Abstract

To achieve full-depth spectral domain optical coherence tomography in the case of strong environmental disturbance, the iterative phase-shifting (IPS) method and modified dispersion-coded (MDC) method are proposed in this work. In IPS, the precise amount of phase shift is retrieved by iteration, and the direction of the phase shift is determined by dispersion compensation. Conjugate mirror items and noise can be simultaneously eliminated by two captured interferograms, whereas only one of them can be removed in the traditional phase-shift method with two interferograms. In MDC, they are removed through dispersion compensation and signal extraction with a single interferogram. Full-depth images of a glass slide, an onion, and a live fish eye are obtained by the two methods. The advantages and disadvantages of each method are analyzed and compared. IPS is found to be more effective for removing conjugate artifacts, whereas MDC is more conducive to real-time imaging. For a 2 mm × 3.6 mm image of a fish eye (200 depth scans and 1200 spectral sampling points per depth scan), the mirror image artifact is reduced by 28.55 dB in MDC and 41.53 dB in IPS. Processing times are 5.1 seconds (20 iterations) for the IPS method and 0.91 seconds for MDC.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Full range complex spectral domain optical coherence tomography without additional phase shifters

Bernhard Baumann, Michael Pircher, Erich Götzinger, and Christoph K. Hitzenberger
Opt. Express 15(20) 13375-13387 (2007)

High speed full range complex spectral domain optical coherence tomography

Erich Götzinger, Michael Pircher, Rainer A. Leitgeb, and Christoph K. Hitzenberger
Opt. Express 13(2) 583-594 (2005)

Single-step method for fiber-optic probe-based full-range spectral domain optical coherence tomography

Eun Jung Min, Jun Geun Shin, Jae Hwi Lee, Yoshiaki Yasuno, and Byeong Ha Lee
Appl. Opt. 52(21) 5143-5151 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
  2. S. P. Chong, C. W. Merkle, C. Leahy, H. Radhakrishnan, and V. J. Srinivasan, “Quantitative microvascular hemoglobin mapping using visible light spectroscopic Optical Coherence Tomography,” Biomed. Opt. Express 6(4), 1429–1450 (2015).
  3. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
  4. A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).
  5. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45(8), 1861–1865 (2006).
  6. B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18(5), 4898–4919 (2010).
  7. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
  8. L. Pan, X. Wang, Z. Li, X. Zhang, Y. Bu, N. Nan, Y. Chen, X. Wang, and F. Dai, “Depth-dependent dispersion compensation for full-depth OCT image,” Opt. Express 25(9), 10345–10354 (2017).
  9. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).
  10. Z. H. Ma, R. K. Wang, F. Zhang, and Q. J. Yao, “Arbitrary three-phase shifting algorithm for achieving full range spectral optical coherence tomography,” Chin. Phys. Lett. 23(2), 366–369 (2006).
  11. C. T. Wu, T. T. Chi, Y. W. Kiang, and C. C. Yang, “Computation time-saving mirror image suppression method in Fourier-domain optical coherence tomography,” Opt. Express 20(8), 8270–8283 (2012).
  12. K. Wang, Z. Ding, Y. Zeng, J. Meng, and M. Chen, “Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact,” Opt. Express 17(19), 16820–16833 (2009).
  13. M. Zhang, L. Ma, and P. Yu, “Spatial convolution for mirror image suppression in Fourier domain optical coherence tomography,” Opt. Lett. 42(3), 506–509 (2017).
  14. M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers,” Opt. Express 13(3), 957–967 (2005).
  15. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31(16), 2426–2428 (2006).
  16. E. Bo, S. Chen, D. Cui, S. Chen, X. Yu, Y. Luo, and L. Liu, “Single-camera full-range high-resolution spectral domain optical coherence tomography,” Appl. Opt. 56(3), 470–475 (2017).
  17. B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).
  18. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).
  19. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).
  20. A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).
  21. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).
  22. F. Köttig, P. Cimalla, M. Gärtner, and E. Koch, “An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 20(22), 24925–24948 (2012).
  23. S. Witte, M. Baclayon, E. J. Peterman, R. F. Toonen, H. D. Mansvelder, and M. L. Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control,” Opt. Express 17(14), 11335–11349 (2009).
  24. L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).

2017 (4)

2015 (1)

2012 (2)

2010 (1)

2009 (2)

2007 (2)

2006 (5)

2005 (2)

2004 (1)

2003 (1)

2002 (1)

1998 (1)

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

An, L.

Aoki, G.

Applegate, B. E.

Bachmann, A.

Baclayon, M.

Bajraszewski, T.

Bo, E.

Bouma, B. E.

Bu, Y.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Chen, M.

Chen, S.

Chen, Y.

Chen, Z.

Chi, T. T.

Choma, M. A.

