Abstract

Ultrahigh speed optical coherence tomography (OCT) systems with >100 kHz A-scan rates can generate volumes rapidly with minimal motion artifacts and are well suited for 4D imaging (volumes through time) applications such as intra-operative imaging. In such systems, high OCT data acquisition efficiency (defined as the fraction of usable A-scans generated during the total acquisition time) is desired to maximize the volumetric frame rate and sampling pitch. However, current methods for beam scanning using non-resonant and resonant mirror scanners can result in severe scan distortion and transverse oversampling as well as require acquisition dead times, which limit the acquisition efficiency and performance of ultrahigh speed 4D OCT. We introduce constant linear velocity spiral scanning (CLV-SC) as a novel beam scanning method to maximize the data acquisition efficiency of ultrahigh speed 4D OCT systems. We demonstrate that CLV-SC does not require acquisition dead times and achieves more uniform transverse sampling compared to raster scanning. To assess its clinical utility, we implement CLV-SC with a 400 kHz OCT system and image the anterior eye and retina of healthy adults at up to 10 volumes per second with isotropic transverse sampling, allowing B-scans with equal sampling pitch to be extracted from arbitrary locations within a single volume. The feasibility of CLV-SC for intra-operative imaging is also demonstrated using a 800 kHz OCT system to image simulated retinal surgery at 15 volumes per second with isotropic transverse sampling, resulting in high quality volume renders that enable clear visualization of surgical instruments and manipulation of tissue.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Endoscopic forward-viewing optical coherence tomography and angiography with MHz swept source

Kaicheng Liang, Osman O. Ahsen, Zhao Wang, Hsiang-Chieh Lee, Wenxuan Liang, Benjamin M. Potsaid, Tsung-Han Tsai, Michael G. Giacomelli, Vijaysekhar Jayaraman, Hiroshi Mashimo, Xingde Li, and James G. Fujimoto
Opt. Lett. 42(16) 3193-3196 (2017)

Effective bidirectional scanning pattern for optical coherence tomography angiography

Myeong Jin Ju, Morgan Heisler, Arman Athwal, Marinko V. Sarunic, and Yifan Jian
Biomed. Opt. Express 9(5) 2336-2350 (2018)

Spaceborne Laser Radar

Terry Flom
Appl. Opt. 11(2) 291-299 (1972)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (SLACK Incorporated, 2013).
  3. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  4. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  5. C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
    [Crossref] [PubMed]
  6. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
    [Crossref] [PubMed]
  7. D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
    [Crossref] [PubMed]
  8. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express 2(4), 764–770 (2011).
    [Crossref] [PubMed]
  9. O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
    [Crossref] [PubMed]
  10. O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)
  11. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
    [Crossref] [PubMed]
  12. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
    [Crossref] [PubMed]
  13. V. F. Duma, P. Tankam, J. Huang, J. Won, and J. P. Rolland, “Optimization of galvanometer scanning for optical coherence tomography,” Appl. Opt. 54(17), 5495–5507 (2015).
    [Crossref] [PubMed]
  14. V. F. Duma, K. S. Lee, P. Meemon, and J. P. Rolland, “Experimental investigations of the scanning functions of galvanometer-based scanners with applications in OCT,” Appl. Opt. 50(29), 5735–5749 (2011).
    [Crossref] [PubMed]
  15. H.-C. Park, Y.-H. Seo, and K.-H. Jeong, “Lissajous fiber scanning for forward viewing optical endomicroscopy using asymmetric stiffness modulation,” Opt. Express 22(5), 5818–5825 (2014).
    [Crossref] [PubMed]
  16. L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18(14), 14375–14384 (2010).
    [Crossref] [PubMed]
  17. Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Three-dimensional eye motion correction by Lissajous scan optical coherence tomography,” Biomed. Opt. Express 8(3), 1783–1802 (2017).
    [Crossref] [PubMed]
  18. A. Labinsky, G. Reynolds, and J. Halliday, “A disk recording system and a method of controlling the rotation of a turntable in such a disk recording system,” U.S. patent PCT/GB1992/002370 (1993).
  19. I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
    [Crossref]
  20. B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
    [Crossref] [PubMed]
  21. O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
    [Crossref] [PubMed]
  22. O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).
  23. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
    [Crossref] [PubMed]
  24. L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
    [Crossref]
  25. C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
    [Crossref] [PubMed]
  26. D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
    [Crossref] [PubMed]
  27. Y. Lee, K. R. Sung, J. H. Na, and J. H. Sun, “Dynamic changes in anterior segment (AS) parameters in eyes with primary angle closure (PAC) and PAC glaucoma and open-angle eyes assessed using AS optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(2), 693–697 (2012).
    [Crossref] [PubMed]
  28. B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
    [Crossref] [PubMed]
  29. J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
    [Crossref] [PubMed]
  30. H. W. Yoo, S. Ito, and G. Schitter, “High speed laser scanning microscopy by iterative learning control of a galvanometer scanner,” Control Eng. Pract. 50, 12–21 (2016).
    [Crossref]
  31. A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V. F. Duma, A. Santhanam, K. P. Thompson, and J. P. Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24(12), 13365–13374 (2016).
    [Crossref] [PubMed]
  32. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [Crossref] [PubMed]

