Abstract

Diffuse speckle contrast analysis (DSCA) measures blood flow in deep tissues by taking advantage of the sensitivity of the speckle contrast signal to red blood cells (RBCs) motions. However, there has yet to be presented a clearly defined relationship between the absolute blood flow BFabs and the measured speckle contrast signal. Here, we derive an expression of linear approximation function for speckle contrast, taking into account both shear-induced diffusive and correlated advective RBCs motions in the vessels. We provide a linear relationship between the slope kslope of this linear function and BFabs. The feasibility of this relationship is validated by Monte Carlo simulations of heterogeneous tissue with varying vessel radii. Furthermore, based on this quantitative relationship, we can determine the relative contributions of diffusive RBCs motion on the reduction of speckle contrast, considering different vascular morphology and flow profiles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain

Kyle Verdecchia, Mamadou Diop, Laura B. Morrison, Ting-Yim Lee, and Keith St. Lawrence
Biomed. Opt. Express 6(11) 4288-4301 (2015)

Optical methods for blood perfusion measurement—theoretical comparison among four different modalities

Renzhe Bi, Jing Dong, Chueh Loo Poh, and Kijoon Lee
J. Opt. Soc. Am. A 32(5) 860-866 (2015)

Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex

Mitchell A. Davis, Louis Gagnon, David A. Boas, and Andrew K. Dunn
Biomed. Opt. Express 7(3) 759-775 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [Crossref] [PubMed]
  2. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
    [Crossref] [PubMed]
  3. D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
    [Crossref] [PubMed]
  4. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
    [Crossref]
  5. M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
    [Crossref] [PubMed]
  6. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
    [Crossref] [PubMed]
  7. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
    [Crossref]
  8. C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
    [Crossref] [PubMed]
  9. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
    [Crossref] [PubMed]
  10. M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
    [Crossref] [PubMed]
  11. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
    [Crossref] [PubMed]
  12. G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
    [Crossref] [PubMed]
  13. Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010).
    [Crossref] [PubMed]
  14. G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16(2), 027004 (2011).
    [Crossref] [PubMed]
  15. R. Bi, J. Dong, and K. Lee, “Deep tissue flowmetry based on diffuse speckle contrast analysis,” Opt. Lett. 38(9), 1401–1403 (2013).
    [Crossref] [PubMed]
  16. R. Bi, J. Dong, and K. Lee, “Multi-channel deep tissue flowmetry based on temporal diffuse speckle contrast analysis,” Opt. Express 21(19), 22854–22861 (2013).
    [Crossref] [PubMed]
  17. C. Yeo, H. C. Park, K. Lee, and C. Song, “Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis,” Biomed. Opt. Express 7(1), 93–98 (2016).
    [Crossref] [PubMed]
  18. M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
    [Crossref] [PubMed]
  19. C. P. Valdes, H. M. Varma, A. K. Kristoffersen, T. Dragojevic, J. P. Culver, and T. Durduran, “Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue,” Biomed. Opt. Express 5(8), 2769–2784 (2014).
    [Crossref] [PubMed]
  20. Z. Hajjarian and S. K. Nadkarni, “Correction of optical absorption and scattering variations in Laser Speckle Rheology measurements,” Opt. Express 22(6), 6349–6361 (2014).
    [Crossref] [PubMed]
  21. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
    [Crossref] [PubMed]
  22. T. Dragojević, J. L. Hollmann, D. Tamborini, D. Portaluppi, M. Buttafava, J. P. Culver, F. Villa, and T. Durduran, “Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow,” Biomed. Opt. Express 9(1), 322–334 (2018).
    [Crossref] [PubMed]
  23. S. Sun, B. R. Hayes-Gill, D. He, Y. Zhu, and S. P. Morgan, “Multi-exposure laser speckle contrast imaging using a high frame rate CMOS sensor with a field programmable gate array,” Opt. Lett. 40(20), 4587–4590 (2015).
    [Crossref] [PubMed]
  24. T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6(8), 2865–2876 (2015).
    [Crossref] [PubMed]
  25. R. Bi, J. Dong, C. L. Poh, and K. Lee, “Optical methods for blood perfusion measurement--theoretical comparison among four different modalities,” J. Opt. Soc. Am. A 32(5), 860–866 (2015).
    [Crossref] [PubMed]
  26. J. Liu, H. Zhang, Z. Shen, J. Lu, and X. Ni, “Quantitatively assessing flow velocity by the slope of the inverse square of the contrast values versus camera exposure time,” Opt. Express 22(16), 19327–19336 (2014).
    [Crossref] [PubMed]
  27. J. Liu, H. Zhang, J. Lu, X. Ni, and Z. Shen, “Quantitative model of diffuse speckle contrast analysis for flow measurement,” J. Biomed. Opt. 22(7), 076016 (2017).
    [Crossref] [PubMed]
  28. J. Liu, H. Zhang, J. Lu, X. Ni, and Z. Shen, “Simultaneously extracting multiple parameters via multi-distance and multi-exposure diffuse speckle contrast analysis,” Biomed. Opt. Express 8(10), 4537–4550 (2017).
    [Crossref] [PubMed]
  29. S. A. Carp, N. Roche-Labarbe, M. A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047–2054 (2011).
    [Crossref] [PubMed]
  30. M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1(5), 1502–1513 (2010).
    [Crossref] [PubMed]
  31. D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
    [Crossref] [PubMed]
  32. S. Sakadžic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
    [Crossref] [PubMed]
  33. J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
    [Crossref] [PubMed]
  34. K. Verdecchia, M. Diop, L. B. Morrison, T. Y. Lee, and K. St Lawrence, “Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain,” Biomed. Opt. Express 6(11), 4288–4301 (2015).
    [Crossref] [PubMed]
  35. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
    [Crossref] [PubMed]
  36. K. Khaksari and S. J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J. Biomed. Opt. 21(7), 76001 (2016).
    [Crossref] [PubMed]
  37. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46(10), 1742–1753 (2007).
    [Crossref] [PubMed]
  38. D. Bicout, E. Akkermans, and R. Maynard, “Dynamical correlations for multiple light scattering in laminar flow,” J. Phys. 1(4), 471–491 (1991).
  39. G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
    [Crossref] [PubMed]
  40. H. L. Goldsmith and J. C. Marlow, “Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells,” J. Colloid Interface Sci. 71(2), 383–407 (1979).
    [Crossref]
  41. P.-A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).
    [Crossref]
  42. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref] [PubMed]
  43. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11(10), 2727–2741 (1994).
    [Crossref] [PubMed]
  44. P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20(5), 055001 (2015).
    [Crossref] [PubMed]
  45. D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
    [PubMed]
  46. D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
    [Crossref] [PubMed]
  47. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [Crossref] [PubMed]
  48. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Proc. Dosim. Laser Radiat. Med. Biol. 1, 102–111 (1989).
  49. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
  50. S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? Examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6(7), 2588–2608 (2015).
    [Crossref] [PubMed]