Chong, S. P.

Cimalla, P.

Cui, D.

Dai, F.

Ding, W.

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).

Ding, Z.

Drexler, W.

Duker, J.

Endo, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Fujimoto, J.

Gärtner, M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Groot, M. L.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Hermann, B.

Hitzenberger, C. K.

Hofer, B.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Itoh, M.

Izatt, J. A.

Kiang, Y. W.

Ko, T.

Koch, E.

Köttig, F.

Kowalczyk, A.

Lasser, T.

Leahy, C.

Leitgeb, R.

Leitgeb, R. A.

Li, Z.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Liu, L.

Luo, Y.

Ma, L.

Ma, Z. H.

Z. H. Ma, R. K. Wang, F. Zhang, and Q. J. Yao, “Arbitrary three-phase shifting algorithm for achieving full range spectral optical coherence tomography,” Chin. Phys. Lett. 23(2), 366–369 (2006).

Makita, S.

Mansvelder, H. D.

Matz, G.

Meng, J.

Merkle, C. W.

Michaely, R.

Nan, N.

Nelson, J. S.

Pan, L.

Peterman, E. J.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Radhakrishnan, H.

Rey, S.

Sarunic, M.

Sarunic, M. V.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Sekhar, S. C.

Srinivasan, V.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Sun, L.

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Tearney, G. J.

Toonen, R. F.

Unterhuber, A.

Vakoc, B. J.

Wang, K.

Wang, L.

Wang, R. K.

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).

Z. H. Ma, R. K. Wang, F. Zhang, and Q. J. Yao, “Arbitrary three-phase shifting algorithm for achieving full range spectral optical coherence tomography,” Chin. Phys. Lett. 23(2), 366–369 (2006).

Wang, X.

Witte, S.

Wojtkowski, M.

Wu, C. T.

Yang, C.

Yang, C. C.

Yao, Q. J.

Z. H. Ma, R. K. Wang, F. Zhang, and Q. J. Yao, “Arbitrary three-phase shifting algorithm for achieving full range spectral optical coherence tomography,” Chin. Phys. Lett. 23(2), 366–369 (2006).

Yasuno, Y.

Yatagai, T.

Yi, L.

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).

Yu, P.

Yu, X.

Yun, S. H.

Zeng, Y.

Zhang, F.

Z. H. Ma, R. K. Wang, F. Zhang, and Q. J. Yao, “Arbitrary three-phase shifting algorithm for achieving full range spectral optical coherence tomography,” Chin. Phys. Lett. 23(2), 366–369 (2006).

Zhang, J.

Zhang, M.

Zhang, X.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Chin. Phys. Lett. (1)

Z. H. Ma, R. K. Wang, F. Zhang, and Q. J. Yao, “Arbitrary three-phase shifting algorithm for achieving full range spectral optical coherence tomography,” Chin. Phys. Lett. 23(2), 366–369 (2006).

J. Biomed. Opt. (1)

L. Yi, L. Sun, and W. Ding, “Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth,” J. Biomed. Opt. 22(10), 1–8 (2017).

Opt. Express (9)

A. Bachmann, R. Leitgeb, and T. Lasser, “Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution,” Opt. Express 14(4), 1487–1496 (2006).

F. Köttig, P. Cimalla, M. Gärtner, and E. Koch, “An advanced algorithm for dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express 20(22), 24925–24948 (2012).

S. Witte, M. Baclayon, E. J. Peterman, R. F. Toonen, H. D. Mansvelder, and M. L. Groot, “Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control,” Opt. Express 17(14), 11335–11349 (2009).

C. T. Wu, T. T. Chi, Y. W. Kiang, and C. C. Yang, “Computation time-saving mirror image suppression method in Fourier-domain optical coherence tomography,” Opt. Express 20(8), 8270–8283 (2012).

K. Wang, Z. Ding, Y. Zeng, J. Meng, and M. Chen, “Sinusoidal B-M method based spectral domain optical coherence tomography for the elimination of complex-conjugate artifact,” Opt. Express 17(19), 16820–16833 (2009).

B. Hofer, B. Považay, A. Unterhuber, L. Wang, B. Hermann, S. Rey, G. Matz, and W. Drexler, “Fast dispersion encoded full range optical coherence tomography for retinal imaging at 800 nm and 1060 nm,” Opt. Express 18(5), 4898–4919 (2010).

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).

L. Pan, X. Wang, Z. Li, X. Zhang, Y. Bu, N. Nan, Y. Chen, X. Wang, and F. Dai, “Depth-dependent dispersion compensation for full-depth OCT image,” Opt. Express 25(9), 10345–10354 (2017).

M. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3x3 fiber couplers,” Opt. Express 13(3), 957–967 (2005).

Opt. Lett. (8)

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, “Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography,” Opt. Lett. 31(16), 2426–2428 (2006).