2017 (3)

2016 (8)

O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
[Crossref] [PubMed]

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
[Crossref] [PubMed]

H. W. Yoo, S. Ito, and G. Schitter, “High speed laser scanning microscopy by iterative learning control of a galvanometer scanner,” Control Eng. Pract. 50, 12–21 (2016).
[Crossref]

A. Cogliati, C. Canavesi, A. Hayes, P. Tankam, V. F. Duma, A. Santhanam, K. P. Thompson, and J. P. Rolland, “MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express 24(12), 13365–13374 (2016).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

2015 (2)

2014 (4)

2012 (5)

2011 (4)

2010 (2)

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

L. Huo, J. Xi, Y. Wu, and X. Li, “Forward-viewing resonant fiber-optic scanning endoscope of appropriate scanning speed for 3D OCT imaging,” Opt. Express 18(14), 14375–14384 (2010).
[Crossref] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

An, L.

Baumann, B.

Bhikkaji, B.

I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Blatter, C.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Bock, R.

Cable, A. E.

Canavesi, C.

Carrasco-Zevallos, O. M.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
[Crossref] [PubMed]

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chen, Y.

Choi, D. H.

Choi, W.

Cogliati, A.

Cole, E.

Crowe, L. A.

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

Cunefare, D. L.

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Delattre, B. M. A.

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

DeSouza, P. J.

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Draelos, M.

Draxinger, W.

Duker, J. S.

Duma, V. F.

Farsiu, S.

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
[Crossref] [PubMed]

Fechtig, D.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ginner, L.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Groschl, M.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Grulkowski, I.

Hahn, P.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

Hayes, A.

Hee, M. R.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Heidemann, R. M.

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

Hiro-Oka, H.

Hong, Y.-J.

Hornegger, J.

Huang, D.

Huang, J.

Huber, R.

Huo, L.

Hyacinthe, J. N.

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

Ito, S.

H. W. Yoo, S. Ito, and G. Schitter, “High speed laser scanning microscopy by iterative learning control of a galvanometer scanner,” Control Eng. Pract. 50, 12–21 (2016).
[Crossref]

Izatt, J. A.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
[Crossref] [PubMed]

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
[Crossref] [PubMed]

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

Jayaraman, V.

Jeong, K.-H.

Jia, Y.

Jiang, J.

Kang, J. U.

Karpf, S.

Keller, B.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

Klein, T.

Kraus, M. F.

Kuo, A. N.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

Lad, E. M.

LaRocca, F.

Lee, K. S.

Lee, Y.

Y. Lee, K. R. Sung, J. H. Na, and J. H. Sun, “Dynamic changes in anterior segment (AS) parameters in eyes with primary angle closure (PAC) and PAC glaucoma and open-angle eyes assessed using AS optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(2), 693–697 (2012).
[Crossref] [PubMed]

Leitgeb, R. A.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Li, P.

