Abstract

The optical quality of a set of IOLs (modeling set: one monofocal and two bifocals) was assessed through focus by the area under the modulation transfer function (MTFa) metric and related to the visual acuity (VA) defocus curves of pseudophakic patients implanted with said IOLs. A non-linear relationship between the MTFa and clinical VA was obtained with an asymptotic limit found to be the best VA achievable by the patients. Two mathematical fitting functions between clinical VA and MTFa were derived with high correlation coefficients (R2≥0.85). They were applied to the MTFa obtained from a different set of IOLs with advanced designs (trial set: one extended range of vision –ERV-, one trifocal ERV and one trifocal apodized) to predict VA versus defocus of patients implanted with these IOLs. Differences between the calculated VA and the clinical VA for both fitting models were within the standard deviation of the clinical measurements in the range of -3.00 D to 0.00 D defocus, thus proving the suitability of the MTFa metric to predict clinical VA performance of new IOL designs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Preclinical metrics to predict through-focus visual acuity for pseudophakic patients

Aixa Alarcon, Carmen Canovas, Robert Rosen, Henk Weeber, Linda Tsai, Kendra Hileman, and Patricia Piers
Biomed. Opt. Express 7(5) 1877-1888 (2016)

Optical aberrations of intraocular lenses measured in vivo and in vitro

Sergio Barbero, Susana Marcos, and Ignacio Jiménez-Alfaro
J. Opt. Soc. Am. A 20(10) 1841-1851 (2003)

Method for in vitro assessment of straylight from intraocular lenses

Grzegorz Łabuz, Fernando Vargas-Martín, Thomas J.T.P. van den Berg, and Norberto López-Gil
Biomed. Opt. Express 6(11) 4457-4464 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Lang, V. Lakshminarayanan, and V. Portney, “Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function,” J. Opt. Soc. Am. A 10(7), 1600–1610 (1993).
    [Crossref] [PubMed]
  2. A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
    [Crossref] [PubMed]
  3. A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
    [Crossref] [PubMed]
  4. A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
    [Crossref] [PubMed]
  5. M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
    [Crossref] [PubMed]
  6. L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
    [Crossref] [PubMed]
  7. M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
    [Crossref] [PubMed]
  8. J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
    [Crossref] [PubMed]
  9. F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
    [Crossref] [PubMed]
  10. Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
    [Crossref] [PubMed]
  11. D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
    [PubMed]
  12. L. He, X. Hong, and R. Sarangapani, “Population-based simulation using image quality metrics to predict visual acuity in pseudophakic patients implanted with trifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 58(8), 4209 (2017).
  13. G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
    [Crossref] [PubMed]
  14. Abbott Medical Optics, https://www.vision.abbott
  15. H. A. Weeber, “Multi-ring lens, systems and methods for extended depth of focus,” US Patent No. 2014/0168602 A1. Pub. Date: Jun 19, 2014.
  16. H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
    [Crossref] [PubMed]
  17. H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
    [Crossref] [PubMed]
  18. M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
    [Crossref] [PubMed]
  19. D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
    [Crossref] [PubMed]
  20. V. S. Y. Biotechnology, http://www.vsybiotechnology.com
  21. F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
    [Crossref] [PubMed]
  22. F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy efficiency of a new trifocal intraocular lens,” J. Eur. Opt. Soc. 9, 14002 (2014).
    [Crossref]
  23. F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
    [Crossref] [PubMed]
  24. International Organization for Standardization, ISO 11979–2:2014 “Ophthalmic Implants - Intraocular Lenses - Part 2: Optical Properties and Test Methods.” Geneva; ISO; 2014.
  25. F. Vega, M. S. Millán, and B. Wells, “Spherical lens versus aspheric artificial cornea for intraocular lens testing,” Opt. Lett. 35(10), 1539–1541 (2010).
    [Crossref] [PubMed]
  26. A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17(10), 1697–1702 (2000).
    [Crossref] [PubMed]
  27. L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
    [Crossref] [PubMed]
  28. M. J. Simpson, “Diffractive multifocal intraocular lens image quality,” Appl. Opt. 31(19), 3621–3626 (1992).
    [Crossref] [PubMed]
  29. J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
    [Crossref] [PubMed]
  30. L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).
  31. P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
    [Crossref] [PubMed]
  32. D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
    [Crossref] [PubMed]
  33. A. Alarcón, C. Canovas, R. Rosen, H. Weeber, and P. Piers, “Apparatus, systems and methods for improving visual outcomes for pseudophakic patients,” U.S. Patent US9823163B2. Pub Date Nov. 21, 2017.
  34. E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
    [Crossref] [PubMed]

