Abstract

Long-wavelength identification of microcalcifications in breast cancer tissue is demonstrated using a novel upconversion raster scanning microscope. The system consists of quantum cascade lasers (QCL) for illumination and an upconversion system for efficient, high-speed detection using a silicon detector. Absorbance spectra and images of regions of ductal carcinoma in situ (DCIS) from the breast have been acquired using both upconversion and Fourier-transform infrared (FTIR) systems. The spectral images are compared and good agreement is found between the upconversion and the FTIR systems.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman spectroscopy: a real-time tool for identifying microcalcifications during stereotactic breast core needle biopsies

A. Saha, I. Barman, N. C. Dingari, S. McGee, Z. Volynskaya, L. H. Galindo, W. Liu, D. Plecha, N. Klein, R. R. Dasari, and M. Fitzmaurice
Biomed. Opt. Express 2(10) 2792-2803 (2011)

Differential diagnosis of breast cancer using quantitative, label-free and molecular vibrational imaging

Yaliang Yang, Fuhai Li, Liang Gao, Zhiyong Wang, Michael J. Thrall, Steven S. Shen, Kelvin K. Wong, and Stephen T. C. Wong
Biomed. Opt. Express 2(8) 2160-2174 (2011)

Upconversion detection of long-wave infrared radiation from a quantum cascade laser

Yu-Pei Tseng, Christian Pedersen, and Peter Tidemand-Lichtenberg
Opt. Mater. Express 8(5) 1313-1321 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
    [Crossref] [PubMed]
  2. R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
    [Crossref] [PubMed]
  3. C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
    [Crossref] [PubMed]
  4. M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
    [Crossref]
  5. M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).
  6. H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
    [Crossref] [PubMed]
  7. G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
    [Crossref] [PubMed]
  8. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
    [Crossref] [PubMed]
  9. N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
    [Crossref] [PubMed]
  10. J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
    [Crossref] [PubMed]
  11. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
    [PubMed]
  12. M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
    [Crossref]
  13. J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
    [PubMed]
  14. K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
    [Crossref] [PubMed]
  15. C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
    [Crossref] [PubMed]
  16. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
    [Crossref] [PubMed]
  17. A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
    [Crossref]
  18. N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
    [Crossref] [PubMed]
  19. K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
    [Crossref] [PubMed]
  20. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref] [PubMed]
  21. S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
    [Crossref] [PubMed]
  22. A. Rogalski, Infrared Detectors (CRC Press, 2015).
  23. P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28 (2016).
    [Crossref]
  24. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
    [Crossref]
  25. Y.-P. Tseng, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion detection of long-wave infrared radiation from a quantum cascade laser,” Opt. Mater. Express 8(5), 1313–1321 (2018).
    [Crossref]
  26. Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).
  27. S. Ran, S. Berisha, R. Mankar, W. C. Shih, and D. Mayerich, “Mitigating fringing in discrete frequency infrared imaging using time-delayed integration,” Biomed. Opt. Express 9(2), 832–843 (2018).
    [Crossref] [PubMed]
  28. L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
    [Crossref] [PubMed]
  29. L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
    [Crossref] [PubMed]

2018 (9)

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

Y.-P. Tseng, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion detection of long-wave infrared radiation from a quantum cascade laser,” Opt. Mater. Express 8(5), 1313–1321 (2018).
[Crossref]

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

S. Ran, S. Berisha, R. Mankar, W. C. Shih, and D. Mayerich, “Mitigating fringing in discrete frequency infrared imaging using time-delayed integration,” Biomed. Opt. Express 9(2), 832–843 (2018).
[Crossref] [PubMed]

L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
[Crossref] [PubMed]

2017 (2)

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

2016 (3)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
[Crossref] [PubMed]

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28 (2016).
[Crossref]

2015 (1)

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

2014 (2)

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
[Crossref] [PubMed]

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

2013 (1)

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

2012 (2)

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

2011 (1)

M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
[Crossref]

2010 (1)

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

2009 (1)

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

2008 (1)

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

2007 (1)

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

2006 (1)

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

2004 (1)

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

2002 (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Aldén, M.

