Abstract

The fragmentation efficiency on Bego artificial stones during lithotripsy and the propulsive effect (via video tracking) was investigated for a variety of laser settings. A variation of the laser settings (pulse energy, pulse duration, repetition rate) altered the total application time required for stone fragmentation, the stone break up time, and the propulsion. The obtained results can be used to develop lithotripsy devices providing an optimal combination of low stone propulsion and high fragmentation efficacy, which can then be evaluated in a clinical setting. Additionally, the fluorescence of human kidney stones was inspected endoscopically in vivo. Fluorescence light can be used to detect stone-free areas or to clearly distinguish calculi from surrounding tissue or operation tools.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ex vivo testing of air-cooled CW/modulated 30  W thulium fiber laser for lithotripsy

Debasis Pal, Sourav Das Chowdhury, Anirban Dhar, Siddharth Saraf, Krishnendu Maiti, Dilip Kumar Pal, Ranjan Sen, and Atasi Pal
Appl. Opt. 58(25) 6720-6724 (2019)

Recent advances in infrared laser lithotripsy [Invited]

Nathaniel M. Fried
Biomed. Opt. Express 9(9) 4552-4568 (2018)

Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations

Debasis Pal, Aditi Ghosh, Ranjan Sen, and Atasi Pal
Appl. Opt. 55(23) 6151-6155 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Gettman and J. W. Segura, “Management of ureteric stones: issues and controversies,” BJU Int. 95(s2), 85–93 (2005).
    [Crossref] [PubMed]
  2. S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8(4), 341–356 (1988).
    [Crossref] [PubMed]
  3. A. Hofstetter, “Lasers in urology,” Lasers Surg. Med. 6(4), 412–414 (1986).
    [Crossref] [PubMed]
  4. A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
    [Crossref] [PubMed]
  5. B. Altay, B. Erkurt, and S. Albayrak, “A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy,” Lasers Med. Sci. 32(7), 1615–1619 (2017).
    [Crossref] [PubMed]
  6. A. Hofstetter, “The Laser in Urology (State of the Art),” Laser-Medizin 15(4), 155–160 (2000).
  7. A. J. Marks, J. Qiu, T. E. Milner, K. F. Chan, and J. M. H. Teichman, “Laser lithotripsy physics,” in Urinary Tract Stone Disease, N. P. Rao, G.M. Preminger, and J. P. Kavanagh, eds. (Springer, 2011), pp. 301–309.
  8. R. Sroka, T. Pongratz, F. Strittmatter, M. Eisel, and S. Ströbl, “In-vitro investigation on fragmentation/dusting and fluorescence during Ho:YAG-Laser induced lithotripsy,” (Conference Presentation) in SPIE BiOS (SPIE, 2018).
  9. H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
    [Crossref] [PubMed]
  10. M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
    [Crossref] [PubMed]
  11. H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
    [Crossref] [PubMed]
  12. J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
    [Crossref] [PubMed]
  13. M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
    [Crossref] [PubMed]
  14. P. Kronenberg and O. Traxer, “In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters,” BJU Int. 114(2), 261–267 (2014).
    [Crossref] [PubMed]
  15. M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
    [Crossref] [PubMed]
  16. S. P. Dretler, “Ureteroscopy for Proximal Ureteral Calculi: Prevention of Stone Migration,” J. Endourol. 14(7), 565–567 (2000).
    [Crossref] [PubMed]
  17. R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
    [Crossref] [PubMed]
  18. P. Kronenberg and O. Traxer, “Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers,” World J. Urol. 33(4), 463–469 (2015).
    [Crossref] [PubMed]
  19. T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
    [Crossref] [PubMed]
  20. R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
    [Crossref] [PubMed]
  21. J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
    [Crossref] [PubMed]
  22. M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
    [Crossref] [PubMed]
  23. D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
    [Crossref]
  24. B. Lange, J. Cordes, and R. Brinkmann, “Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,” Lasers Surg. Med. 47(9), 737–744 (2015).
    [Crossref] [PubMed]
  25. B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
    [Crossref] [PubMed]
  26. K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
    [Crossref]
  27. R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
    [Crossref] [PubMed]
  28. D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
    [Crossref] [PubMed]
  29. E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
    [Crossref] [PubMed]
  30. D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
    [Crossref] [PubMed]
  31. P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
    [Crossref] [PubMed]
  32. A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
    [Crossref]
  33. D. Beaucamp, R. Engelhardt, P. Hering, and W. Meyer, Stone Identification during Laser Induced Shock Wave Lithotripsy (Springer Berlin Heidelberg, 1990).
  34. K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
    [Crossref] [PubMed]
  35. M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
    [Crossref]
  36. J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
    [Crossref]
  37. S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
    [Crossref] [PubMed]
  38. S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
    [Crossref] [PubMed]
  39. D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
    [Crossref] [PubMed]
  40. A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
    [Crossref] [PubMed]
  41. A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
    [Crossref] [PubMed]
  42. W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
    [Crossref] [PubMed]