2018 (3)

T. Dragojević, J. L. Hollmann, D. Tamborini, D. Portaluppi, M. Buttafava, J. P. Culver, F. Villa, and T. Durduran, “Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow,” Biomed. Opt. Express 9(1), 322–334 (2018).
[Crossref] [PubMed]

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

2017 (3)

S. Sakadžic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref] [PubMed]

J. Liu, H. Zhang, J. Lu, X. Ni, and Z. Shen, “Quantitative model of diffuse speckle contrast analysis for flow measurement,” J. Biomed. Opt. 22(7), 076016 (2017).
[Crossref] [PubMed]

J. Liu, H. Zhang, J. Lu, X. Ni, and Z. Shen, “Simultaneously extracting multiple parameters via multi-distance and multi-exposure diffuse speckle contrast analysis,” Biomed. Opt. Express 8(10), 4537–4550 (2017).
[Crossref] [PubMed]

2016 (4)

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

C. Yeo, H. C. Park, K. Lee, and C. Song, “Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis,” Biomed. Opt. Express 7(1), 93–98 (2016).
[Crossref] [PubMed]

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

K. Khaksari and S. J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J. Biomed. Opt. 21(7), 76001 (2016).
[Crossref] [PubMed]

2015 (6)

2014 (5)

2013 (3)

2012 (1)

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (5)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1(5), 1502–1513 (2010).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

2009 (1)

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2005 (2)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[Crossref] [PubMed]

2002 (1)

1999 (1)

1997 (1)

1996 (1)

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

1995 (2)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

1994 (1)

1991 (1)

D. Bicout, E. Akkermans, and R. Maynard, “Dynamical correlations for multiple light scattering in laminar flow,” J. Phys. 1(4), 471–491 (1991).