2018 (2)

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

2017 (4)

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

L. He, X. Hong, and R. Sarangapani, “Population-based simulation using image quality metrics to predict visual acuity in pseudophakic patients implanted with trifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 58(8), 4209 (2017).

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (6)

L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

2014 (1)

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy efficiency of a new trifocal intraocular lens,” J. Eur. Opt. Soc. 9, 14002 (2014).
[Crossref]

2013 (1)

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

2012 (2)

L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

2011 (3)

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

2010 (3)

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

F. Vega, M. S. Millán, and B. Wells, “Spherical lens versus aspheric artificial cornea for intraocular lens testing,” Opt. Lett. 35(10), 1539–1541 (2010).
[Crossref] [PubMed]

2008 (1)

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

2003 (2)

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
[Crossref] [PubMed]

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

2000 (1)

1993 (1)

1992 (1)

Alarcon, A.

Alarcón, A.

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

Alba-Bueno, F.

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy efficiency of a new trifocal intraocular lens,” J. Eur. Opt. Soc. 9, 14002 (2014).
[Crossref]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

Alcón, E.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

Alió, J. L.

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

Artal, P.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

A. Guirao, M. Redondo, and P. Artal, “Optical aberrations of the human cornea as a function of age,” J. Opt. Soc. Am. A 17(10), 1697–1702 (2000).
[Crossref] [PubMed]

Artigas, J. M.

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

Auffarth, G. U.

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Ax, T.

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

Bentow, S. S.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Breyer, D. R. H.

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

Buckhurst, P.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Buil, J. A.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Byun, Y.-S.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Canovas, C.

Cánovas, C.

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

Cardona, G.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

Chang, D. H.

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

Choi, M.

L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).

Chu, Y. R.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Cousens, S. N.

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

Dai, E.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
[Crossref] [PubMed]

Diez-Ajenjo, A.

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

Donnenfeld, E. D.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Featherstone, K.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Felipe, A.

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

Fitzke, F. W.

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

Gabric, N.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Gatinel, D.

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
[Crossref] [PubMed]

Gené, A.

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

Gerl, M.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Gerl, R.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Gil, M. A.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Gobin, L.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
[Crossref] [PubMed]

Guirao, A.

Hagen, P. R.

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

Hall, L. A.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Hamid, A.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

He, L.

L. He, X. Hong, and R. Sarangapani, “Population-based simulation using image quality metrics to predict visual acuity in pseudophakic patients implanted with trifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 58(8), 4209 (2017).

L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).

Hileman, K.

Hong, X.

L. He, X. Hong, and R. Sarangapani, “Population-based simulation using image quality metrics to predict visual acuity in pseudophakic patients implanted with trifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 58(8), 4209 (2017).

L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).

Houbrechts, Y.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
[Crossref] [PubMed]

Jinabhai, A. N.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Joo, C.-K.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Jung, J. W.

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Kaymak, H.

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

Kim, D. Y.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Kim, E. K.

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Kim, J. S.

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Kim, M. J.

L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Kim, T. I.

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Kingsnorth, A.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Koch, D. D.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
[Crossref] [PubMed]

Kretz, F. T. A.

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Laidlaw, D. A.

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

Lakshminarayanan, V.

Lang, A. J.

Lee, J. M.

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Lenis, C.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Liekfeld, A.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Loicq, J.

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

MacRae, S.

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Meijer, S. T.

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

Menezo, J. L.