2018 (7)

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
[Crossref]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

2017 (10)

A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
[Crossref] [PubMed]

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
[Crossref]

B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
[Crossref] [PubMed]

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

B. Altay, B. Erkurt, and S. Albayrak, “A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy,” Lasers Med. Sci. 32(7), 1615–1619 (2017).
[Crossref] [PubMed]

M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
[Crossref] [PubMed]

T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
[Crossref] [PubMed]

2016 (1)

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

2015 (5)

B. Lange, J. Cordes, and R. Brinkmann, “Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,” Lasers Surg. Med. 47(9), 737–744 (2015).
[Crossref] [PubMed]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

P. Kronenberg and O. Traxer, “Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers,” World J. Urol. 33(4), 463–469 (2015).
[Crossref] [PubMed]

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

2014 (1)

P. Kronenberg and O. Traxer, “In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters,” BJU Int. 114(2), 261–267 (2014).
[Crossref] [PubMed]

2012 (3)

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

2011 (1)

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

2010 (1)

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

2009 (1)

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

2006 (1)

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

2005 (1)

M. T. Gettman and J. W. Segura, “Management of ureteric stones: issues and controversies,” BJU Int. 95(s2), 85–93 (2005).
[Crossref] [PubMed]

2003 (1)

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

2002 (1)

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

2000 (2)

A. Hofstetter, “The Laser in Urology (State of the Art),” Laser-Medizin 15(4), 155–160 (2000).

S. P. Dretler, “Ureteroscopy for Proximal Ureteral Calculi: Prevention of Stone Migration,” J. Endourol. 14(7), 565–567 (2000).
[Crossref] [PubMed]

1997 (1)

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

1988 (1)

S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8(4), 341–356 (1988).
[Crossref] [PubMed]

1986 (1)

A. Hofstetter, “Lasers in urology,” Lasers Surg. Med. 6(4), 412–414 (1986).
[Crossref] [PubMed]

Abourbih, S. R.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Albayrak, S.

B. Altay, B. Erkurt, and S. Albayrak, “A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy,” Lasers Med. Sci. 32(7), 1615–1619 (2017).
[Crossref] [PubMed]

Aldoukhi, A. H.

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
[Crossref] [PubMed]

A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
[Crossref]

Alsyouf, M.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Altay, B.

B. Altay, B. Erkurt, and S. Albayrak, “A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy,” Lasers Med. Sci. 32(7), 1615–1619 (2017).
[Crossref] [PubMed]

Andonian, S.

M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
[Crossref] [PubMed]

Arakeri, N. V.

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Arenas, J. L.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Athanasopoulos, G.

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

Badaan, S.

M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
[Crossref] [PubMed]

Bader, M. J.

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Bafaloukas, N.

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

Baldwin, D. D.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Bhalani, V.

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

Brandenburg, A.

D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
[Crossref]

Brinkmann, R.