1986 (1)

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

1979 (1)

H. L. Goldsmith and J. C. Marlow, “Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells,” J. Colloid Interface Sci. 71(2), 383–407 (1979).
[Crossref]

Akkermans, E.

D. Bicout, E. Akkermans, and R. Maynard, “Dynamical correlations for multiple light scattering in laminar flow,” J. Phys. 1(4), 471–491 (1991).

Arts, T.

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Bi, R.

Bicout, D.

D. Bicout, E. Akkermans, and R. Maynard, “Dynamical correlations for multiple light scattering in laminar flow,” J. Phys. 1(4), 471–491 (1991).

Boas, D.

Boas, D. A.

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

S. Sakadžic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref] [PubMed]

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M. A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047–2054 (2011).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
[Crossref]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref] [PubMed]

Briers, D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Briers, J. D.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Bronzi, D.

Buckley, E. M.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Buttafava, M.

Campbell, L. E.

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref] [PubMed]

Carp, S.

S. Sakadžic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref] [PubMed]

Carp, S. A.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M. A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047–2054 (2011).
[Crossref] [PubMed]

Castellvi, C.

Cheng, R.

Choe, R.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[Crossref] [PubMed]

Culver, J.

Culver, J. P.

Czerniecki, B. J.

Davis, M. A.

Detre, J. A.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Diop, M.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Dong, J.

Dong, L.

Dragojevic, T.

Duncan, D. D.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[Crossref] [PubMed]

Dunn, A.

Dunn, A. K.

S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? Examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6(7), 2588–2608 (2015).
[Crossref] [PubMed]

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

Durduran, T.

T. Dragojević, J. L. Hollmann, D. Tamborini, D. Portaluppi, M. Buttafava, J. P. Culver, F. Villa, and T. Durduran, “Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow,” Biomed. Opt. Express 9(1), 322–334 (2018).
[Crossref] [PubMed]

T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6(8), 2865–2876 (2015).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20(5), 055001 (2015).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

C. P. Valdes, H. M. Varma, A. K. Kristoffersen, T. Dragojevic, J. P. Culver, and T. Durduran, “Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue,” Biomed. Opt. Express 5(8), 2769–2784 (2014).
[Crossref] [PubMed]

Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[Crossref] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

P.-A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16(7), 1651–1664 (1999).
[Crossref]

Edlow, B. L.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Erdener, S. E.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

Eucker, S. A.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

Faraji, E.

Farzam, P.

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20(5), 055001 (2015).
[Crossref] [PubMed]

Feng, T. C.

Franceschini, M. A.

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M. A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047–2054 (2011).
[Crossref] [PubMed]

Frangos, S.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Friebel, M.

Friess, S. H.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

Fu, B.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

Gisler, T.

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Goldsmith, H. L.

H. L. Goldsmith and J. C. Marlow, “Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells,” J. Colloid Interface Sci. 71(2), 383–407 (1979).
[Crossref]

Grady, M. S.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Greenberg, J. H.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Hajjarian, Z.

Haskell, R. C.

Hayes-Gill, B. R.

He, D.

Helfmann, J.

Hirst, E.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Hollmann, J. L.

Huang, Y.-Y.

Ichord, R. N.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

Irwin, D.

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

Justicia, C.

Kazmi, S. M.

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

Kazmi, S. M. S.

Khaksari, K.

K. Khaksari and S. J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J. Biomed. Opt. 21(7), 76001 (2016).
[Crossref] [PubMed]

Kim, J. G.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

Kim, M. N.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Kirkpatrick, S. J.

K. Khaksari and S. J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J. Biomed. Opt. 21(7), 76001 (2016).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A 25(8), 2088–2094 (2008).
[Crossref] [PubMed]

Kofke, W. A.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Kristoffersen, A. K.

Kudrimoti, M.

Larsson, M.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Lee, J.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

Lee, K.

Lee, T. Y.

Lemieux, P.-A.

Levine, J. M.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Li, B.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

Liu, J.

Lu, J.

Mai, P. M.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

Maloney-Wilensky, E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Margulies, S. S.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

Marlow, J. C.

H. L. Goldsmith and J. C. Marlow, “Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells,” J. Colloid Interface Sci. 71(2), 383–407 (1979).
[Crossref]

Maynard, R.

D. Bicout, E. Akkermans, and R. Maynard, “Dynamical correlations for multiple light scattering in laminar flow,” J. Phys. 1(4), 471–491 (1991).

