Abstract

The infrared spectral region beyond 1.7 μm is of utmost interest for biomedical applications due to strong overtone and combination absorption bands in a variety of important biomolecules such as lactates, urea, glucose, albumin, etc. In this article, we report on recent progress in widely tunable swept-wavelength lasers based on type-I GaSb gain-chip technology, setting a new state-of-the-art in the 1.7 – 2.5 μm range laser sources. We provide an application example for the spectroscopic sensing of several biomolecules in a cuvette as well as an experimental demonstration of a non-invasive in-vivo sensing of human serum albumin through the skin.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed feedback GaSb based laser diodes with buried grating: a new field of single-frequency sources from 2 to 3 µm for gas sensing applications

Quentin Gaimard, Meriam Triki, Tong Nguyen-Ba, Laurent Cerutti, Guilhem Boissier, Roland Teissier, Alexei Baranov, Yves Rouillard, and Aurore Vicet
Opt. Express 23(15) 19118-19128 (2015)

Design of a mechanical-tunable filter spectrometer for noninvasive glucose measurement

Vidi Saptari and Kamal Youcef-Toumi
Appl. Opt. 43(13) 2680-2688 (2004)

References

  • View by:
  • |
  • |
  • |

  1. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
    [Crossref]
  2. A. K. Amerov, J. Chen, and M. A. Arnold, “Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum,” Appl. Spectrosc. 58(10), 1195–1204 (2004).
    [Crossref] [PubMed]
  3. R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci. 9, 49–60 (2011).
    [Crossref]
  4. J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
    [Crossref]
  5. A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
    [Crossref] [PubMed]
  6. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
    [Crossref]
  7. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [Crossref]
  8. D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).
  9. E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
    [Crossref]
  10. J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
    [Crossref] [PubMed]
  11. J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
    [Crossref]
  12. K. Vizbaras and M.-C. Amann, “3.6 µm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” IEEE Photonics Technol. Lett. 47(17), 980–981 (2011).
  13. K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
    [Crossref]
  14. K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
    [Crossref]
  15. I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).
  16. I. P. Kaminow, G. Eisenstein, and L. W. Lutz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
    [Crossref]
  17. K. Vizbaras, K. Kashani-Shirazi, and M.-C. Amann, “Simultaneous two-level lasing in GaInAsSb/GaSb strained quantum-well laser,” Appl. Phys. Lett. 95(7), 071107 (2009).
    [Crossref]
  18. R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
    [Crossref] [PubMed]
  19. R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
    [Crossref]
  20. A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
    [Crossref] [PubMed]
  21. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [Crossref] [PubMed]
  22. J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
    [Crossref] [PubMed]
  23. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
    [Crossref] [PubMed]
  24. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
    [Crossref] [PubMed]

2017 (2)

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

2016 (2)

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

2015 (1)

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

2012 (2)

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

2011 (3)

R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci. 9, 49–60 (2011).
[Crossref]

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

K. Vizbaras and M.-C. Amann, “3.6 µm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” IEEE Photonics Technol. Lett. 47(17), 980–981 (2011).

2010 (1)

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

2009 (2)

K. Vizbaras, K. Kashani-Shirazi, and M.-C. Amann, “Simultaneous two-level lasing in GaInAsSb/GaSb strained quantum-well laser,” Appl. Phys. Lett. 95(7), 071107 (2009).
[Crossref]

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

2007 (1)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

2006 (1)

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

2005 (1)

2004 (2)

A. K. Amerov, J. Chen, and M. A. Arnold, “Molar absorptivities of glucose and other biological molecules in aqueous solutions over the first overtone and combination regions of the near-infrared spectrum,” Appl. Spectrosc. 58(10), 1195–1204 (2004).
[Crossref] [PubMed]

A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
[Crossref] [PubMed]

2002 (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

2001 (1)

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

2000 (1)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

1983 (1)

I. P. Kaminow, G. Eisenstein, and L. W. Lutz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Aers, G. C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

Alcaráz, M. R.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Aleknavicius, J.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

Amann, M.-C.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

K. Vizbaras and M.-C. Amann, “3.6 µm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” IEEE Photonics Technol. Lett. 47(17), 980–981 (2011).