Li, X.

Lin, C. P.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Lu, C. D.

Mahmood, I. A.

I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Makita, S.

Mangalesh, S.

Mayer, M. A.

Meemon, P.

Moheimani, S. O. R.

I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Mruthyunjaya, P.

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Na, J. H.

Y. Lee, K. R. Sung, J. H. Na, and J. H. Sun, “Dynamic changes in anterior segment (AS) parameters in eyes with primary angle closure (PAC) and PAC glaucoma and open-angle eyes assessed using AS optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(2), 693–697 (2012).
[Crossref] [PubMed]

Nankivil, D.

Ohbayashi, K.

Park, H.-C.

Pfeiffer, T.

Polans, J.

Potsaid, B.

Puliafito, C. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rolland, J. P.

Santhanam, A.

Schitter, G.

H. W. Yoo, S. Ito, and G. Schitter, “High speed laser scanning microscopy by iterative learning control of a galvanometer scanner,” Control Eng. Pract. 50, 12–21 (2016).
[Crossref]

Schmoll, T.

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

Schuman, J. S.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seider, M. I.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

Seo, Y.-H.

Shen, L.

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

Shen, T. T.

Shieh, C.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Shimizu, K.

Stinnett, S. S.

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Subhash, H.

Sun, J. H.

Y. Lee, K. R. Sung, J. H. Na, and J. H. Sun, “Dynamic changes in anterior segment (AS) parameters in eyes with primary angle closure (PAC) and PAC glaucoma and open-angle eyes assessed using AS optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(2), 693–697 (2012).
[Crossref] [PubMed]

Sung, K. R.

Y. Lee, K. R. Sung, J. H. Na, and J. H. Sun, “Dynamic changes in anterior segment (AS) parameters in eyes with primary angle closure (PAC) and PAC glaucoma and open-angle eyes assessed using AS optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(2), 693–697 (2012).
[Crossref] [PubMed]

Swanson, E. A.

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett. 18(21), 1864–1866 (1993).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tan, O.

Tankam, P.

Thompson, K. P.

Todorich, B.

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

Tokayer, J.

Toth, C. A.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

Vallée, J. P.

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

Viehland, C.

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

Viet, T.

Wang, R.

Wang, Y.

Waterman, G.

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

Whitson, H. E.

Wieser, W.

Won, J.

Wu, Y.

Xi, J.

Yasuno, Y.

Yoo, H. W.

H. W. Yoo, S. Ito, and G. Schitter, “High speed laser scanning microscopy by iterative learning control of a galvanometer scanner,” Control Eng. Pract. 50, 12–21 (2016).
[Crossref]

Zhang, K.

Appl. Opt. (2)

Biomed. Opt. Express (12)

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, M. Draelos, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Review of intraoperative optical coherence tomography: technology and applications [Invited],” Biomed. Opt. Express 8(3), 1607–1637 (2017).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
[Crossref] [PubMed]

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

C. D. Lu, M. F. Kraus, B. Potsaid, J. J. Liu, W. Choi, V. Jayaraman, A. E. Cable, J. Hornegger, J. S. Duker, and J. G. Fujimoto, “Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror,” Biomed. Opt. Express 5(1), 293–311 (2014).
[Crossref] [PubMed]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5(9), 2963–2977 (2014).
[Crossref] [PubMed]

D. H. Choi, H. Hiro-Oka, K. Shimizu, and K. Ohbayashi, “Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second,” Biomed. Opt. Express 3(12), 3067–3086 (2012).
[Crossref] [PubMed]

K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express 2(4), 764–770 (2011).
[Crossref] [PubMed]

Y. Chen, Y.-J. Hong, S. Makita, and Y. Yasuno, “Three-dimensional eye motion correction by Lissajous scan optical coherence tomography,” Biomed. Opt. Express 8(3), 1783–1802 (2017).
[Crossref] [PubMed]