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).

B. J. Vakoc, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation,” Opt. Lett. 31(3), 362–364 (2006).

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32(23), 3453–3455 (2007).

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32(23), 3423–3425 (2007).

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28(22), 2201–2203 (2003).

M. Zhang, L. Ma, and P. Yu, “Spatial convolution for mirror image suppression in Fourier domain optical coherence tomography,” Opt. Lett. 42(3), 506–509 (2017).

J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett. 30(2), 147–149 (2005).

Proc. SPIE (1)

A. F. Fercher, R. Leitgeb, C. K. Hitzenberger, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173–178 (1998).

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Flowchart showing the IPS procedure. δ is the set threshold, which represents the extent to which the signal peaks can be eliminated, and nt is the number of signals that satisfy condition SS(pos)<δ; n is the iteration variable, and p is the set total number of iterations; aa and loca are the value and position of the minimum value in num2, respectively.
Fig. 2
Fig. 2 Flowchart showing the MDC procedure; set is the preset threshold. I0 is the signal corresponding to Eq. (6).
Fig. 3
Fig. 3 Simulated results for IPS and MDC methods. The red, green, and blue lines in panel (a) are signals without dispersion, with dispersion, and compensated dispersion, respectively; Panel (b) shows the signal corresponding to Sz; (c) is the signal corresponding to St; The signals in (d–f) correspond to Sa, Sb, and S, respectively, in Fig. 2.
Fig. 4
Fig. 4 Panels (a) and (c) show signals that have been compensated for dispersion with noise floors of −5 dB and −25 dB, respectively; (b) and (d) are the results of the IPS method in these two situations.
Fig. 5
Fig. 5 Schematic of the SD-OCT system. P1 and P2: a pair of prisms; L1: achromatic lens (f = 30 mm); M1 and M2: mirrors.
Fig. 6
Fig. 6 Spectral signal of plane mirror (a) and fluctuation of light intensity at specific k (b).
Fig. 7
Fig. 7 Experiment results for a glass slide. (a) Signal without dispersion compensation; (b) Signal with dispersion compensation; (c) Signal corresponding to Sz in IPS; (d) Signal corresponding to St in IPS; (e) Result of MDC.
Fig. 8
Fig. 8 Experiment results using an onion. (a) Image without dispersion compensation; (b) Image with dispersion compensation; (c) Image following subtraction applied to the two captured interferograms; (d) Results of MDC corresponding to (c); (e) Image corresponding to Sz in IPS; (f) Image corresponding to St in IPS; (g) Signals at x = 160 μm in (b), (e), and (f); (h) Iterative phase shift value of each x point in IPS.
Fig. 9
Fig. 9 Experimental results using a fish eye in vivo. (a) Image with dispersion compensation; (b) Image following subtraction applied to the two captured interferograms; (c) Results of MDC corresponding to (b); (d) Results of IPS; (e) Iterative phase shift value of each x point in IPS.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I x (k)=S(k){ a R 2 +aR[ 0 a x (z)exp(i2knz)dz + 0 a x * (z)exp(i2knz)dz ] + 0 0 a x (z) a x (z' )exp[i2k(nznz')] dzdz' }
I x (k)=S(k){aR[ 0 a x (z)exp(i2knz)dz + 0 a x * (z)exp(i2knz)dz ]}
I x (k, φ x )=S(k){aR[ 0 a x (z)exp(i2knz)exp(i φ x )dz + 0 a x * (z)exp(i2knz)exp(i φ x )dz ]}
H x (k, φ x )= I x (k) I x (k, φ x )exp(i φ x )=S(k){ aR [ 0 a x (z)(1exp(i2 φ x ))exp(i2knz)dz ] }
I xd (k)=S(k){aR[ 0 a x (z)exp(i2knz)exp(iϕ(k))dz + 0 a x * (z)exp(i2knz)exp(iϕ(k))dz ]}
T xd (k)= I xd (k)exp(iϕ(k))=S(k){aR[ 0 a x (z)exp(i2knz)dz + 0 a x * (z)exp(i2knz)exp(i2ϕ(k))dz ]}
ϕ(ω)= a 2 ( ω ω 0 ) 2 a 3 ( ω ω 0 ) 3
H xd (k, φ x )= T xd (k) T xd (k, φ x )exp(i φ x )=S(k){ aR [ 0 a x (z)(1exp(i2 φ x ))exp(i2knz)dz ] }
H xd (k, φ x )= T xd (k) T xd (k, φ x )exp(i φ x )=S(k){aR(1exp(i2 φ x )) ×exp(i2ϕ(k)) 0 a x * (z)exp(i2knz)dz }
f=2Re{pu( g 1 + g 2 )exp[iϕ(ω)]}+w