K. Vizbaras, K. Kashani-Shirazi, and M.-C. Amann, “Simultaneous two-level lasing in GaInAsSb/GaSb strained quantum-well laser,” Appl. Phys. Lett. 95(7), 071107 (2009).
[Crossref]

Amerov, A. K.

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Andrulionis, L.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

Araman, C.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Arnold, M. A.

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Baets, R.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

Barrios, P. J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

Belkin, M. A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Boehm, G.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Buffington, G. D.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Cain, C. P.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Capasso, F.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Chen, J.

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Diehl, L.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Dvinelis, E.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Eisenstein, G.

I. P. Kaminow, G. Eisenstein, and L. W. Lutz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

Faist, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Ferraro, M.

A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
[Crossref] [PubMed]

Finkeldei, C. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Foltz, M. F.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Fröhlich, M.

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

Geerlings, E.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Goicoechea, H.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Greibus, M.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Gupta, J. A.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

Harbert, C. A.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Hodnett, H. M.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Höfler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Kaminow, I. P.

I. P. Kaminow, G. Eisenstein, and L. W. Lutz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

Kashani-Shirazi, K.

K. Vizbaras, K. Kashani-Shirazi, and M.-C. Amann, “Simultaneous two-level lasing in GaInAsSb/GaSb strained quantum-well laser,” Appl. Phys. Lett. 95(7), 071107 (2009).
[Crossref]

Kaufel, G.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Kaušylas, M.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Kersten, H.

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Koskinen, R.

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

Kratz, A.

A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
[Crossref] [PubMed]

Kumru, S. S.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Lapointe, J.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

Lee, B. G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Lendl, B.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Lewandrowski, K. B.

A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
[Crossref] [PubMed]

Lopatik, D.

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

Lutz, L. W.

I. P. Kaminow, G. Eisenstein, and L. W. Lutz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Malik, A.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Mermelstein, C.

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Muneeb, M.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Naujokaite, G.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

Niemietz, S.

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

Nikkinen, J.

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

Noojin, G. D.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Noojin, I. D.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Okhotnikov, O. G.

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

Olesberg, J. T.

Oliver, J. W.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Paajaste, J.

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

Pflügl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Rasshofer, R. H.

R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci. 9, 49–60 (2011).
[Crossref]

Rattunde, M.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Roelkens, G.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

Röpke, J.

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

Schmitz, J.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref] [PubMed]

Schuster, K. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Schwaighofer, A.

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Šimonyte, I.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Sluss, P. M.

A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
[Crossref] [PubMed]

Songaila, R.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Spies, H.

R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci. 9, 49–60 (2011).
[Crossref]

Spies, M.

R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci. 9, 49–60 (2011).
[Crossref]

Sprengel, S.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

Stolarski, D. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Storey, C.

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

Suomalainen, S.

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

Thennadil, S. N.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Thomas, R. J.

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

Trinkunas, A.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

Vasiliev, A.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

Vizbaras, A.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Vizbaras, K.

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

K. Vizbaras and M.-C. Amann, “3.6 µm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” IEEE Photonics Technol. Lett. 47(17), 980–981 (2011).

K. Vizbaras, K. Kashani-Shirazi, and M.-C. Amann, “Simultaneous two-level lasing in GaInAsSb/GaSb strained quantum-well laser,” Appl. Phys. Lett. 95(7), 071107 (2009).
[Crossref]

Wagner, J.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. T. Olesberg, M. A. Arnold, C. Mermelstein, J. Schmitz, and J. Wagner, “Tunable laser diode system for noninvasive blood glucose measurements,” Appl. Spectrosc. 59(12), 1480–1484 (2005).
[Crossref] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Wang, R.

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0x μm widely tunable external cavity lasers,” Opt. Express 24(25), 28977–28986 (2016).
[Crossref] [PubMed]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Zappe, H.

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Žukauskas, T.