McAdams, M. S.

Meinke, M.

Mesquita, R. C.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

Morgan, S. P.

Morrison, L. B.

Moss, H. E.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Muijtjens, A. M.

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Müller, G.

Nadkarni, S. K.

Ni, X.

Ninck, M.

oude Egbrink, M. G.

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Park, H. C.

Phillips, Z.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

Poh, C. L.

Portaluppi, D.

Ralston, J.

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

Reneman, R. S.

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Roche-Labarbe, N.

Saha, S. P.

G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16(2), 027004 (2011).
[Crossref] [PubMed]

Sakadžic, S.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

S. Sakadžic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref] [PubMed]

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M. A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047–2054 (2011).
[Crossref] [PubMed]

Selb, J.

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

Seong, M.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

Shang, Y.

Shen, Z.

Slaaf, D. W.

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Song, C.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

C. Yeo, H. C. Park, K. Lee, and C. Song, “Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis,” Biomed. Opt. Express 7(1), 93–98 (2016).
[Crossref] [PubMed]

Srinivasan, V. J.

St Lawrence, K.

Steenbergen, W.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Stevens, S. D.

Stott, J.

Stromberg, T.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Sun, S.

Svaasand, L. O.

Symons, T. B.

Tamborini, D.

T. Dragojević, J. L. Hollmann, D. Tamborini, D. Portaluppi, M. Buttafava, J. P. Culver, F. Villa, and T. Durduran, “Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow,” Biomed. Opt. Express 9(1), 322–334 (2018).
[Crossref] [PubMed]

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

Tang, J.

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

Tangelder, G. J.

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Tchou, J. C.

Thompson, O. B.

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

Tosi, A.

Tromberg, B. J.

Tsay, T. T.

Untenberger, M.

Valdes, C. P.

Varma, H. M.

Verdecchia, K.

Villa, F.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

Webster, S.

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

Wolf, R. L.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

Wu, K. C.

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

Yeo, C.

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

C. Yeo, H. C. Park, K. Lee, and C. Song, “Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis,” Biomed. Opt. Express 7(1), 93–98 (2016).
[Crossref] [PubMed]

Yodh, A. G.

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010).
[Crossref] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[Crossref] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997).
[Crossref]

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref] [PubMed]

Yu, G.

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
[Crossref] [PubMed]

G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16(2), 027004 (2011).
[Crossref] [PubMed]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
[Crossref] [PubMed]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
[Crossref] [PubMed]

Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010).
[Crossref] [PubMed]

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[Crossref] [PubMed]

Zappa, F.

Zhang, H.

Zhang, X. J.

Zhao, Y.

G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16(2), 027004 (2011).
[Crossref] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

Zhou, C.

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh, “Diffuse optical measurement of blood flow in breast tumors,” Opt. Lett. 30(21), 2915–2917 (2005).
[Crossref] [PubMed]

Zhu, Y.

Zimmermann, B.

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (12)

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
[Crossref] [PubMed]

S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, and A. K. Dunn, “Flux or speed? Examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6(7), 2588–2608 (2015).
[Crossref] [PubMed]

Y. Shang, T. B. Symons, T. Durduran, A. G. Yodh, and G. Yu, “Effects of muscle fiber motion on diffuse correlation spectroscopy blood flow measurements during exercise,” Biomed. Opt. Express 1(2), 500–511 (2010).
[Crossref] [PubMed]

C. Yeo, H. C. Park, K. Lee, and C. Song, “Avian embryo monitoring during incubation using multi-channel diffuse speckle contrast analysis,” Biomed. Opt. Express 7(1), 93–98 (2016).
[Crossref] [PubMed]

C. P. Valdes, H. M. Varma, A. K. Kristoffersen, T. Dragojevic, J. P. Culver, and T. Durduran, “Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue,” Biomed. Opt. Express 5(8), 2769–2784 (2014).
[Crossref] [PubMed]

D. Irwin, L. Dong, Y. Shang, R. Cheng, M. Kudrimoti, S. D. Stevens, and G. Yu, “Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements,” Biomed. Opt. Express 2(7), 1969–1985 (2011).
[Crossref] [PubMed]

T. Dragojević, J. L. Hollmann, D. Tamborini, D. Portaluppi, M. Buttafava, J. P. Culver, F. Villa, and T. Durduran, “Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow,” Biomed. Opt. Express 9(1), 322–334 (2018).
[Crossref] [PubMed]