Andersen, H. V.

Ashton, L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Babrah, J.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

Baker, M. J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Baker, R.

M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
[Crossref]

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

Bang, O.

Barr, H.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

Bazant-Hegemark, F.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

Berisha, S.

Bessant, C.

M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
[Crossref]

Bhargava, R.

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Bird, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Bobroff, V.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Bouzy, P.

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

Butler, H. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Byrne, H. J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Chalmers, J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Chen, H. H.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Christie-Brown, J.

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

Cinque, G.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Crow, P.

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Curtis, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Dam, J. S.

Das, K.

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Delugin, M.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

DeSantis, C. E.

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

Dorney, J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Egl, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Engel, M.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Esmonde-White, K.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Farries, M.

Feld, M. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Fix, A.

Fowler, C.

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

Fullwood, N. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gardner, B.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Gardner, P.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Gelber, M. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Gerwert, K.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Goding Sauer, A.

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

Goodacre, R.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Green, E.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Gretz, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Großerueschkamp, F.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Haase, K.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Hart Prieto, M. C.

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

Henderson, A.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Hermes, M.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Herpich, I.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Høgstedt, L.

Huot, L.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Hutchings, J.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

Hwu, Y.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Isabelle, M.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

Jemal, A.

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

Juette, H.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Junaid, S.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Kajdacsy-Balla, A.

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

Kallenbach-Thieltges, A.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Kazarian, S. G.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Kendall, C.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

Kenkel, S.

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Kole, M. R.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Kränzlin, B.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Kröger, N.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Kuepper, C.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Leslie, L. S.

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

Li, Z.

Liu, J. N.

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Lloyd, G. R.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
[Crossref] [PubMed]

Ma, J.

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

Mankar, R.

Mansfield, J.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Martin, F. L.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Martin-Hirsch, P. L.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Masselink, W. T.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Mayerich, D.

McAinsh, M. R.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Meng, L.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
[Crossref] [PubMed]

Mittal, S.

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

Moger, C.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Moger, J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Morrish, R. B.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Nallala, J.

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
[Crossref] [PubMed]

Napier, B.

Neudecker, S.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Newman, L. A.

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

Ogunleke, A.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Orr, L.

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

Palombo, F.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Pedersen, C.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

Y.-P. Tseng, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion detection of long-wave infrared radiation from a quantum cascade laser,” Opt. Mater. Express 8(5), 1313–1321 (2018).
[Crossref]

L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
[Crossref] [PubMed]

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28 (2016).
[Crossref]

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Petersen, C. R.

Petibois, C.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Petrich, W.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Prtljaga, N.

Pucci, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Ran, S.

Recur, B.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Reddy, R. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Ritchie, A. W.

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

Rodrigo, P. J.

Rogalski, A.

A. Rogalski, Infrared Detectors (CRC Press, 2015).

Rogers, K. D.

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

Rowlette, J.

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Sahlberg, A.-L.

Sattlecker, M.

M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
[Crossref]

Schönhals, A.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Schulmerich, M. V.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Shepherd, N.

J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
[Crossref] [PubMed]

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Shetty, G.

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

Shih, W. C.

Smith, J.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

Stone, N.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref] [PubMed]

J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
[Crossref] [PubMed]

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
[Crossref]

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

Sulé-Suso, J.

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

Tannapfel, A.

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

Tidemand-Lichtenberg, P.

