Abstract

Bone strength is a worldwide health concern. Although multiple techniques have been developed to evaluate bone quality, there are still gaps to be filled. Here we report a non-invasive approach for the prediction of bone strength in vivo using spatially offset Raman spectroscopy. Raman spectra were acquired transcutaneously from the tibiae of mice from 4 to 23 weeks old and subsequently on the exposed bones. Partial least squares regression was applied to generate predictions of the areal bone mineral density (aBMD), volumetric bone mineralization density (vBMD), and maximum torque (MT) of each tibia as quantified by dual-energy X-ray absorptiometry, microCT imaging, and biomechanical tests, respectively. Significant correlations were observed between Raman spectral predictions and the reference values in all three categories. To our knowledge, this is the first demonstration of Raman spectroscopy predicting a biomechanical bone parameter (MT) in vivo with an uncertainty much smaller than the spread in the reference values.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ

Subhadra Srinivasan, Matthew Schulmerich, Jacqueline H. Cole, Kathryn A. Dooley, Jaclynn M. Kreider, Brian W. Pogue, Michael D. Morris, and Steven A. Goldstein
Opt. Express 16(16) 12190-12200 (2008)

Next-generation Raman tomography instrument for non-invasive in vivo bone imaging

Jennifer-Lynn H. Demers, Francis W.L. Esmonde-White, Karen A. Esmonde-White, Michael D. Morris, and Brian W. Pogue
Biomed. Opt. Express 6(3) 793-806 (2015)

Cortical bone quality affectations and their strength impact analysis using holographic interferometry

Cesar G. Tavera Ruiz, Manuel H. De La Torre-Ibarra, J. M. Flores-Moreno, Claudio Frausto-Reyes, and Fernando Mendoza Santoyo
Biomed. Opt. Express 9(10) 4818-4833 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
    [Crossref] [PubMed]
  2. G. M. Blake and I. Fogelman, “The role of DXA bone density scans in the diagnosis and treatment of osteoporosis,” Postgrad. Med. J. 83(982), 509–517 (2007).
    [Crossref] [PubMed]
  3. F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
    [Crossref] [PubMed]
  4. H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
    [Crossref] [PubMed]
  5. J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
    [Crossref] [PubMed]
  6. J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
    [Crossref] [PubMed]
  7. M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
    [Crossref] [PubMed]
  8. J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
    [Crossref] [PubMed]
  9. M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
    [Crossref] [PubMed]
  10. A. J. Makowski, M. Granke, O. D. Ayala, S. Uppuganti, A. Mahadevan-Jansen, and J. S. Nyman, “Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone,” Appl. Spectrosc. 71(10), 2385–2394 (2017).
    [Crossref] [PubMed]
  11. J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
    [Crossref] [PubMed]
  12. M. Raghavan, N. D. Sahar, D. H. Kohn, and M. D. Morris, “Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone,” Bone 50(4), 942–953 (2012).
    [Crossref] [PubMed]
  13. E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
    [PubMed]
  14. J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
    [Crossref] [PubMed]
  15. M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
    [Crossref] [PubMed]
  16. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
    [Crossref] [PubMed]
  17. M. V. Schulmerich, J. H. Cole, J. M. Kreider, F. Esmonde-White, K. A. Dooley, S. A. Goldstein, and M. D. Morris, “Transcutaneous Raman spectroscopy of murine bone in vivo,” Appl. Spectrosc. 63(3), 286–295 (2009).
    [Crossref] [PubMed]
  18. J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
    [Crossref] [PubMed]
  19. K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
    [Crossref] [PubMed]
  20. G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
    [Crossref] [PubMed]
  21. K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
    [Crossref] [PubMed]
  22. Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
    [Crossref]
  23. A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
    [Crossref]
  24. W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
    [Crossref] [PubMed]
  25. M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
    [Crossref] [PubMed]
  26. D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
    [Crossref]
  27. D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
    [Crossref] [PubMed]
  28. G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
    [Crossref] [PubMed]
  29. M. D. Brodt, C. B. Ellis, and M. J. Silva, “Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties,” J. Bone Miner. Res. 14(12), 2159–2166 (1999).
    [Crossref] [PubMed]
  30. K. Pearson, “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling,” Lond. Edinb. Dubl. Phil. Mag. 50(302), 157–175 (1900).
    [Crossref]
  31. W. Chew, E. Widjaja, and M. Garland, “Band-Target Entropy Minimization (BTEM): an advanced method for recovering unknown pure component spectra. application to the ftir spectra of unstable organometallic mixtures,” Organometallics 21(9), 1982–1990 (2002).
    [Crossref]