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

Millán, M. S.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy efficiency of a new trifocal intraocular lens,” J. Eur. Opt. Soc. 9, 14002 (2014).
[Crossref]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

F. Vega, M. S. Millán, and B. Wells, “Spherical lens versus aspheric artificial cornea for intraocular lens testing,” Opt. Lett. 35(10), 1539–1541 (2010).
[Crossref] [PubMed]

Mukrwa-Kominek, E.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Müller, M.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Murdoch, I. E.

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

Naroo, S. A.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Nathoo, A.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
[Crossref] [PubMed]

Packer, M.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Pagnoulle, C.

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
[Crossref] [PubMed]

Pastor, F.

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

Piao, J. J.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Piers, P.

Piers, P. A.

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Plaza-Puche, A. B.

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

Portney, V.

Qureshi, K.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Redondo, M.

Rosen, R.

Rosser, D. A.

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

Saeed, M.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Sala, E.

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

Sarangapani, R.

L. He, X. Hong, and R. Sarangapani, “Population-based simulation using image quality metrics to predict visual acuity in pseudophakic patients implanted with trifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 58(8), 4209 (2017).

L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).

Seo, K. Y.

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Shah, S.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Sheppard, A. L.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Simpson, M. J.

Smadja, D.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Smith, P.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Strauch, W.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Tarantino, N.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Tchah, H.

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Tsai, L.

Varón, C.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

Vasselon, J.

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Vega, F.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

M. S. Millán and F. Vega, “Extended depth of focus intraocular lens: Chromatic performance,” Biomed. Opt. Express 8(9), 4294–4309 (2017).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy efficiency of a new trifocal intraocular lens,” J. Eur. Opt. Soc. 9, 14002 (2014).
[Crossref]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

F. Vega, M. S. Millán, and B. Wells, “Spherical lens versus aspheric artificial cornea for intraocular lens testing,” Opt. Lett. 35(10), 1539–1541 (2010).
[Crossref] [PubMed]

Villegas, E. A.

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

Wallace, R. B.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Waltz, K. L.

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

Wang, L.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
[Crossref] [PubMed]

Weeber, H.

Weeber, H. A.

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Wells, B.

Whang, W.-J.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Wolffsohn, J. S.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Yoo, Y.-S.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Yoon, G.

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Young, G.

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

Zheleznyak, L.

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

Am. J. Ophthalmol. (2)

M. Packer, Y. R. Chu, K. L. Waltz, E. D. Donnenfeld, R. B. Wallace, K. Featherstone, P. Smith, S. S. Bentow, and N. Tarantino, “Evaluation of the aspheric Tecnis multifocal intraocular lens: One-year results from the first cohort of the Food and Drug Administration clinical trial,” Am. J. Ophthalmol. 149(4), 577–584.e1 (2010).
[Crossref] [PubMed]

J. S. Kim, J. W. Jung, J. M. Lee, K. Y. Seo, E. K. Kim, and T. I. Kim, “Clinical outcomes following implantation of diffractive multifocal intraocular lenses with varying add powers,” Am. J. Ophthalmol. 160(4), 702–709.e1 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Asia Pac. J. Ophthalmol. (Phila.) (1)

D. R. H. Breyer, H. Kaymak, T. Ax, F. T. A. Kretz, G. U. Auffarth, and P. R. Hagen, “Multifocal intraocular lenses and extended depth of focus intraocular lenses,” Asia Pac. J. Ophthalmol. (Phila.) 6(4), 339–349 (2017).
[PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

F. T. A. Kretz, M. Gerl, R. Gerl, M. Müller, G. U. Auffarth, A. Liekfeld, M. Saeed, C. Lenis, D. Smadja, N. Gabric, E. Mukrwa-Kominek, K. Qureshi, A. Hamid, J. Vasselon, and W. Strauch, “Clinical evaluation of a new pupil independent diffractive multifocal intraocular lens with a +2.75 D near addition: a European multicentre study,” Br. J. Ophthalmol. 99(12), 1655–1659 (2015).
[Crossref] [PubMed]

Eur. J. Ophthalmol. (1)

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur. J. Ophthalmol. 28(1), 36–41 (2018).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (6)

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

L. He, X. Hong, and R. Sarangapani, “Population-based simulation using image quality metrics to predict visual acuity in pseudophakic patients implanted with trifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 58(8), 4209 (2017).

