectroscopy study,” Neurophotonics 4(4), 041404 (2017).
[Crossref] [PubMed]

X. Zhang, J. A. Noah, and J. Hirsch, “Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering,” Neurophotonics 3(1), 015004 (2016).
[Crossref] [PubMed]

Neuropsychobiology (1)

D. Zilles, M. Lewandowski, H. Vieker, I. Henseler, E. Diekhof, T. Melcher, M. Keil, and O. Gruber, “Gender differences in verbal and visuospatial working memory performance and networks,” Neuropsychobiology 73(1), 52–63 (2016).
[Crossref] [PubMed]

Neuropsychologia (2)

T. Z. Kincses, A. Antal, M. A. Nitsche, O. Bártfai, and W. Paulus, “Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human,” Neuropsychologia 42(1), 113–117 (2004).
[Crossref] [PubMed]

R. Sparing, M. Dafotakis, I. G. Meister, N. Thirugnanasambandam, and G. R. Fink, “Enhancing language performance with non-invasive brain stimulation-a transcranial direct current stimulation study in healthy humans,” Neuropsychologia 46(1), 261–268 (2008).
[Crossref] [PubMed]

Neurorehabil. Neural Repair (1)

M. Meinzer, C. Breitenstein, U. Westerhoff, J. Sommer, N. Rösser, A. D. Rodriguez, S. Harnish, S. Knecht, and A. Flöel, “Motor cortex preactivation by standing facilitates word retrieval in aphasia,” Neurorehabil. Neural Repair 25(2), 178–187 (2011).
[Crossref] [PubMed]

Physical and Engineering Sciences (1)

S. B. Eickhoff, S. Heim, K. Zilles, and K. Amunts, “A systems perspective on the effective connectivity of overt speech production,” Philosophical Transactions of the Royal Society of London A: Mathematical,” Physical and Engineering Sciences 367(1896), 2399–2421 (2009).
[Crossref]

PLOS Comput. Biol. (2)

J.-Y. Moon, U. Lee, S. Blain-Moraes, and G. A. Mashour, “General relationship of global topology, local dynamics, and directionality in large-scale brain networks,” PLOS Comput. Biol. 11(4), e1004225 (2015).
[Crossref] [PubMed]

W. de Haan, K. Mott, E. C. van Straaten, P. Scheltens, and C. J. Stam, “Activity dependent degeneration explains hub vulnerability in Alzheimer’s disease,” PLOS Comput. Biol. 8(8), e1002582 (2012).
[Crossref] [PubMed]

PLoS One (3)

E. H. Nijhuis, A. M. van Cappellen van Walsum, and D. G. Norris, “Topographic hub maps of the human structural neocortical network,” PLoS One 8(6), e65511 (2013).
[Crossref] [PubMed]

A. Costa, M. Oliveri, F. Barban, S. Bonnì, G. Koch, C. Caltagirone, and G. A. Carlesimo, “The right frontopolar cortex is involved in visual-spatial prospective memory,” PLoS One 8(2), e56039 (2013).
[Crossref] [PubMed]

M. Xia, J. Wang, and Y. He, “BrainNet Viewer: a network visualization tool for human brain connectomics,” PLoS One 8(7), e68910 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. U.S.A. 100(1), 253–258 (2003).
[Crossref] [PubMed]

E. Tulving, S. Kapur, H. J. Markowitsch, F. I. Craik, R. Habib, and S. Houle, “Neuroanatomical correlates of retrieval in episodic memory: auditory sentence recognition,” Proc. Natl. Acad. Sci. U.S.A. 91(6), 2012–2015 (1994).
[Crossref] [PubMed]

A. Hillebrand, P. Tewarie, E. van Dellen, M. Yu, E. W. Carbo, L. Douw, A. A. Gouw, E. C. van Straaten, and C. J. Stam, “Direction of information flow in large-scale resting-state networks is frequency-dependent,” Proc. Natl. Acad. Sci. U.S.A. 113(14), 3867–3872 (2016).
[Crossref] [PubMed]

