Abstract

We studied the use of vibrationally resonant, third-order sum-frequency generation (TSFG) for imaging of biological samples. We found that laser-scanning TSFG provides vibrationally sensitive imaging capabilities of lipid droplets and structures in sectioned tissue samples. Although the contrast is based on the infrared-activity of molecular modes, TSFG images exhibit a high lateral resolution of 0.5 µm or better. We observed that the imaging properties of TSFG resemble the imaging properties of coherent anti-Stokes Raman scattering (CARS) microscopy, offering a nonlinear infrared alternative to coherent Raman methods. TSFG microscopy holds promise as a high-resolution imaging technique in the fingerprint region where coherent Raman techniques often provide insufficient sensitivity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral imaging with laser-scanning sum-frequency generation microscopy

Adam Hanninen, Ming Wai Shu, and Eric O. Potma
Biomed. Opt. Express 8(9) 4230-4242 (2017)

A multimodal platform for nonlinear optical microscopy and microspectroscopy

Hongtao Chen, Haifeng Wang, Mikhail N. Slipchenko, YooKyung Jung, Yunzhou Shi, Jiabin Zhu, Kimberly K. Buhman, and Ji-Xin Cheng
Opt. Express 17(3) 1282-1290 (2009)

References

  • View by:
  • |
  • |
  • |

  1. D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285, 1224–1225 (1999).
    [Crossref] [PubMed]
  2. C. J. Hirschmugl and K. M. Gough, “Fourier transform infrared spectrochemical imaging: Review of design and applications with a focal plane array and multiple beam synchrotron radiation source,” Appl. Spectrosc. 66, 475–491 (2012).
    [Crossref] [PubMed]
  3. R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66, 1091–1120 (2012).
    [Crossref] [PubMed]
  4. M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
    [Crossref]
  5. T. P. Wrobel and R. Bhargava, “Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences,” Anal. Chem. 90, 1444–1463 (2018).
    [Crossref]
  6. M. C. Phillips and N. Hô, “Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array,” Opt. Express 16, 1836–1845 (2008).
    [Crossref] [PubMed]
  7. M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
    [Crossref] [PubMed]
  8. K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
    [Crossref]
  9. R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67, 93–105 (2013).
    [Crossref] [PubMed]
  10. L. M. Miller and P. Dumas, “From structure to cellular mechanism with infrared microspectroscopy,” Curr. Opin. Struct. Biol. 20, 649–656 (2010).
    [Crossref] [PubMed]
  11. J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52, 560–587 (2017).
    [Crossref]
  12. T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
    [Crossref]
  13. J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photon. 6, 788–793 (2012).
    [Crossref]
  14. L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40, 938–941 (2015).
    [Crossref] [PubMed]
  15. E. S. Lee and J. Y. Lee, “High resolution cellular imaging with nonlinear optical infrared microscopy,” Opt. Express 19, 1378–1384 (2011).
    [Crossref] [PubMed]
  16. D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
    [Crossref] [PubMed]
  17. C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
    [Crossref] [PubMed]
  18. M. Kumbham, S. Daly, K. O’Dwyer, R. Mouras, N. Liu, A. Mani, A. Peremans, S. M. Tofail, and C. Silien, “Doubling the far-field resolution in mid-infrared microscopy,” Opt. Express 24, 24377–24389 (2016).
    [Crossref] [PubMed]
  19. V. Raghunathan, Y. Han, O. Korth, N.-H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
    [Crossref] [PubMed]
  20. A. Hanninen, M. W. Shu, and E. O. Potma, “Hyperspectral imaging with laser-scanning sum-frequency generation microscopy,” Biomed. Opt. Express 8, 4230–4242 (2017).
    [Crossref] [PubMed]
  21. Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
    [Crossref] [PubMed]
  22. Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
    [Crossref] [PubMed]
  23. H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc. 65, 1254–1259 (2011).
    [Crossref] [PubMed]
  24. S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
    [Crossref] [PubMed]
  25. A. M. Hanninen, R. C. Prince, and E. O. Potma, “Triple modal coherent nonlinear imaging with vibrational contrast,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
  26. J.-X. Cheng and X. S. Xie, eds., Coherent Raman Scattering Microscopy (CRC Press, 2013).
  27. J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
    [Crossref] [PubMed]
  28. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
    [Crossref]
  29. D. Débarre, W. Supatto, and E. Beaurepaire, “Structure sensitivity in third-harmonic generation microscopy,” Opt. Lett. 30, 2134–2136 (2005).
    [Crossref] [PubMed]
  30. C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
    [Crossref]
  31. J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
    [Crossref]
  32. H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. o Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with cars, shg, thg and tsfg (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20, 9551–9557 (2012).
    [Crossref] [PubMed]
  33. H. Segawa, N. Fukutake, P. Leproux, V. Couderc, T. Ozawa, and H. Kano, “Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum,” Opt. Express 22, 10416–10429 (2014).
    [Crossref] [PubMed]