E. A. Villegas, E. Alcón, and P. Artal, “Optical quality of the eye in subjects with normal and excellent visual acuity,” Invest. Ophthalmol. Vis. Sci. 49(10), 4688–4696 (2008).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, M. S. Millán, C. Varón, M. A. Gil, and J. A. Buil, “Halo and Through-Focus Performance of Four Diffractive Multifocal Intraocular Lenses,” Invest. Ophthalmol. Vis. Sci. 56(6), 3967–3975 (2015).
[Crossref] [PubMed]

L. He, M. Choi, X. Hong, and R. Sarangapani, “Correlation between clinical visual acuity and optical/visual metrics at varied defocuses in pseudophakic patients implanted with monofocal and multifocal IOLs,” Invest. Ophthalmol. Vis. Sci. 56(7), 2978 (2015).

D. A. Rosser, S. N. Cousens, I. E. Murdoch, F. W. Fitzke, and D. A. Laidlaw, “How sensitive to clinical change are ETDRS logMAR visual acuity measurements?” Invest. Ophthalmol. Vis. Sci. 44(8), 3278–3281 (2003).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (7)

A. Felipe, F. Pastor, J. M. Artigas, A. Diez-Ajenjo, A. Gené, and J. L. Menezo, “Correlation between optics quality of multifocal intraocular lenses and visual acuity: tolerance to modulation transfer function decay,” J. Cataract Refract. Surg. 36(4), 557–562 (2010).
[Crossref] [PubMed]

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, “Optical aberrations of the human anterior cornea,” J. Cataract Refract. Surg. 29(8), 1514–1521 (2003).
[Crossref] [PubMed]

J. S. Wolffsohn, A. N. Jinabhai, A. Kingsnorth, A. L. Sheppard, S. A. Naroo, S. Shah, P. Buckhurst, L. A. Hall, and G. Young, “Exploring the optimum step size for defocus curves,” J. Cataract Refract. Surg. 39(6), 873–880 (2013).
[Crossref] [PubMed]

M. J. Kim, L. Zheleznyak, S. Macrae, H. Tchah, and G. Yoon, “Objective evaluation of through-focus optical performance of presbyopia-correcting intraocular lenses using an optical bench system,” J. Cataract Refract. Surg. 37(7), 1305–1312 (2011).
[Crossref] [PubMed]

L. Zheleznyak, M. J. Kim, S. MacRae, and G. Yoon, “Impact of corneal aberrations on through-focus image quality of presbyopia-correcting intraocular lenses using an adaptive optics bench system,” J. Cataract Refract. Surg. 38(10), 1724–1733 (2012).
[Crossref] [PubMed]

D. Gatinel, C. Pagnoulle, Y. Houbrechts, and L. Gobin, “Design and qualification of a diffractive trifocal optical profile for intraocular lenses,” J. Cataract Refract. Surg. 37(11), 2060–2067 (2011).
[Crossref] [PubMed]

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

J. Eur. Opt. Soc. (1)

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy efficiency of a new trifocal intraocular lens,” J. Eur. Opt. Soc. 9, 14002 (2014).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (4)

A. B. Plaza-Puche, J. L. Alió, S. MacRae, L. Zheleznyak, E. Sala, and G. Yoon, “Correlating optical bench performance with clinical defocus curves in varifocal and trifocal intraocular lenses,” J. Refract. Surg. 31(5), 300–307 (2015).
[Crossref] [PubMed]

P. A. Piers, D. H. Chang, A. Alarcón, C. Cánovas, D. Gatinel, and J. Loicq, “Clinically relevant interpretation of optical bench measurement of intraocular lenses,” J. Refract. Surg. 33(1), 64 (2017).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Y.-S. Yoo, W.-J. Whang, Y.-S. Byun, J. J. Piao, D. Y. Kim, C.-K. Joo, and G. Yoon, “Through-focus optical bench performance of extended depth-of-focus and bifocal intraocular lenses compared to a monofocal lens,” J. Refract. Surg. 34(4), 236–243 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Other (5)

A. Alarcón, C. Canovas, R. Rosen, H. Weeber, and P. Piers, “Apparatus, systems and methods for improving visual outcomes for pseudophakic patients,” U.S. Patent US9823163B2. Pub Date Nov. 21, 2017.