B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
[Crossref] [PubMed]

B. Lange, J. Cordes, and R. Brinkmann, “Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,” Lasers Surg. Med. 47(9), 737–744 (2015).
[Crossref] [PubMed]

Carlos, E. C.

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

Chen, S.

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

Chew, B. H.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Chia, R. W. J.

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

Cho, M. C.

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

Cho, S. Y.

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

Choi, B.

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Cocks, H. F.

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Cordes, J.

B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
[Crossref] [PubMed]

B. Lange, J. Cordes, and R. Brinkmann, “Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,” Lasers Surg. Med. 47(9), 737–744 (2015).
[Crossref] [PubMed]

de Boorder, T.

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

Denstedt, J. D.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Donalisio da Silva, R.

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

Dretler, S. P.

S. P. Dretler, “Ureteroscopy for Proximal Ureteral Calculi: Prevention of Stone Migration,” J. Endourol. 14(7), 565–567 (2000).
[Crossref] [PubMed]

S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8(4), 341–356 (1988).
[Crossref] [PubMed]

Eisel, M.

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

Elhilali, M. M.

M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
[Crossref] [PubMed]

Erkurt, B.

B. Altay, B. Erkurt, and S. Albayrak, “A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy,” Lasers Med. Sci. 32(7), 1615–1619 (2017).
[Crossref] [PubMed]

Esch, E.

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Fried, N. M.

T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
[Crossref] [PubMed]

Gettman, M. T.

M. T. Gettman and J. W. Segura, “Management of ureteric stones: issues and controversies,” BJU Int. 95(s2), 85–93 (2005).
[Crossref] [PubMed]

Ghani, K. R.

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
[Crossref] [PubMed]

A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
[Crossref]

Gonzalez, D. A.

T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
[Crossref] [PubMed]

Graser, R.

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

Gupta, M.

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

Gustafson, D.

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

Hall, T. L.

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
[Crossref] [PubMed]

A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
[Crossref]

Haseke, N.

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Hasenberg, T.

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

Hecht, V.

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Hein, S.

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

Herrmann, T.

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

Hofstetter, A.

A. Hofstetter, “The Laser in Urology (State of the Art),” Laser-Medizin 15(4), 155–160 (2000).

A. Hofstetter, “Lasers in urology,” Lasers Surg. Med. 6(4), 412–414 (1986).
[Crossref] [PubMed]

Hoopman, J.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Hruby, G. W.

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

Hutchens, T. C.

T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
[Crossref] [PubMed]

Ibrahim, A.

M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
[Crossref] [PubMed]

Irby, P. B.

T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
[Crossref] [PubMed]

Jeong, H.

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

Jocham, D.

B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
[Crossref] [PubMed]

Jonat, L. M.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Kang, H. W.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

Keheila, M.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Kelly, C. R.

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

Khoder, W.

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

Kim, F. J.

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

Kim, J.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Klaver, P.

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

Koritsiadis, G.

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

Kronenberg, P.

P. Kronenberg and O. Traxer, “Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers,” World J. Urol. 33(4), 463–469 (2015).
[Crossref] [PubMed]

P. Kronenberg and O. Traxer, “In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters,” BJU Int. 114(2), 261–267 (2014).
[Crossref] [PubMed]

Landman, J.

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

Lange, B.

B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
[Crossref] [PubMed]

B. Lange, J. Cordes, and R. Brinkmann, “Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,” Lasers Surg. Med. 47(9), 737–744 (2015).
[Crossref] [PubMed]

Lee, H.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Lee, J. W.

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

Li, R.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Liao, L.

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

Lightfoot, M.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Lipkin, M. E.

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

Lock, T. M. T. W.

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

MacConaghy, B.

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

Macejko, A.

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

Maldonado, J.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Maxwell, A. D.

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

Miernik, A.

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
[Crossref]

Milner, T.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Molina, W. R.

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

Nadler, R. B.

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

Nagele, U.

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

Nomikos, M. S.

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

Noordmans, H. J.

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

Nott, L.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Oh, J.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

Olgin, G.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Papanikolaou, S.

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

Park, J.