Prog. Biophys. Mol. Biol. (1)

M. Wibral, B. Rahm, M. Rieder, M. Lindner, R. Vicente, and J. Kaiser, “Transfer entropy in magnetoencephalographic data: quantifying information flow in cortical and cerebellar networks,” Prog. Biophys. Mol. Biol. 105(1-2), 80–97 (2011).
[Crossref] [PubMed]

Psychophysiology (1)

M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology 40(4), 548–560 (2003).
[Crossref] [PubMed]

Stroke (2)

J. M. Baker, C. Rorden, and J. Fridriksson, “Using transcranial direct-current stimulation to treat stroke patients with aphasia,” Stroke 41(6), 1229–1236 (2010).
[Crossref] [PubMed]

J. Fridriksson, J. D. Richardson, J. M. Baker, and C. Rorden, “Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study,” Stroke 42(3), 819–821 (2011).
[Crossref] [PubMed]

Trends Cogn. Sci. (1)

A. D. Friederici, “Pathways to language: fiber tracts in the human brain,” Trends Cogn. Sci. 13(4), 175–181 (2009).
[Crossref] [PubMed]

Other (8)

C. Repper-Day, “Mapping dynamic brain connectivity using EEG, TMS, and Transfer Entropy,” (University of Manchester, 2017).

M. Catani and M. T. de Schotten, Atlas of human brain connections (Oxford University Press, 2012).

F. Tian, Z.-J. Lin, and H. Liu, “EasyTopo: A toolbox for rapid diffuse optical topography based on a standard template of brain atlas,” in Proc. of SPIE Vol, 2013), 85782J.
[Crossref]

M. Rosenblum, A. Pikovsky, J. Kurths, C. Schäfer, and P. A. Tass, “Phase synchronization: from theory to data analysis,” Handbook of Biological Physics, Vol. 4 (Elsevier, 2001), pp. 279–321.

A. Villringer, “Understanding functional neuroimaging methods based on neurovascular coupling,” in Optical Imaging of Brain Function and Metabolism 2 (Springer, 1997), pp. 177–193.

B. Khan, T. Hodics, N. Hervey, G. Kondraske, A. Stowe, and G. Alexandrakis, “Enhancing motor performance improvement by personalizing non-invasive cortical stimulation with concurrent functional near-infrared spectroscopy and multi-modal motor measurements,” in SPIE BiOS, (International Society for Optics and Photonics, 2015), 93051A.

W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols, Statistical Parametric Mapping: the Analysis of Functional Brain Images (Elsevier, 2011).