2019 (1)

A. M. Hanninen, R. C. Prince, and E. O. Potma, “Triple modal coherent nonlinear imaging with vibrational contrast,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

2018 (3)

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

T. P. Wrobel and R. Bhargava, “Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences,” Anal. Chem. 90, 1444–1463 (2018).
[Crossref]

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

2017 (3)

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
[Crossref] [PubMed]

A. Hanninen, M. W. Shu, and E. O. Potma, “Hyperspectral imaging with laser-scanning sum-frequency generation microscopy,” Biomed. Opt. Express 8, 4230–4242 (2017).
[Crossref] [PubMed]

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52, 560–587 (2017).
[Crossref]

2016 (2)

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

M. Kumbham, S. Daly, K. O’Dwyer, R. Mouras, N. Liu, A. Mani, A. Peremans, S. M. Tofail, and C. Silien, “Doubling the far-field resolution in mid-infrared microscopy,” Opt. Express 24, 24377–24389 (2016).
[Crossref] [PubMed]

2015 (3)

L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40, 938–941 (2015).
[Crossref] [PubMed]

Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

2014 (2)

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

H. Segawa, N. Fukutake, P. Leproux, V. Couderc, T. Ozawa, and H. Kano, “Electronically resonant third-order sum frequency generation spectroscopy using a nanosecond white-light supercontinuum,” Opt. Express 22, 10416–10429 (2014).
[Crossref] [PubMed]

2013 (2)

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67, 93–105 (2013).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

2012 (6)

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66, 1091–1120 (2012).
[Crossref] [PubMed]

C. J. Hirschmugl and K. M. Gough, “Fourier transform infrared spectrochemical imaging: Review of design and applications with a focal plane array and multiple beam synchrotron radiation source,” Appl. Spectrosc. 66, 475–491 (2012).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photon. 6, 788–793 (2012).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. o Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with cars, shg, thg and tsfg (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20, 9551–9557 (2012).
[Crossref] [PubMed]

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

2011 (4)

2010 (1)

L. M. Miller and P. Dumas, “From structure to cellular mechanism with infrared microspectroscopy,” Curr. Opin. Struct. Biol. 20, 649–656 (2010).
[Crossref] [PubMed]

2008 (1)

2005 (1)

2003 (1)

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
[Crossref] [PubMed]

2002 (1)

1999 (1)

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285, 1224–1225 (1999).
[Crossref] [PubMed]

Beaurepaire, E.

Bhargava, R.

T. P. Wrobel and R. Bhargava, “Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences,” Anal. Chem. 90, 1444–1463 (2018).
[Crossref]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67, 93–105 (2013).
[Crossref] [PubMed]

R. Bhargava, “Infrared spectroscopic imaging: The next generation,” Appl. Spectrosc. 66, 1091–1120 (2012).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Brown, D. J.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Carney, P. S.