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

Petzold, R.

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

Pongratz, T.

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Preminger, G. M.

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Qiu, J.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Rajabhandharaks, D.

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

Ramos, P.

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

Razvi, H.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Rebuck, D. A.

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

Rem, A. I.

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

Roberts, W. W.

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
[Crossref] [PubMed]

A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
[Crossref]

Ruckle, D.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Ryan, R. T.

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Sankin, G.

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Scheib, G.

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

Schlager, D.

D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
[Crossref]

Schoenthaler, M.

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

Schütz, J.

D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
[Crossref]

Sea, J.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Segura, J. W.

M. T. Gettman and J. W. Segura, “Management of ureteric stones: issues and controversies,” BJU Int. 95(s2), 85–93 (2005).
[Crossref] [PubMed]

Sehrt, D.

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

Silva, I. N.

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

Simmons, W. N.

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Sofer, M.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Son, H.

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

Sroka, R.

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Steigenhöfer, D.

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

Stief, C. G.

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Stock, K.

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

Strittmatter, F.

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

Ströbl, S.

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

Tan, J.

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

Teichman, J. M.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Teichman, J. M. H.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Tilki, D.

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

Tom, W. R.

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

Traxer, O.

P. Kronenberg and O. Traxer, “Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers,” World J. Urol. 33(4), 463–469 (2015).
[Crossref] [PubMed]

P. Kronenberg and O. Traxer, “In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters,” BJU Int. 114(2), 261–267 (2014).
[Crossref] [PubMed]

Vogel, A.

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

Wang, B.

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

Watterson, J. D.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Welch, A. J.

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

Wetterauer, U.

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

Wollin, D. A.

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

Wollin, T. A.

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Wu, W.

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

Xavier, K.

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

Xuan, J. R.

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

Yang, S.

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

Yeo, A.

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

Zhang, J. J.

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

Zhong, P.

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Zhu, L.

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

BJU Int. (2)

M. T. Gettman and J. W. Segura, “Management of ureteric stones: issues and controversies,” BJU Int. 95(s2), 85–93 (2005).
[Crossref] [PubMed]

P. Kronenberg and O. Traxer, “In vitro fragmentation efficiency of holmium: yttrium-aluminum-garnet (YAG) laser lithotripsy--a comprehensive study encompassing different frequencies, pulse energies, total power levels and laser fibre diameters,” BJU Int. 114(2), 261–267 (2014).
[Crossref] [PubMed]

Eur. Urol. Suppl. (2)

D. Schlager, J. Schütz, A. Brandenburg, and A. Miernik, “1201 - Seek and destroy: A novel laser system with real-time automatic target identification for urinary stone lithotripsy. An in-vivo study,” Eur. Urol. Suppl. 17(2), e1682 (2018).
[Crossref]

M. S. Nomikos, G. Koritsiadis, N. Bafaloukas, G. Athanasopoulos, and S. Papanikolaou, “P10 - Safety and efficacy of high power Holmium-Yag laser in percutaneous nephrolithotomy,” Eur. Urol. Suppl. 17(4), e2017 (2018).
[Crossref]

Frontiers in Surgery (1)

A. H. Aldoukhi, W. W. Roberts, T. L. Hall, and K. R. Ghani, “Holmium laser lithotripsy in the new stone age: dust or bust?” Frontiers in Surgery 4, 57 (2017).
[Crossref]

J. Biomed. Opt. (1)

T. C. Hutchens, D. A. Gonzalez, P. B. Irby, and N. M. Fried, “Fiber optic muzzle brake tip for reducing fiber burnback and stone retropulsion during thulium fiber laser lithotripsy,” J. Biomed. Opt. 22(1), 018001 (2017).
[Crossref] [PubMed]

J. Endourol. (8)

S. P. Dretler, “Ureteroscopy for Proximal Ureteral Calculi: Prevention of Stone Migration,” J. Endourol. 14(7), 565–567 (2000).
[Crossref] [PubMed]