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Y.-P. Tseng, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion detection of long-wave infrared radiation from a quantum cascade laser,” Opt. Mater. Express 8(5), 1313–1321 (2018).
[Crossref]

L. Meng, A. Fix, M. Wirth, L. Høgstedt, P. Tidemand-Lichtenberg, C. Pedersen, and P. J. Rodrigo, “Upconversion detector for range-resolved DIAL measurement of atmospheric CH4,” Opt. Express 26(4), 3850–3860 (2018).
[Crossref] [PubMed]

P. Tidemand-Lichtenberg, J. S. Dam, H. V. Andersen, L. Høgstedt, and C. Pedersen, “Mid-infrared upconversion spectroscopy,” J. Opt. Soc. Am. B 33(11), D28 (2016).
[Crossref]

L. Høgstedt, J. S. Dam, A.-L. Sahlberg, Z. Li, M. Aldén, C. Pedersen, and P. Tidemand-Lichtenberg, “Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing,” Opt. Lett. 39(18), 5321–5324 (2014).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Tomko, J.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

Tseng, Y. P.

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

Tseng, Y.-P.

Uff, J.

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

Vogt, J.

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

Walsh, M. J.

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Ward, J.

Winlove, C. P.

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

Wirth, M.

Yeh, K.

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

N. Stone, M. C. Hart Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Anal. Bioanal. Chem. 387(5), 1657–1668 (2007).
[Crossref] [PubMed]

Anal. Chem. (2)

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser,” Anal. Chem. 84(23), 10366–10372 (2012).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J. N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87(1), 485–493 (2015).
[Crossref] [PubMed]

Analyst (Lond.) (3)

J. Nallala, G. R. Lloyd, N. Shepherd, and N. Stone, “High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features,” Analyst (Lond.) 141(2), 630–639 (2016).
[Crossref] [PubMed]

M. J. Baker, H. J. Byrne, J. Chalmers, P. Gardner, R. Goodacre, A. Henderson, S. G. Kazarian, F. L. Martin, J. Moger, N. Stone, and J. Sulé-Suso, “Clinical applications of infrared and Raman spectroscopy: state of play and future challenges,” Analyst (Lond.) 143(8), 1735–1757 (2018).
[Crossref]

C. Kendall, M. Isabelle, F. Bazant-Hegemark, J. Hutchings, L. Orr, J. Babrah, R. Baker, and N. Stone, “Vibrational spectroscopy: A clinical tool for cancer diagnostics,” Analyst (Lond.) 134(6), 1029–1045 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Br. J. Cancer (2)

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, “New relationships between breast microcalcifications and cancer,” Br. J. Cancer 103(7), 1034–1039 (2010).
[Crossref] [PubMed]

G. Shetty, C. Kendall, N. Shepherd, N. Stone, and H. Barr, “Raman spectroscopy: elucidation of biochemical changes in carcinogenesis of oesophagus,” Br. J. Cancer 94(10), 1460–1464 (2006).
[Crossref] [PubMed]

CA Cancer J. Clin. (1)

C. E. DeSantis, J. Ma, A. Goding Sauer, L. A. Newman, and A. Jemal, “Breast Cancer Statistics, 2017, racial disparity in mortality by state,” CA Cancer J. Clin. 67(6), 439–448 (2017).
[Crossref] [PubMed]

Cancer Res. (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Identifying microcalcifications in benign and malignant breast lesions by probing differences in their chemical composition using Raman spectroscopy,” Cancer Res. 62(18), 5375–5380 (2002).
[PubMed]

Chemom. Intell. Lab. Syst. (1)

M. Sattlecker, R. Baker, N. Stone, and C. Bessant, “Support vector machine ensembles for breast cancer type prediction from mid-FTIR micro-calcification spectra,” Chemom. Intell. Lab. Syst. 107(2), 363–370 (2011).
[Crossref]

Faraday Discuss. (1)

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157, discussion 169–183 (2004).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

N. Kröger, A. Egl, M. Engel, N. Gretz, K. Haase, I. Herpich, B. Kränzlin, S. Neudecker, A. Pucci, A. Schönhals, J. Vogt, and W. Petrich, “Quantum cascade laser-based hyperspectral imaging of biological tissue,” J. Biomed. Opt. 19(11), 111607 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

J. Mansfield, J. Moger, E. Green, C. Moger, and C. P. Winlove, “Chemically specific imaging and in-situ chemical analysis of articular cartilage with stimulated Raman scattering,” J. Biophotonics 6(10), 803–814 (2013).
[PubMed]

J. Opt. (1)

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-IR hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 2 (2018).