Cheng, J.-X.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
[Crossref]

Chung, C.-Y.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Cinque, G.

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52, 560–587 (2017).
[Crossref]

Cosgrove, D. J.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Couderc, V.

Daly, S.

Dam, J. S.

L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40, 938–941 (2015).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photon. 6, 788–793 (2012).
[Crossref]

Débarre, D.

Diddams, S. A.

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

Diem, M.

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

Doherty, J.

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52, 560–587 (2017).
[Crossref]

Dumas, P.

L. M. Miller and P. Dumas, “From structure to cellular mechanism with infrared microspectroscopy,” Curr. Opin. Struct. Biol. 20, 649–656 (2010).
[Crossref] [PubMed]

Eakins, G.

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

Feng, R.-R.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Feng, Y.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Fukutake, N.

Gardner, P.

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52, 560–587 (2017).
[Crossref]

Ge, N.-H.

Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N.-H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Gelber, M. K.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Gough, K. M.

Hamaguchi, H. o

Hamedi, H.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Han, Y.

Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N.-H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Hanninen, A.

Hanninen, A. M.

A. M. Hanninen, R. C. Prince, and E. O. Potma, “Triple modal coherent nonlinear imaging with vibrational contrast,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

Hermes, M.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Hieu, H. C.

Hirschmugl, C. J.

Hô, N.

Hsu, J.

Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

Huang, S.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Huot, L.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Jester, J. V.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

Johnson, T. A.

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

Junaid, S.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Kano, H.

Kehlet, L. M.

Kenkel, S.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

Kiemle, S. N.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Kim, S. H.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Kole, M. R.

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Korth, O.

Kumbham, M.

Lee, E. S.

Lee, J. Y.

Leproux, P.

LeVine, S. M.

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285, 1224–1225 (1999).
[Crossref] [PubMed]

Li, C.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

Li, H.

Lin, C.-Y.

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

Liu, J.-N.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

Liu, N.

Lloyd, G. R.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Maekawa, H.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Makarem, M.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Mani, A.

Masselink, W. T.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Meng, L.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Miljkovic, M. D.

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

Miller, L. M.

L. M. Miller and P. Dumas, “From structure to cellular mechanism with infrared microspectroscopy,” Curr. Opin. Struct. Biol. 20, 649–656 (2010).
[Crossref] [PubMed]

Miyauchi, Y.

Mizutani, G.

Morrish, R. B.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Mouras, R.

Nien, C. L.

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

O’Dwyer, K.

Okuno, M.

Ozawa, T.

Paiva, C. S. D.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Palombo, F.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Parfitt, G. J.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Pautot, S.

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
[Crossref] [PubMed]

Pedersen, C.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40, 938–941 (2015).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photon. 6, 788–793 (2012).
[Crossref]

Peremans, A.

Pflugfelder, S. C.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Phillips, M. C.

Potma, E. O.

A. M. Hanninen, R. C. Prince, and E. O. Potma, “Triple modal coherent nonlinear imaging with vibrational contrast,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

A. Hanninen, M. W. Shu, and E. O. Potma, “Hyperspectral imaging with laser-scanning sum-frequency generation microscopy,” Biomed. Opt. Express 8, 4230–4242 (2017).
[Crossref] [PubMed]

Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

V. Raghunathan, Y. Han, O. Korth, N.-H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Prince, R. C.

A. M. Hanninen, R. C. Prince, and E. O. Potma, “Triple modal coherent nonlinear imaging with vibrational contrast,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

Raghunathan, V.

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N.-H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Reddy, R. K.

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67, 93–105 (2013).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Sau, M.

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

Schulmerich, M. V.

R. K. Reddy, M. J. Walsh, M. V. Schulmerich, P. S. Carney, and R. Bhargava, “High-definition infrared spectroscopic imaging,” Appl. Spectrosc. 67, 93–105 (2013).
[Crossref] [PubMed]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

Segawa, H.