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

Adv. Radio Sci. (1)

R. H. Rasshofer, M. Spies, and H. Spies, “Influences of weather phenomena on automotive laser radar systems,” Adv. Radio Sci. 9, 49–60 (2011).
[Crossref]

Appl. Phys. Lett. (4)

J. A. Gupta, P. J. Barrios, J. Lapointe, G. C. Aers, and C. Storey, “Single-mode 2.4 µm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing,” Appl. Phys. Lett. 95(4), 041104 (2009).
[Crossref]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

K. Vizbaras, E. Dvinelis, I. Šimonytė, A. Trinkūnas, M. Greibus, R. Songaila, T. Žukauskas, M. Kaušylas, and A. Vizbaras, “„High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 μm wavelength range,” Appl. Phys. Lett. 107(1), 011103 (2015).
[Crossref]

K. Vizbaras, K. Kashani-Shirazi, and M.-C. Amann, “Simultaneous two-level lasing in GaInAsSb/GaSb strained quantum-well laser,” Appl. Phys. Lett. 95(7), 071107 (2009).
[Crossref]

Appl. Spectrosc. (2)

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[Crossref] [PubMed]

Contrib. Plasma Phys. (1)

D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpke, and H. Kersten, “Plasma chemical study of RF discharge containing aluminum tris-isoproxide using MIR absorption spectroscopy based on external-cavity quantum cascade lasers,” Contrib. Plasma Phys. 52(10), 864–871 (2012).

IEEE J. Quantum Electron. (1)

I. P. Kaminow, G. Eisenstein, and L. W. Lutz, “Measurement of the modal reflectivity of an antireflection coating on a superluminescent diode,” IEEE J. Quantum Electron. 19(4), 493–495 (1983).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (3)

E. Geerlings, M. Rattunde, J. Schmitz, G. Kaufel, H. Zappe, and J. Wagner, “Widely tunable GaSb-based external cavity diode laser emitting around 2.3 µm,” IEEE Photonics Technol. Lett. 18(18), 1913–1915 (2006).
[Crossref]

J. Nikkinen, J. Paajaste, R. Koskinen, S. Suomalainen, and O. G. Okhotnikov, “GaSb-based semiconductor disk laser with 130-nm tuning range at 2.5 µm,” IEEE Photonics Technol. Lett. 23(12), 777–779 (2011).
[Crossref]

K. Vizbaras and M.-C. Amann, “3.6 µm GaSb-based type-I lasers with quinternary barriers, operating at room temperature,” IEEE Photonics Technol. Lett. 47(17), 980–981 (2011).

J. Biomed. Opt. (2)

J. W. Oliver, D. J. Stolarski, G. D. Noojin, H. M. Hodnett, C. A. Harbert, K. J. Schuster, M. F. Foltz, S. S. Kumru, C. P. Cain, C. J. Finkeldei, G. D. Buffington, I. D. Noojin, and R. J. Thomas, “Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures,” J. Biomed. Opt. 15(6), 065008 (2010).
[Crossref] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6(2), 167–176 (2001).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

A. Kratz, M. Ferraro, P. M. Sluss, and K. B. Lewandrowski, “Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values,” N. Engl. J. Med. 351(15), 1548–1563 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002).
[Crossref]

Proc. SPIE (1)

I. Šimonytė, L. Andrulionis, J. Aleknavičius, G. Naujokaitė, E. Dvinelis, A. Trinkūnas, M. Greibus, A. Vizbaras, and K. Vizbaras, “Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications,” Proc. SPIE 10111, 101110H (2017).

Sci. Rep. (1)

A. Schwaighofer, M. R. Alcaráz, C. Araman, H. Goicoechea, and B. Lendl, “External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations,” Sci. Rep. 6(1), 33556 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

K. Vizbaras and M.-C. Amann, “Room-temperature 3.73 µm GaSb-based type-I quantum-well lasers with quinternary barriers,” Semicond. Sci. Technol. 27(3), 032001 (2012).
[Crossref]

Sensors (1)