J. Opt. Soc. Am. B (1)

J. Photochem. Photobiol. B (1)

K. Das, C. Kendall, M. Isabelle, C. Fowler, J. Christie-Brown, and N. Stone, “FTIR of touch imprint cytology: a novel tissue diagnostic technique,” J. Photochem. Photobiol. B 92(3), 160–164 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photonics 6(11), 788–793 (2012).
[Crossref]

Nat. Protoc. (1)

H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, “Using Raman spectroscopy to characterize biological materials,” Nat. Protoc. 11(4), 664–687 (2016).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Mittal, K. Yeh, L. S. Leslie, S. Kenkel, A. Kajdacsy-Balla, and R. Bhargava, “Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology,” Proc. Natl. Acad. Sci. U.S.A. 115(25), E5651–E5660 (2018).
[Crossref] [PubMed]

Proc. SPIE (1)

Y. P. Tseng, P. Bouzy, N. Stone, C. Pedersen, and P. Tidemand-Lichtenberg, “Long wavelength identification of microcalcifications in breast cancer tissue using a quantum cascade laser and upconversion detection,” Proc. SPIE 10490, 1049001 (2018).

Sci. Rep. (1)

C. Kuepper, A. Kallenbach-Thieltges, H. Juette, A. Tannapfel, F. Großerueschkamp, and K. Gerwert, “Quantum cascade laser-based infrared microscopy for label-free and automated cancer classification in tissue sections,” Sci. Rep. 8(1), 7717 (2018).
[Crossref] [PubMed]

TrAC - Trends Analyt. Chem. (1)

A. Ogunleke, V. Bobroff, H. H. Chen, J. Rowlette, M. Delugin, B. Recur, Y. Hwu, and C. Petibois, “Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital?” TrAC - Trends Analyt. Chem. 89, 190–196 (2017).
[Crossref]

Other (1)

A. Rogalski, Infrared Detectors (CRC Press, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a). Schematic layout of experimental setup for upconversion raster scanning microscope. (b) Raster scanning scheme.
Fig. 2
Fig. 2 USAF 1951 optical resolution target (a) group 2, element 2-6 (b) group 3, element 1-6 imaged with the upconversion raster scanning microscope in transmission. Images displayed were obtained at 970 cm−1 (10.31 μm) corresponding to the upconverted signal at 964 nm. Intensity profiles across the horizontal set of bars (red/blue dashed lines) were plotted in (c) and (d) respectively.
Fig. 3
Fig. 3 Histological section of DCIS breast cancer microcalcifications with H&E staining imaged with the transmission microscope. The area marked with the black squares is approx.0.5 mm2. (b) FTIR absorbance image with the size of approx.1.4 mm x 1.7 mm referring to phosphate peak at 1020 cm−1 (c) Upconversion absorbance image with the size of approx.1.3 mm x 1.2 mm obtained at 1020 cm−1 corresponding to the upconverted signal at 958.8 nm.
Fig. 4
Fig. 4 (a) Multispectral upconversion images of the DCIS breast microcalcifications obtained at 1040, 1032, 1020, 1005, 970, 962, 950, 910, 881, 875, 860, and 850 cm−1 corresponding to the upconverted signals in the range of 958 to 976 nm. Spectra measured using Micro-FTIR (Agilent) and upconversion systems from (b) microcalcification (pink arrow) and (c) surrounding tissue (orange arrow) in breast sample. It is noticeable that absorbance obtained in microcalcification (b) and surrounding tissue (c) are in a different scale.

Metrics