C. Viehland, B. Keller, O. M. Carrasco-Zevallos, D. Nankivil, L. Shen, S. Mangalesh, T. Viet, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT,” Biomed. Opt. Express 7(5), 1815–1829 (2016).
[Crossref] [PubMed]

D. Nankivil, G. Waterman, F. LaRocca, B. Keller, A. N. Kuo, and J. A. Izatt, “Handheld, rapidly switchable, anterior/posterior segment swept source optical coherence tomography probe,” Biomed. Opt. Express 6(11), 4516–4528 (2015).
[Crossref] [PubMed]

J. Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J. A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16–37 (20167.
[Crossref] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[Crossref] [PubMed]

Control Eng. Pract. (1)

H. W. Yoo, S. Ito, and G. Schitter, “High speed laser scanning microscopy by iterative learning control of a galvanometer scanner,” Control Eng. Pract. 50, 12–21 (2016).
[Crossref]

IEEE Trans. NanoTechnol. (1)

I. A. Mahmood, S. O. R. Moheimani, and B. Bhikkaji, “A new scanning method for fast atomic force microscopy,” IEEE Trans. NanoTechnol. 10(2), 203–216 (2011).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (3)

Y. Lee, K. R. Sung, J. H. Na, and J. H. Sun, “Dynamic changes in anterior segment (AS) parameters in eyes with primary angle closure (PAC) and PAC glaucoma and open-angle eyes assessed using AS optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 53(2), 693–697 (2012).
[Crossref] [PubMed]

B. Todorich, C. Shieh, P. J. DeSouza, O. M. Carrasco-Zevallos, D. L. Cunefare, S. S. Stinnett, J. A. Izatt, S. Farsiu, P. Mruthyunjaya, A. N. Kuo, and C. A. Toth, “Impact of microscope integrated OCT on ophthlamology resident performance of anterior segment surgical maneuvers in model eyes,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT146 (2016).
[Crossref] [PubMed]

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, M. I. Seider, J. A. Izatt, and C. A. Toth, “Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery,” Invest. Ophthalmol. Vis. Sci. 57(9), OCT37 (2016).
[Crossref] [PubMed]

Magn. Reson. Imaging (1)

B. M. A. Delattre, R. M. Heidemann, L. A. Crowe, J. P. Vallée, and J. N. Hyacinthe, “Spiral demystified,” Magn. Reson. Imaging 28(6), 862–881 (2010).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Photonics (1)

L. Ginner, C. Blatter, D. Fechtig, T. Schmoll, M. Groschl, and R. A. Leitgeb, “Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting,” Photonics 1(4), 369–379 (2014).
[Crossref]

PLoS One (1)

O. M. Carrasco-Zevallos, D. Nankivil, C. Viehland, B. Keller, and J. A. Izatt, “Pupil tracking for real-time motion corrected anterior segment optical coherence tomography,” PLoS One 11(8), e0162015 (2016).
[Crossref] [PubMed]

Proc. SPIE (1)

O. M. Carrasco-Zevallos, C. Viehland, B. Keller, A. N. Kuo, C. A. Toth, and J. A. Izatt, “High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation),” Proc. SPIE 1005, 10053 (2017).

Sci. Rep. (1)

O. M. Carrasco-Zevallos, B. Keller, C. Viehland, L. Shen, G. Waterman, B. Todorich, C. Shieh, P. Hahn, A. N. Kuo, C. A. Toth, and J. A. Izatt, “Live volumetric (4D) visualization and guidance of in vivo human ophthalmic microsurgery with intra-operative optical coherence tomography,” Sci. Rep. 6, 316891 (2016)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical Coherence Tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (2)

J. S. Schuman, C. A. Puliafito, J. G. Fujimoto, and J. S. Duker, Optical Coherence Tomography of Ocular Diseases, 3rd ed. (SLACK Incorporated, 2013).

A. Labinsky, G. Reynolds, and J. Halliday, “A disk recording system and a method of controlling the rotation of a turntable in such a disk recording system,” U.S. patent PCT/GB1992/002370 (1993).