T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, and T. Durduran, “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6(8), 2865–2876 (2015).
[Crossref] [PubMed]

J. Liu, H. Zhang, J. Lu, X. Ni, and Z. Shen, “Simultaneously extracting multiple parameters via multi-distance and multi-exposure diffuse speckle contrast analysis,” Biomed. Opt. Express 8(10), 4537–4550 (2017).
[Crossref] [PubMed]

S. A. Carp, N. Roche-Labarbe, M. A. Franceschini, V. J. Srinivasan, S. Sakadžić, and D. A. Boas, “Due to intravascular multiple sequential scattering, diffuse correlation spectroscopy of tissue primarily measures relative red blood cell motion within vessels,” Biomed. Opt. Express 2(7), 2047–2054 (2011).
[Crossref] [PubMed]

M. Ninck, M. Untenberger, and T. Gisler, “Diffusing-wave spectroscopy with dynamic contrast variation: disentangling the effects of blood flow and extravascular tissue shearing on signals from deep tissue,” Biomed. Opt. Express 1(5), 1502–1513 (2010).
[Crossref] [PubMed]

K. Verdecchia, M. Diop, L. B. Morrison, T. Y. Lee, and K. St Lawrence, “Assessment of the best flow model to characterize diffuse correlation spectroscopy data acquired directly on the brain,” Biomed. Opt. Express 6(11), 4288–4301 (2015).
[Crossref] [PubMed]

Circ. Res. (1)

G. J. Tangelder, D. W. Slaaf, A. M. Muijtjens, T. Arts, M. G. oude Egbrink, and R. S. Reneman, “Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery,” Circ. Res. 59(5), 505–514 (1986).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).

J. Biomed. Opt. (12)

P. Farzam and T. Durduran, “Multidistance diffuse correlation spectroscopy for simultaneous estimation of blood flow index and optical properties,” J. Biomed. Opt. 20(5), 055001 (2015).
[Crossref] [PubMed]

K. Khaksari and S. J. Kirkpatrick, “Laser speckle contrast imaging is sensitive to advective flux,” J. Biomed. Opt. 21(7), 76001 (2016).
[Crossref] [PubMed]

S. Sakadžic, D. A. Boas, and S. Carp, “Theoretical model of blood flow measurement by diffuse correlation spectroscopy,” J. Biomed. Opt. 22(2), 027006 (2017).
[Crossref] [PubMed]

J. Liu, H. Zhang, J. Lu, X. Ni, and Z. Shen, “Quantitative model of diffuse speckle contrast analysis for flow measurement,” J. Biomed. Opt. 22(7), 076016 (2017).
[Crossref] [PubMed]

M. Seong, Z. Phillips, P. M. Mai, C. Yeo, C. Song, K. Lee, and J. G. Kim, “Simultaneous blood flow and blood oxygenation measurements using a combination of diffuse speckle contrast analysis and near-infrared spectroscopy,” J. Biomed. Opt. 21(2), 027001 (2016).
[Crossref] [PubMed]

G. Yu, Y. Shang, Y. Zhao, R. Cheng, L. Dong, and S. P. Saha, “Intraoperative evaluation of revascularization effect on ischemic muscle hemodynamics using near-infrared diffuse optical spectroscopies,” J. Biomed. Opt. 16(2), 027004 (2011).
[Crossref] [PubMed]

M. A. Davis, S. M. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 086001 (2014).
[Crossref] [PubMed]

G. Yu, “Near-infrared diffuse correlation spectroscopy in cancer diagnosis and therapy monitoring,” J. Biomed. Opt. 17(1), 010901 (2012).
[Crossref] [PubMed]

J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010).
[Crossref] [PubMed]

D. Briers, D. D. Duncan, E. Hirst, S. J. Kirkpatrick, M. Larsson, W. Steenbergen, T. Stromberg, and O. B. Thompson, “Laser speckle contrast imaging: theoretical and practical limitations,” J. Biomed. Opt. 18(6), 066018 (2013).
[Crossref] [PubMed]

C. Zhou, S. A. Eucker, T. Durduran, G. Yu, J. Ralston, S. H. Friess, R. N. Ichord, S. S. Margulies, and A. G. Yodh, “Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury,” J. Biomed. Opt. 14(3), 034015 (2009).
[Crossref] [PubMed]