Shah, T. N.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Shu, M. W.

Silien, C.

Slipchenko, M. N.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

Stone, N.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Suhalim, J. L.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

Supatto, W.

Tidemand-Lichtenberg, P.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

L. M. Kehlet, P. Tidemand-Lichtenberg, J. S. Dam, and C. Pedersen, “Infrared upconversion hyperspectral imaging,” Opt. Lett. 40, 938–941 (2015).
[Crossref] [PubMed]

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photon. 6, 788–793 (2012).
[Crossref]

Tofail, S. M.

Tomko, J.

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

Tuan, N. A.

Walsh, M. J.

Weitz, D. A.

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
[Crossref] [PubMed]

Wetzel, D. L.

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285, 1224–1225 (1999).
[Crossref] [PubMed]

Wrobel, T. P.

T. P. Wrobel and R. Bhargava, “Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences,” Anal. Chem. 90, 1444–1463 (2018).
[Crossref]

Xie, X. S.

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
[Crossref] [PubMed]

J.-X. Cheng and X. S. Xie, “Green’s function formulation for third-harmonic generation microscopy,” J. Opt. Soc. Am. B 19, 1604–1610 (2002).
[Crossref]

Xie, Y.

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Yeh, K.

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

Zhang, C.

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

Zhang, D.

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
[Crossref] [PubMed]

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

Anal. Chem. (4)

T. P. Wrobel and R. Bhargava, “Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences,” Anal. Chem. 90, 1444–1463 (2018).
[Crossref]

M. R. Kole, R. K. Reddy, M. V. Schulmerich, M. K. Gelber, and R. Bhargava, “Discrete frequency infrared microspectroscopy and imaging with a tunable quantum cascade laser,” Anal. Chem. 84, 10366–10372 (2012).
[Crossref] [PubMed]

K. Yeh, S. Kenkel, J.-N. Liu, and R. Bhargava, “Fast infrared chemical imaging with a quantum cascade laser,” Anal. Chem. 87, 485–493 (2015).
[Crossref]

C. Li, D. Zhang, M. N. Slipchenko, and J.-X. Cheng, “Mid-infrared photothermal imaging of active pharmaceutical ingredients at submicrometer spatial resolution,” Anal. Chem. 89, 4863–4867 (2017).
[Crossref] [PubMed]

Appl. Phys. B (1)

T. A. Johnson and S. A. Diddams, “Mid-infrared upconversion spectroscopy based on a yb:fiber femtosecond laser,” Appl. Phys. B 107, 31–39 (2012).
[Crossref]

Appl. Spectrosc. (4)

Appl. Spectrosc. Rev. (1)

J. Doherty, G. Cinque, and P. Gardner, “Single-cell analysis using fourier transform infrared microspectroscopy,” Appl. Spectrosc. Rev. 52, 560–587 (2017).
[Crossref]

Biomed. Opt. Express (1)

Curr. Opin. Struct. Biol. (1)

L. M. Miller and P. Dumas, “From structure to cellular mechanism with infrared microspectroscopy,” Curr. Opin. Struct. Biol. 20, 649–656 (2010).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. M. Hanninen, R. C. Prince, and E. O. Potma, “Triple modal coherent nonlinear imaging with vibrational contrast,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).