Supplementary Material (6)

NameDescription
» Visualization 1       Cross-sectional B-scan fly-through of retinal OCT volume acquired using CLV-SC and isotropic transverse sampling in 0.2 seconds.
» Visualization 2       Cross-sectional B-scan fly-through of retinal OCT volume acquired using CLV-SC and isotropic transverse sampling in 0.2 seconds.
» Visualization 3       Radial B-scan fly-through of retinal OCT volume acquired using CLV-SC and isotropic transverse sampling in 0.2 seconds.
» Visualization 4       4D OCT movie acquired with a volume rate of 10 Hz and isotropic transverse sampling enabled by constant linear velocity spiral scanning. The movie show pupil constriction of a healthy subject in response to light stimulus.
» Visualization 5       4D OCT movies of simulated surgical maneuvers that were acquired with a volume rate of 15 Hz and isotropic transverse sampling enabled by CLV-SC. The movie shows retinal brushing with a surgical flex loop in a porcine eye surgical model.
» Visualization 6       4D OCT movies of simulated surgical maneuvers that were acquired with a volume rate of 15 Hz and isotropic transverse sampling enabled by CLV-SC. The movie shows retinal brushing with a diamond dusted tano scraper in a porcine eye surgical model.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Bidirectional raster scanning (BRS) with triangle voltage drive waveforms. (a) Representative triangle scanning voltage waveform. (b) Two-dimensional raster scan pattern. L: scan length; T: triangle waveform period; Vtrig: scan velocity; ∆x: sampling pitch along x (fast) scan axis; ∆y: sampling pitch along y (slow) scan axis. The raster scan pattern illustration is undersampled along y for clarity.
Fig. 2
Fig. 2 Constant linear velocity spiral drive waveforms and scan pattern. (a) Galvanometer scanner drive waveforms. (b) Instantaneous frequency and (c) instantaneous amplitude of the drive waveforms as a function of time. (d) Linear velocity along spiral as a function of time. Velocity along spiral is constant resulting in uniform sampling pitch. GS: galvanometer scanners; Δθ sampling pitch in angular dimension θ (along spiral); ∆r: sampling pitch in radial dimension r; rend: radius of CLV spiral scan circular field of view; VCLV: linear scan velocity. Scan pattern is undersampled along r for clarity.
Fig. 3
Fig. 3 Representative scan velocity waveforms for bidirectional raster scanning (BRS) (a) and constant linear velocity spiral scanning (CLV-SC) (b). Blue curves are ideal scan velocities Vtrig and VCLV for BRS and CLV-SC, respectively. Constant Vtrig and VCLV correspond to uniform sampling pitch. Red curves show scan velocities V ˜ trig or V ˜ CLV for BRS and CLV-SC, respectively, estimated from the recorded response GS waveforms. The red curve in (b) is the double exponential fit to the data shown in black. Green dotted lines denote threshold over which V ˜ trig / Vtrig > 0.8 or V ˜ CLV / VCLV > 0.8, which was chosen as a metric to characterize the degree of sampling uniformity for each scan pattern.
Fig. 4
Fig. 4 Ultrahigh speed swept source OCT engine schematic and performance. (a) Schematic of optical buffering stage and OCT interferometer. All abbreviations are defined in the table. (b) OCT sensitivity fall-off plot for 400 kHz engine. (c) OCT sensitivity fall-off plot for 800 kHz engine using temporal spectral splitting.
Fig. 5
Fig. 5 Estimation and correction of residual distortion present in OCT volumes acquired with constant linear velocity spiral scanning (CLV-SC). (a) Summed voxel projection (SVP) generated from an OCT volume of a grid target acquired with CLV-SC. Inset shows distortion present near the center of the scan. (b) Detected centroids (red) corresponding to dot positions in (a) and reference grid (blue) used to generate a transform for image dewarping. (c) SVP of grid target after dewarping. Inset in (c) corresponds to approximately the same location as inset in (a).
Fig. 6