M. M. Elhilali, S. Badaan, A. Ibrahim, and S. Andonian, “Use of the Moses Technology to Improve Holmium Laser Lithotripsy Outcomes: A Preclinical Study,” J. Endourol. 31(6), 598–604 (2017).
[Crossref] [PubMed]

R. Li, D. Ruckle, M. Keheila, J. Maldonado, M. Lightfoot, M. Alsyouf, A. Yeo, S. R. Abourbih, G. Olgin, J. L. Arenas, and D. D. Baldwin, “High-frequency dusting versus conventional holmium laser lithotripsy for intrarenal and ureteral calculi,” J. Endourol. 31(3), 272–277 (2017).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

D. A. Wollin, E. C. Carlos, W. R. Tom, W. N. Simmons, G. M. Preminger, and M. E. Lipkin, “Effect of laser settings and irrigation rates on ureteral temperature during holmium laser lithotripsy, an in vitro model,” J. Endourol. 32(1), 59–63 (2018).
[Crossref] [PubMed]

A. H. Aldoukhi, K. R. Ghani, T. L. Hall, and W. W. Roberts, “Thermal response to high-power holmium laser lithotripsy,” J. Endourol. 31(12), 1308–1312 (2017).
[Crossref] [PubMed]

A. H. Aldoukhi, T. L. Hall, K. R. Ghani, A. D. Maxwell, B. MacConaghy, and W. W. Roberts, “Caliceal fluid temperature during high-power holmium laser lithotripsy in an in vivo porcine model,” J. Endourol. 32(8), 724–729 (2018).
[Crossref] [PubMed]

W. R. Molina, I. N. Silva, R. Donalisio da Silva, D. Gustafson, D. Sehrt, and F. J. Kim, “Influence of saline on temperature profile of laser lithotripsy activation,” J. Endourol. 29(2), 235–239 (2015).
[Crossref] [PubMed]

J. Urol. (4)

J. W. Lee, J. Park, M. C. Cho, H. Jeong, H. Son, and S. Y. Cho, “PD30-12 How to perform the dusting technique for calcium oxalate stones during Ho:YAG lithotripsy,” J. Urol. 197(4), 582 (2017).
[Crossref]

J. Sea, L. M. Jonat, B. H. Chew, J. Qiu, B. Wang, J. Hoopman, T. Milner, and J. M. Teichman, “Optimal power settings for Holmium:YAG lithotripsy,” J. Urol. 187(3), 914–919 (2012).
[Crossref] [PubMed]

H. Lee, R. T. Ryan, J. M. H. Teichman, J. Kim, B. Choi, N. V. Arakeri, and A. J. Welch, “Stone retropulsion during holmium:YAG lithotripsy,” J. Urol. 169(3), 881–885 (2003).
[Crossref] [PubMed]

M. Sofer, J. D. Watterson, T. A. Wollin, L. Nott, H. Razvi, and J. D. Denstedt, “Holmium:YAG laser lithotripsy for upper urinary tract calculi in 598 patients,” J. Urol. 167(1), 31–34 (2002).
[Crossref] [PubMed]

Laser-Medizin (1)

A. Hofstetter, “The Laser in Urology (State of the Art),” Laser-Medizin 15(4), 155–160 (2000).

Lasers Med. Sci. (3)

B. Altay, B. Erkurt, and S. Albayrak, “A review study to evaluate holmium:YAG laser lithotripsy with flexible ureteroscopy in patients on ongoing oral anticoagulant therapy,” Lasers Med. Sci. 32(7), 1615–1619 (2017).
[Crossref] [PubMed]

R. Sroka, N. Haseke, T. Pongratz, V. Hecht, D. Tilki, C. G. Stief, and M. J. Bader, “In vitro investigations of repulsion during laser lithotripsy using a pendulum set-up,” Lasers Med. Sci. 27(3), 637–643 (2012).
[Crossref] [PubMed]

J. J. Zhang, D. Rajabhandharaks, J. R. Xuan, R. W. J. Chia, and T. Hasenberg, “Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method,” Lasers Med. Sci. 32(5), 1017–1021 (2017).
[Crossref] [PubMed]