International Organization for Standardization, ISO 11979–2:2014 “Ophthalmic Implants - Intraocular Lenses - Part 2: Optical Properties and Test Methods.” Geneva; ISO; 2014.

Abbott Medical Optics, https://www.vision.abbott

H. A. Weeber, “Multi-ring lens, systems and methods for extended depth of focus,” US Patent No. 2014/0168602 A1. Pub. Date: Jun 19, 2014.

V. S. Y. Biotechnology, http://www.vsybiotechnology.com

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 - Optical setup used for in vitro assessment of IOLs. (a) General view. (b) Scheme of the optical setup. Inset I: bifocal diffractive IOL; inset II: trifocal diffractive IOL. LED = light-emitting diode.
Fig. 2
Fig. 2 Example to illustrate the relationship between image quality and the area under the MTF (MTFa) metric. The images (a, b, c) of the four slit object were recorded at defocus 0.00 D (a), −0.50 D (b) and −1.00 D (c) with the monofocal ZCB00 IOL placed in the model eye. The MTFs derived from these images are shown in (d), (e) and (f) respectively and were obtained from the average of four MTFs: two along the X axis (yellow dashed lines) and two along the Y axis (red dashed lines). The MTFa at each defocus position is the shaded area below the MTF curves calculated from 0 up to 50 cycles/mm in (d-f).
Fig. 3
Fig. 3 Clinical Visual acuity (mean ± standard deviation) (a, b) and MTFa (c, d) versus defocus (at spectacle plane) obtained with monofocal ZCB00 (black line) and bifocals ZLB00 ( + 3.25 D) (orange line) and ZMB00 ( + 4.0 D) (green line). The squares in (c) and (d) are the MTFa values at the defocus positions for which the clinical VA is measured.
Fig. 4
Fig. 4 Relationship between clinical Visual Acuity (mean ± standard deviation) and MTFa obtained with the IOLs of the set of modeling: monofocal ZCB00 and bifocals ZLB00 ( + 3.25 D) and ZMB00 ( + 4.0 D). Open squares are experimental results and each of them represents a pair (MTFa,VA) for a particular IOL model and defocus position. The pair (MTFa,VA) at 0.00 D defocus of the monofocal ZCB00 and bifocals ZLB00 and ZMB00 are indicated by (*) and (**) respectively. Solid blue line: function fitted with Eq. (1) [4]. Solid red line: exponential decay fitted with Eq. (2).
Fig. 5
Fig. 5 MTFa versus defocus obtained with the IOLs of the set of trial: ERV Symfony (a), trifocal AcrivaUD Reviol Tri-ED (b) and trifocal apodized FineVision (c). Squares in (a), (b) and (c) are the MTFa values at the defocus positions used to preclinical estimate VA in these IOLs.
Fig. 6
Fig. 6 Clinical Visual Acuity measurements (mean ± standard deviation) (open squares on black solid line) and calculated Visual Acuity estimates with Eq. (1) (solid blue circles) and Eq. (2) (solid red circles) versus defocus, obtained with the IOLs of the set of trial: (a) ERV Symfony, (b) trifocal AcrivaUD Reviol Tri-ED, and (c) trifocal apodized FineVision.
Fig. 7
Fig. 7 Differences, at each defocus position, between the mean clinical VA and the calculated VA estimate with either Eq. (1) (solid blue circles) or Eq. (2) (solid red circles) obtained with the IOLs of the set of trial: (a) ERV Symfony, (b) trifocal ERV AcrivaUD Reviol Tri-ED, and (c) trifocal apodized FineVision. The error bars are the standard deviation of the clinical VA grades at every defocus position (from Fig. 6).

Tables (2)

Tables Icon

Table 1 Optical data of the IOLs.

Tables Icon

Table 2 Clinical data.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

VA( MT F a )=a ( MT F a ) 1 +c,
VA( MT F a )=Aexp{ MT F a B }+c,

Metrics