J. Biophotonics (1)

J. Tang, S. E. Erdener, B. Li, B. Fu, S. Sakadžić, S. A. Carp, J. Lee, and D. A. Boas, “Shear-induced diffusion of red blood cells measured with dynamic light scattering-optical coherence tomography,” J. Biophotonics 11(2), e201700070 (2018).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

H. L. Goldsmith and J. C. Marlow, “Flow behavior of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells,” J. Colloid Interface Sci. 71(2), 383–407 (1979).
[Crossref]

J. Opt. Soc. Am. A (5)

J. Phys. (1)

D. Bicout, E. Akkermans, and R. Maynard, “Dynamical correlations for multiple light scattering in laminar flow,” J. Phys. 1(4), 471–491 (1991).

Neurocrit. Care (2)

M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010).
[Crossref] [PubMed]

M. N. Kim, B. L. Edlow, T. Durduran, S. Frangos, R. C. Mesquita, J. M. Levine, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Continuous optical monitoring of cerebral hemodynamics during head-of-bed manipulation in brain-injured adults,” Neurocrit. Care 20(3), 443–453 (2014).
[Crossref] [PubMed]

Neurophotonics (2)

D. A. Boas, S. Sakadžić, J. Selb, P. Farzam, M. A. Franceschini, and S. A. Carp, “Establishing the diffuse correlation spectroscopy signal relationship with blood flow,” Neurophotonics 3(3), 031412 (2016).
[Crossref] [PubMed]

D. Tamborini, P. Farzam, B. Zimmermann, K. C. Wu, D. A. Boas, and M. A. Franceschini, “Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system,” Neurophotonics 5(1), 011015 (2018).
[PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76(9), 093110 (2005).
[Crossref]

Other (1)

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” SPIE Proc. Dosim. Laser Radiat. Med. Biol. 1, 102–111 (1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (x, z) cross section of Monte Carlo simulation geometry.
Fig. 2
Fig. 2 Dependence of relative error in τc on (a) μ a , (b) μ s and ρ μ s , and corresponding corrected electric field autocorrelation function results ln [ g 1 ( ρ , τ c r ) ] at the modified correlation time τcr. Note that other parameters do not induce the change of the relative error. The change in relative error only depends on μ a , μ s and SD separations.
Fig. 3
Fig. 3 MC simulation and theoretical results for (a) K2 and (b) 1/K2 at different flow speeds vmax. The symbols and solid lines in (a) and (b) represent MC simulation and theoretical results, respectively. The symbols in (c) show the linear fitting results of kslope versus BFabs. The solid line in (c) is calculated by the corrected relation Eq. (24). Here, we use R = 30μm vessels and SD separation is 2cm.
Fig. 4
Fig. 4 Calculated BFabs results for MC simulation and theoretical calculation versus linear fitting kslope results. The solid lines at different SD separations are calculated by Eq. (24). The absolute blood flow BFabs is accomplished by increasing the vessel radius from 20 to 40μm with a fixed flow speed vmax = 3mm/s and a fixed vessel spacing h = 200μm.
Fig. 5
Fig. 5 Relative contributions of diffusive RBCs motions on the kslope for different vessel radiuses and SD separations.
Fig. 6
Fig. 6 Effect of SD direction with respect to vessel direction on the obtained speckle contrast 1/K2 results from MC simulations. The red and black lines in (a) indicate 1/K2 from SD separations that is perpendicular and parallel to vessel direction, respectively. The blue lines in (a) indicate 1/K2 from SD separations in all directions. The corresponding percentage change in 1/K2 at different SD separations compared with perpendicular case is shown in (b). Here, we use R = 30μm vessels with a fixed flow speed vmax = 3mm/s and a fixed vessel spacing h = 200μm.

Tables (1)