Lasers Surg. Med. (7)

M. Eisel, S. Ströbl, T. Pongratz, F. Strittmatter, and R. Sroka, “In vitro investigations of propulsion during laser lithotripsy using video tracking,” Lasers Surg. Med. 50(4), 333–339 (2018).
[Crossref] [PubMed]

H. W. Kang, H. Lee, J. M. H. Teichman, J. Oh, J. Kim, and A. J. Welch, “Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy,” Lasers Surg. Med. 38(8), 762–772 (2006).
[Crossref] [PubMed]

S. P. Dretler, “Laser lithotripsy: a review of 20 years of research and clinical applications,” Lasers Surg. Med. 8(4), 341–356 (1988).
[Crossref] [PubMed]

A. Hofstetter, “Lasers in urology,” Lasers Surg. Med. 6(4), 412–414 (1986).
[Crossref] [PubMed]

P. Klaver, T. de Boorder, A. I. Rem, T. M. T. W. Lock, and H. J. Noordmans, “In vitro comparison of renal stone laser treatment using fragmentation and popcorn technique,” Lasers Surg. Med. 49(7), 698–704 (2017).
[Crossref] [PubMed]

B. Lange, J. Cordes, and R. Brinkmann, “Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence,” Lasers Surg. Med. 47(9), 737–744 (2015).
[Crossref] [PubMed]

B. Lange, D. Jocham, R. Brinkmann, and J. Cordes, “Stone/tissue differentiation for Holmium laser lithotripsy using autofluorescence: clinical proof of concept study,” Lasers Surg. Med. 49(4), 361–365 (2017).
[Crossref] [PubMed]

Photonics Lasers Med. (1)

K. Stock, D. Steigenhöfer, T. Pongratz, R. Graser, and R. Sroka, “Investigation on cavitation bubble dynamics induced by clinically available Ho:YAG lasers,” Photonics Lasers Med. 5(2), 141–6150 (2016).
[Crossref]

Phys. Med. Biol. (1)

A. Vogel, “Nonlinear absorption: intraocular microsurgery and laser lithotripsy,” Phys. Med. Biol. 42(5), 895–912 (1997).
[Crossref] [PubMed]

Urol. Res. (1)

E. Esch, W. N. Simmons, G. Sankin, H. F. Cocks, G. M. Preminger, and P. Zhong, “A simple method for fabricating artificial kidney stones of different physical properties,” Urol. Res. 38(4), 315–319 (2010).
[Crossref] [PubMed]

Urology (3)

D. A. Rebuck, A. Macejko, V. Bhalani, P. Ramos, and R. B. Nadler, “The natural history of renal stone fragments following ureteroscopy,” Urology 77(3), 564–568 (2011).
[Crossref] [PubMed]

S. Chen, L. Zhu, S. Yang, W. Wu, L. Liao, and J. Tan, “High- vs low-power holmium laser lithotripsy: a prospective, randomized study in patients undergoing multitract minipercutaneous nephrolithotomy,” Urology 79(2), 293–297 (2012).
[Crossref] [PubMed]

K. Xavier, G. W. Hruby, C. R. Kelly, J. Landman, and M. Gupta, “Clinical evaluation of efficacy of novel optically activated digital endoscope protection system against laser energy damage,” Urology 73(1), 37–40 (2009).
[Crossref] [PubMed]

World J. Urol. (4)

S. Hein, R. Petzold, M. Schoenthaler, U. Wetterauer, and A. Miernik, “Thermal effects of Ho: YAG laser lithotripsy: real-time evaluation in an in vitro model,” World J. Urol. 36(9), 1469–1475 (2018).
[Crossref] [PubMed]

R. Sroka, T. Pongratz, G. Scheib, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and M. J. Bader, “Impact of pulse duration on Ho:YAG laser lithotripsy: treatment aspects on the single-pulse level,” World J. Urol. 33(4), 479–485 (2015).
[Crossref] [PubMed]