R. Wang, A. Vasiliev, M. Muneeb, A. Malik, S. Sprengel, G. Boehm, M.-C. Amann, I. Šimonytė, A. Vizbaras, K. Vizbaras, R. Baets, and G. Roelkens, “III-V-on-silicon photonics integrated circuits for spectroscopic sensing in the 2-4 µm wavelength range,” Sensors 17(8), 1788 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Optical microscope image of a processed angled facet gain-chip. The arrow mark at the bottom left corner indicates the output facet direction; (b) SEM image of the processed gain-chip displaying dry-etched ridge and the electroplated Au heatsink.
Fig. 2
Fig. 2 Normalized amplified spontaneous emission (ASE) spectra for a family of the gain-chips CW driven in similar conditions – i.e. at pump currents being twice larger the corresponding reference FP laser threshold currents indicated in Table 1. The heatsink temperature was maintained at 20 °C. The ASE spectra from different gain-chips are indicated by different colors.
Fig. 3
Fig. 3 (a) A photograph of the prototype of widely tunable MEMS laser with indicated main building blocks. The red line illustrates the beam path in the cavity; (b) L-I-V performance data of MEMS based external cavity lasers operating in single wavelength mode. Experimental conditions were: heatsink temperature at 20 °C, operation mode continuous wave.
Fig. 4
Fig. 4 Laser emission spectra from the different lasers recorded at fixed MEMS mirror positions, in a linear scale. The inset represents one selected spectrum in a log scale showing the side-mode suppression ratio of > 35 dB and indicating the single mode operation. The curve colors are used to indicate the link between the laser data and the respective gain-chip data in Fig. 2.
Fig. 5
Fig. 5 Laser tuning curves in five widely swept wavelength lasers recorded at 20 °C heatsink temperature, CW operation mode. The curve colors are used to indicate the link between the laser data and the respective gain-chip data in Fig. 2.
Fig. 6
Fig. 6 (a) Recorded laser wavelength-sweep signal of MEMS tunable SWL. MEMS mirror was driven at 150 Hz frequency. Zoomed-in single gain-bandwidth sweep signal is shown in the inset. (b) Single SWL measurement measured by changing mirror tilt angle. Inset demonstrates wavelength as a function of mirror tilt angle.
Fig. 7
Fig. 7 Schematic diagram of a swept-wavelength laser (SWL) based spectroscopic sensor.
Fig. 8
Fig. 8 Absorbance spectra of (a) 50 g/l BSA solution, (b) 30 mmol/l urea, (c) 50 mmol/l glucose and (d) 50 mmol/l lactate molecules recorded in transmission mode using a swept-wavelength laser (blue line) and a tabletop FTIR spectrometer (orange line). Solutions were kept at room-temperature, nominally 21 °C.
Fig. 9
Fig. 9 Absorbance spectra of urea at different concentrations recorded with a swept-wavelength laser in transmission mode. 2 mmol/l (blue), 5 mmol/l (orange), 10 mmol/l (green), 20 mmol/l (red) and 30 mmol/l (purple).
Fig. 10
Fig. 10 Wide-band absorbance spectrum of a BSA molecule recorded with a combination of three swept-wavelength lasers: centered at 1920 nm (blue line), centered at 2100 nm (orange line) and centered around 2300 nm (green line). Black line is from a reference measurement performed with a tabletop FTIR.
Fig. 11
Fig. 11 Schematic diagram of a SWL based spectroscopic sensor for non-invasive diffuse reflection measurement using a dual-core fiber probe. Inset show a photograph of the experiment when the fiber probe is in contact with the outer skin of the human hand.
Fig. 12
Fig. 12 3D Monte-Carlo simulation results and 3D simulation cross-section of (a) photon path in the tissue before being collected by the collection fiber core; (b) distribution of absorbed light in the tissue. In both cases, launch fiber core is centered at 0, whereas the collection core is centered at 0.72 in the lateral axis. Upper most skin boundary is set to 0 in the depth axis.
Fig. 13
Fig. 13 (a) Experimental normalized diffuse reflectance spectra of three independent measurement taken from the wrist of 2 different persons; (b) Experimental measured transmission function of the used silica fiber.
Fig. 14
Fig. 14 (a) Experimental diffuse reflectance measurements plotted together with a fitted TBS absorbance spectrum (violet); (b) Molecular absorbance spectra recorded from a non-invasive measurement normalized with regard to TBS from two different persons labeled in the figure with letters “A” (blue and orange curves) and “B” (red and green curves). The bovine serum albumin absorbance spectrum (violet curve) recorded with a table top FTIR instrument is plotted as a reference.

Tables (3)

Tables Icon

Table 1 Design and main performance parameter summary for the gain-chips used in this work.

Tables Icon

Table 2 Main-performance parameters of our swept-wavelength lasers based on the GaSb gain-chips from Table 1. The heatsink temperature is 20 °C, the driving mode is CW.

Tables Icon

Table 3 Summary of the biomolecules used for the spectroscopic sensor experiment.

Metrics