Tables Icon

Table 1 Optical properties for MC geometry

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

v ( r ) = v max [ 1 a r m R m ] ,
D ( r ) = α ss | v ( r ) r | = α ss m a v max r m 1 R m ,
K ( ρ , T ) = σ I ( ρ , T ) μ I ( ρ , T ) ,
K 2 ( ρ , T ) = 2 β T 0 T ( 1 τ / T ) [ g 1 ( ρ , τ ) ] 2 d τ ,
G 1 ( ρ , τ ) = 3 μ s 4 π [ exp ( κ ( τ ) r 1 ) r 1 exp ( κ ( τ ) r 2 ) r 2 ] ,
κ ( τ ) = 3 μ a μ s + 3 2 μ s F ( τ ) ,
F ( τ ) = k 0 2 l tr 1 δ ves ( 4 D av τ + 2 3 v av 2 τ 2 ) .
D av = 2 R 2 0 R D ( r ) r d r = 2 m α ss a ( m + 1 ) R v max ,
v av = 2 R 2 0 R v ( r ) r d r = ( 1 2 a m + 2 ) v max .
r 2 = [ r 1 2 + 2 z 1 2 ] 1 / 2 r 1 + z 1 2 r 1 , 1 r 2 1 r 1 ( 1 z 1 2 r 1 2 ) ,
G 1 ( ρ , τ ) = 3 μ s exp [ κ ( τ ) r 1 ] 4 π r 1 { 1 exp [ κ ( τ ) z 1 2 r 1 ] ( 1 z 1 2 r 1 2 ) } .
G 1 ( ρ , τ c ) = 3 μ s z 0 2 4 π r 1 2 exp [ κ ( τ c ) r 1 ] [ κ ( τ c ) + 1 r 1 ] .
g 1 ( ρ , τ c ) = G 1 ( ρ , τ c ) G 1 ( ρ , 0 ) = [ r 1 κ ( τ c ) + 1 ] exp [ r 1 κ ( τ c ) ] ( r 1 κ 0 + 1 ) exp ( r 1 κ 0 ) ,
ln [ g 1 ( ρ , τ c ) ] = r 1 κ 0 ln ( r 1 κ 0 + 1 ) + ln [ r 1 κ ( τ c ) + 1 ] r 1 κ ( τ c ) = 1.
r 1 κ ( τ c ) + 1 ln [ r 1 κ ( τ c ) + 1 ] = 2 + r 1 κ 0 ln ( r 1 κ 0 + 1 ) .
κ ( τ c ) = L n F ( ε 1 ) 1 r 1 ,
τ c = [ L n F ( ε 1 ) 1 ] 2 + r 1 2 ε 2 2 r 1 2 κ 0 2 r 1 ε 2 r 1 k 0 μ s l tr 1 δ ves × 1 v av ,
ε 2 = 3 k 0 μ s l tr δ ves D av v av = 3 k 0 μ s l tr 1 δ ves 2 m α ss a ( m + 1 ) R ( 1 2 a m + 2 ) 1 .
1 K 2 ( ρ , T ) = 1 β [ r 1 k 0 μ s l tr 1 δ ves [ L n F ( ε 1 ) 1 ] 2 + r 1 2 ε 2 2 r 1 2 κ 0 2 r 1 ε 2 v av T + b in ] ,
k slope = r 1 k 0 μ s l tr 1 δ ves π R 2 { [ L n F ( ε 1 ) 1 ] 2 + r 1 2 ε 2 2 r 1 2 κ 0 2 r 1 ε 2 } BF abs .
G 1 ( ρ , τ ) = 1 N p n = 1 N p exp [ 1 2 l = 1 N v , n ( j = 1 N s , n , l q n , l , j v n , l , j ) 2 τ 2 ] × exp ( j = 1 N s , n q n , j 2 D n , j τ ) exp ( p = 1 N tis μ a , p L n , p ) ,
Error in τ c = ln [ g 1 ( ρ , τ c ) ] 1.
τ c r = τ c 1 + Error in τ c = τ c ln [ g 1 ( ρ , τ c ) ] .
k slope = ln [ g 1 ( ρ , τ c ) ] r 1 k 0 μ s l tr 1 δ ves π R 2 { [ L n F ( ε 1 ) 1 ] 2 + r 1 2 ε 2 2 r 1 2 κ 0 2 r 1 ε 2 } BF abs .
k slope-DB = 3 μ s l tr 1 k 0 2 δ ves D av 4 χ ,
χ = [ 3 μ s 4 π G 1 ( ρ , 0 ) ] 2 i = 1 2 j = 1 2 ( 1 ) i + j 2 r i r j ( r i + r j ) 2 [ 1 + κ 0 ( r i + r j ) ] × e κ 0 ( r i + r j ) .
F ( τ ) = k 0 2 l tr 1 R min R max v ves,avmin v ves,avmax δ ves [ R , v ves,av ( R ) ] d R d v ves,av ( R ) × { 4 D ves,av [ R , v ves,av ( R ) ] τ + 2 3 v ves,av 2 ( R ) τ 2 } ,

Metrics