P. Kronenberg and O. Traxer, “Update on lasers in urology 2014: current assessment on holmium:yttrium-aluminum-garnet (Ho:YAG) laser lithotripter settings and laser fibers,” World J. Urol. 33(4), 463–469 (2015).
[Crossref] [PubMed]

M. J. Bader, T. Pongratz, W. Khoder, C. G. Stief, T. Herrmann, U. Nagele, and R. Sroka, “Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance,” World J. Urol. 33(4), 471–477 (2015).
[Crossref] [PubMed]

Other (3)

A. J. Marks, J. Qiu, T. E. Milner, K. F. Chan, and J. M. H. Teichman, “Laser lithotripsy physics,” in Urinary Tract Stone Disease, N. P. Rao, G.M. Preminger, and J. P. Kavanagh, eds. (Springer, 2011), pp. 301–309.

R. Sroka, T. Pongratz, F. Strittmatter, M. Eisel, and S. Ströbl, “In-vitro investigation on fragmentation/dusting and fluorescence during Ho:YAG-Laser induced lithotripsy,” (Conference Presentation) in SPIE BiOS (SPIE, 2018).

D. Beaucamp, R. Engelhardt, P. Hering, and W. Meyer, Stone Identification during Laser Induced Shock Wave Lithotripsy (Springer Berlin Heidelberg, 1990).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental set-up for the investigation of fragmentation and dusting efficacy.
Fig. 2
Fig. 2 Experimental set-up for the propulsion measurement.
Fig. 3
Fig. 3 Vertical centroid coordinate of a cubical (upper graph) and a spherical (lower graph) phantom stone observed during laser application (1 J/pulse, 1 ms, 10 Hz) as a function of the frame number.
Fig. 4
Fig. 4 Schematic set-up of fluorescence microscope.
Fig. 5
Fig. 5 Fragmentation times and dusting ratios for varying pulse duration, obtained at a constant repetition rate of 10 Hz for pulse energies of 1.0 J (PAverage: 10W, upper section) and 0.5 J (PAverage: 10W, lower section), respectively. Different optical pulse lengths (0.3ms-1.6ms) were investigated. Error bars represent the standard deviations of the total application time ttotal and the break up time tbreak. The dusting ratios with their respective standard deviation are shown in the right column.
Fig. 6
Fig. 6 Fragmentation times and dusting ratios for a selection of pulse energies, pulse durations, and repetitions rates sorted by the average power of each setting. Error bars represent the standard deviations of the total application time ttotal and the break up time tbreak. In case of the combined setting the laser configuration (0.5J/pulse, 0.4 ms, 80 Hz) for treatment until tbreak is highlighted in green and the setting for further fragmentation (2.5J/pulse, 4.0 ms, 10 Hz) in red. The dusting ratios with their respective standard deviation are shown in the right column.
Fig. 7
Fig. 7 Comparison of laser-induced stone phantom propulsion velocities v obtained with the video tracking software at a constant repetition rate of 10 Hz for different pulse energies E (0.5J-2J), respectively average powers PAve (5W-20W) and pulse durations t. The data points and error bars represent the mean propulsion velocities and their standard deviations.
Fig. 8
Fig. 8 Fluorescence response of a human kidney stone (Inset) using three different excitation wavelengths (λexc: 400 nm, 450 nm, 550 nm) and corresponding long pass emission filters (λonset: 470 nm, 520 nm, 590 nm).
Fig. 9
Fig. 9 White light and fluorescence images of two urinary stones recorded in vivo with an endoscopic camera system. For fluorescence excitation, filtered green light illumination (λexc = 500 – 570 nm) was applied, for fluorescence detection, a long-pass filter (λdet > 610nm) was implemented in the imaging system. Endoscopic tools are highlighted with red circles.

Tables (2)

Tables Icon

Table 1 Laser settings used for fragmentation and propulsion experiments

Tables Icon

Table 2 Evaluation of the fragmentation experiment.

Metrics