S. Patel, T. Katura, A. Maki, and I. Tachtsidis, “Quantification of systemic interference in optical topography data during frontal lobe and motor cortex activation: an independent component analysis,” in Oxygen Transport to Tissue XXXII (Springer, 2011), pp. 45–51.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Overall experimental setup. The computer screen only displays the word “Rest” during data acquisition. FNIRS optodes and tDCS electrodes were placed on the subject’s head as described in “FNIRS Imaging Setup Combined with tDCS”. (b) The fNIRS probe geometry with 26 sources and 28 detectors placed over a subject’s head. The separation of all source and detectors was 3 cm. (Red dots: sources, Blue dots: detectors). (c) Placement of fNIRS-tDCS assembly on a subject’s head. The gray arrow points to the wire connecting the cathodal patch and the red arrow points to the wire connecting the anodal patch.
Fig. 2
Fig. 2 Co-registration of fNIRS source-detector channels (mid-way points between source and detector pairs) on a standard human brain atlas: (a) Sagittal view (Left), (b) Sagittal view (Right), (c) Top view and (d) Coronal view. The tDCS anodal (red dashed square) and cathodal (black dashed square) patches were placed on the left FC5 position, shown in (a), and the right Fp2 position, shown in (d), respectively.
Fig. 3
Fig. 3 The tDCS protocol timeline.
Fig. 4
Fig. 4 Mean dPTE for each channel displayed as a color-coded map viewed from top, left, right and front for the four stimulation sessions: Before tDCS [(a), (e), (i) and (m)], Low Current tDCS [(b), (f), (j) and (n)], High Current tDCS [(c), (g), (k) and (o)] and After High Current tDCS [(d), (h), (l) and (p)]. Hot (yellow – red) and cold (blue – green) colors indicate information outflow and inflow, respectively.
Fig. 5
Fig. 5 Changes in information flow direction between the left Broca’s area (seed) and other cortical regions induced by different tDCS stimulation conditions. Group-level significant differences (p<0.05) in information flow direction between pairs of detector locations for Before tDCS versus Low Current tDCS [(a), (d)], versus High Current tDCS [(b), (e)], and versus After High Current tDCS [(c), (f)].
Fig. 6
Fig. 6 Changes in information flow direction between the right Broca’s homologue (seed) and other cortical regions induced by different tDCS stimulation conditions. Group-level significant differences (p<0.05) in information flow direction between pairs of detector locations for Before tDCS versus Low Current tDCS [(a), (d)], versus High Current tDCS [(b), (e)], and versus After High Current tDCS [(c), (f)].
Fig. 7
Fig. 7 Mean dPTE in the endothelial frequency band for each channel displayed as a color-coded map viewed from top, left, right and front for four different sessions: Before tDCS [(a), (e), (i) and (m)], Low Current tDCS [(b), (e), (j) and (n)], High Current tDCS [(c), (g), (k) and (o)] and After High Current tDCS [(d),(h), (l) and (p)]. Hot (yellow – red) and cold (blue – green) colors indicate information outflow and inflow, respectively.
Fig. 8
Fig. 8 Mean dPTE in the neurogenic frequency band for each channel displayed as a color-coded map viewed from top, left, right and front for four different sessions: Before tDCS [(a), (e), (i) and (m)], Low Current tDCS [(b), (f), (j) and (n)], High Current tDCS [(c), (g), (k) and (o)] and After High Current tDCS [(d),(h), (l) and (p)]. Hot (yellow – red) and cold (blue – green) colors indicate information outflow and inflow, respectively.
Fig. 9
Fig. 9 Mean dPTE in the myogenic frequency band for each channel displayed as a color-coded map viewed from top, left, right and front for four different sessions: Before tDCS [(a), (e), (i) and (m)], Low Current tDCS [(b), (f), (j) and (n)], High Current tDCS [(c), (g), (k) and (o)] and After High Current tDCS [(d),(h), (l) and (p)]. Hot (yellow – red) and cold (blue – green) colors indicate information outflow and inflow, respectively.
Fig. 10
Fig. 10 Mean dPTE for each channel of entire frequency band displayed as a color-coded map viewed from left for the four stimulation sessions of 13 subjects: Before tDCS [first column], Low Current tDCS [second column], High Current tDCS [third column] and After High Current tDCS [fourth column]. Hot (yellow – red) and cold (blue – green) colors indicate information outflow and inflow, respectively.

Tables (4)

Tables Icon

Table 1 Brodmann areas with significantly increased information influx originating from Channel 27 (left Broca’s area)

Tables Icon

Table 2 Brodmann areas with significantly increased information influx originating from Channel 34 (right Broca’s homologue)

Tables Icon

Table 3 Brodmann areas with significantly increased information influx originating from hot spots in the left hemisphere

Tables Icon

Table 4 Brodmann areas with significantly increased information influx originating from hot spots in the right hemisphere

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

PT E xy =H( Y t+δ | Y t )H( Y t+δ | Y t , X t   ),
dPT E xy = PT E xy PT E xy +PT E yx ,

Metrics