J. Biomed. Opt. (1)

C.-Y. Lin, J. L. Suhalim, C. L. Nien, J. V. Jester, M. D. Miljkovic, M. Diem, and E. O. Potma, “Picosecond spectral coherent anti-stokes raman scattering imaging with principal component analysis of meibomian glands,” J. Biomed. Opt. 16, 1–9 (2011).
[Crossref]

J. Opt. (1)

M. Hermes, R. B. Morrish, L. Huot, L. Meng, S. Junaid, J. Tomko, G. R. Lloyd, W. T. Masselink, P. Tidemand-Lichtenberg, C. Pedersen, F. Palombo, and N. Stone, “Mid-ir hyperspectral imaging for label-free histopathology and cytology,” J. Opt. 20, 023002 (2018).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

J. S. Dam, P. Tidemand-Lichtenberg, and C. Pedersen, “Room-temperature mid-infrared single-photon spectral imaging,” Nat. Photon. 6, 788–793 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. (1)

J.-X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-stokes raman scattering microscopy,” Proc. Natl. Acad. Sci. 100, 9826–9830 (2003).
[Crossref] [PubMed]

Sci. Adv. (1)

D. Zhang, C. Li, C. Zhang, M. N. Slipchenko, G. Eakins, and J.-X. Cheng, “Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution,” Sci. Adv. 2, e1600521 (2016).
[Crossref] [PubMed]

Science (1)

D. L. Wetzel and S. M. LeVine, “Imaging molecular chemistry with infrared microscopy,” Science 285, 1224–1225 (1999).
[Crossref] [PubMed]

The J. Phys. Chem. B (3)

Y. Han, V. Raghunathan, R.-R. Feng, H. Maekawa, C.-Y. Chung, Y. Feng, E. O. Potma, and N.-H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” The J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Y. Han, J. Hsu, N.-H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” The J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

S. Huang, M. Makarem, S. N. Kiemle, H. Hamedi, M. Sau, D. J. Cosgrove, and S. H. Kim, “Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy,” The J. Phys. Chem. B 122, 5006–5019 (2018).
[Crossref] [PubMed]

The Ocular Surf. (1)

J. L. Suhalim, G. J. Parfitt, Y. Xie, C. S. D. Paiva, S. C. Pflugfelder, T. N. Shah, E. O. Potma, D. J. Brown, and J. V. Jester, “Effect of desiccating stress on mouse meibomian gland function,” The Ocular Surf. 12, 59–68 (2014).
[Crossref]

Other (1)

J.-X. Cheng and X. S. Xie, eds., Coherent Raman Scattering Microscopy (CRC Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (A) Jablonski diagram of the TSFG process. (B) Schematic of the TSFG microscope system. PA: polarization based attenuator; SP: spatial filter; DM: dichroic mirror; SL: CaF2 scan lens; TL: CaF2 tube lens; Obj: 0.65 NA reflective objective lens; Cond: 1.4 NA oil immersion condenser; PMT: photomultiplier tube.
Fig. 2
Fig. 2 (A) Spectral dependence of the TSFG signal of mineral oil (circles, red), H2O (triangles, blue) and D2O (triangles, green). The spectral profiles are normalized to the peak of the mineral oil spectrum. The solid lines are a guide for the eye. The inset shows the power dependence of the idler beam (triangles, gray) and the pump beam (circles, black). The solid lines are a linear fit (gray, slope = 1.0) and a quadratic fit (black, slope = 2.0). (B) Lateral dependence of the TSFG signal when scanning a 0.1 µm BaTiO3 particle through focus. (C) Axial dependence of the TSFG signal (circles, black) and the CARS signal (triangles, gray) when scanning a glass/oil interface through focus.
Fig. 3
Fig. 3 TSFG imaging of mouse tissue fat droplets in aqueous medium. (A) TSFG at 2820 cm−1. (B) TSFG at 3005 cm−1. Signal is multiplied by 2 relative to the signal shown in (A). (C) CARS at 2820 cm−1. (D) CARS at 3005 cm−1. Signal is multiplied by 2 relative to the signal shown in (C). Image frames are 50 × 50 µm2.
Fig. 4
Fig. 4 TSFG imaging of mouse Meibomian gland. (A) TSFG at 2820 cm−1. (B) TSFG at 3005 cm−1. (C) CARS at 2820 cm−1. (D) CARS at 3005 cm−1. Image frames are 60 × 60 µm2.