Fig. 6 Degree of sampling uniformity achievable with constant linear velocity spiral scanning (CLV-SC) and bidirectional raster scanning (BRS) for volume acquisition rates of 1-10 Hz and isotropic transverse sampling. (a) Degree of sampling uniformity along the fast (angular) and slow (radial) axes of CLV-SC. (b) Sampling uniformity comparison of CLV-SC and BRS.
Fig. 7
Fig. 7 Retinal OCT volume acquired using CLV-SC and isotropic transverse sampling in 0.2 seconds (protocol #1 in Table 1). (a) SVP generated from the OCT volume. Dashed colored lines correspond to locations of the circular and linear B-scans shown in (c-f). (b) Volume render. (c-f) Un-averaged linear B-scans extracted from volume. Orthogonal cross-sectional B-scan fly-throughs are provided in Visualization 1 andVisualization 2. A fly-through of radial B-scans extracted from the volumetric data is provided in Visualization 3.
Fig. 8
Fig. 8 Retinal OCT volume acquired using constant linear velocity spiral scanning and isotropic transverse sampling in 0.4 seconds (protocol #2 in Table 1) from a healthy subject. (a) SVP generated from the OCT volume. Dashed colored lines correspond to the locations of the circular and linear B-scans shown in (c-i). (b) OCT volume render. (c-i) Un-averaged linear and circular B-scans extracted from the volumetric data set. White arrows denote artifacts likely due to fixational eye motion.
Fig. 9
Fig. 9 Volumetric OCT image centered on the optic nerve of a healthy subject acquired in 1 second using constant linear velocity spiral scanning (protocol #3 in Table 1). The volume was oversampled along the angular dimension by 4x and 4 adjacent A-scans were averaged to generate averaged circular B-scans. (a) SVP generated from the volumetric data set. Dashed colored lines correspond to the locations of the circular B-scans. (b) Un-averaged circular B-scan. (c-d) 4x averaged circular B-scans.
Fig. 10
Fig. 10 Excerpts from a 4D OCT movie acquired with a volume rate of 10 Hz and isotropic transverse sampling enabled by constant linear velocity spiral scanning (protocol #4 in Table 1). Excerpts show pupil constriction of a healthy subject in response to light stimulus. The focus of the imaging system was near the subject’s iris. Time stamps in seconds are shown for each frame. Corresponding movie is provided in Visualization 4.
Fig. 11
Fig. 11 Excerpts from 4D OCT movies of simulated surgical maneuvers that were acquired with a volume rate of 15 Hz and isotropic transverse sampling enabled by CLV-SC (protocol #5 in Table 1). The excerpts show retinal brushing with a surgical flex loop (a) and a diamond dusted tano scraper (b). Near video rate 4D OCT imaging with CLV-SC enabled smooth visualization of the maneuvers. Corresponding movies are provided in Visualization 5 andVisualization 6.
Fig. 12
Fig. 12 Magnitude (a) and phase (b) spectra of galvanometric scanners for 1-7 V peak-to-peak sinusoid amplitudes. The dashed black horizontal line in (a) denotes −6 dB. V: Volts; dB: 20log10(amplitude ratio).

Tables (2)

Tables Icon

Table 1 List of scan parameters used to test and compare the performance of bidirectional raster scanning (BRS) and constant linear velocity spiral scanning (CLV-SC). Parameters corresponding to isotropic transverse sampling for volume rates of 1-10 Hz were tested. The transverse field of view for the three scan patterns was 100 mm2.

Tables Icon

Table 2 Constant linear velocity spiral scanning (CLV-SC) imaging protocols for human and surgical imaging. FOV: field of view; r: radial dimension;Θ: angular dimension. Effective sampling pitch denotes transverse sampling pitch after interpolation in CLV-SC processing corresponding to 80% of ideal sampling pitch to account for nonlinearities described in Results(4.1).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f Bscan = f Ascan × f Volume ,
Δx= V trig f Ascan .
Θ(t)= V CLV 4πt Δr ,
r(t)= V CLV Δrt π ,
V CLV = dΘ(t) dt r(t)=ω(t)r(t).
Δθ= V CLV f Ascan ,
Δr= πr (t) 2 t V CLV .

Metrics