2017 (3)

A. J. Makowski, M. Granke, O. D. Ayala, S. Uppuganti, A. Mahadevan-Jansen, and J. S. Nyman, “Applying Full Spectrum Analysis to a Raman Spectroscopic Assessment of Fracture Toughness of Human Cortical Bone,” Appl. Spectrosc. 71(10), 2385–2394 (2017).
[Crossref] [PubMed]

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

2015 (1)

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

2013 (4)

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
[Crossref] [PubMed]

2012 (1)

M. Raghavan, N. D. Sahar, D. H. Kohn, and M. D. Morris, “Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone,” Bone 50(4), 942–953 (2012).
[Crossref] [PubMed]

2011 (3)

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
[Crossref] [PubMed]

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

2010 (3)

J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
[Crossref] [PubMed]

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

2009 (1)

2007 (4)

D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
[Crossref] [PubMed]

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

G. M. Blake and I. Fogelman, “The role of DXA bone density scans in the diagnosis and treatment of osteoporosis,” Postgrad. Med. J. 83(982), 509–517 (2007).
[Crossref] [PubMed]

2006 (1)

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

2005 (3)

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
[Crossref] [PubMed]

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
[Crossref] [PubMed]

2002 (1)

W. Chew, E. Widjaja, and M. Garland, “Band-Target Entropy Minimization (BTEM): an advanced method for recovering unknown pure component spectra. application to the ftir spectra of unstable organometallic mixtures,” Organometallics 21(9), 1982–1990 (2002).
[Crossref]

2000 (1)

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

1999 (1)

M. D. Brodt, C. B. Ellis, and M. J. Silva, “Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties,” J. Bone Miner. Res. 14(12), 2159–2166 (1999).
[Crossref] [PubMed]

1993 (1)

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref] [PubMed]

1988 (1)

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

1964 (1)

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

1900 (1)

K. Pearson, “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling,” Lond. Edinb. Dubl. Phil. Mag. 50(302), 157–175 (1900).
[Crossref]

Ackert-Bicknell, C. L.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Adams, J. E.

J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
[Crossref] [PubMed]

Ager, J. W.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
[Crossref] [PubMed]

Allen, M. R.

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

Awad, H. A.

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
[Crossref] [PubMed]

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
[Crossref] [PubMed]

Ayala, O. D.

Bank, R. A.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Beamer, W. G.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Beier, E. E.

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

Berger, A. J.

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
[Crossref] [PubMed]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
[Crossref] [PubMed]

D. Qi and A. J. Berger, “Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy,” Appl. Opt. 46(10), 1726–1734 (2007).
[Crossref] [PubMed]

Blake, G. M.

G. M. Blake and I. Fogelman, “The role of DXA bone density scans in the diagnosis and treatment of osteoporosis,” Postgrad. Med. J. 83(982), 509–517 (2007).
[Crossref] [PubMed]

Boyd, S. K.

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

Breeden, K. L.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
[Crossref] [PubMed]

Brodt, M. D.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

M. D. Brodt, C. B. Ellis, and M. J. Silva, “Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties,” J. Bone Miner. Res. 14(12), 2159–2166 (1999).
[Crossref] [PubMed]

Brown, D. M.

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

Buckley, K.

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

Buie, H. R.

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

Burge, R.

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

Burr, D. B.

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

Campbell, G. M.

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

Canalis, E.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Chen, S.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Chew, W.

W. Chew, E. Widjaja, and M. Garland, “Band-Target Entropy Minimization (BTEM): an advanced method for recovering unknown pure component spectra. application to the ftir spectra of unstable organometallic mixtures,” Organometallics 21(9), 1982–1990 (2002).
[Crossref]

Churchwell, J. H.

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

Clark, I. P.

Cole, J. H.

Coombs, H. F.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Cory-Slechta, D. A.

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

Damilakis, J.

J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
[Crossref] [PubMed]

Dargent-Molina, P.

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Dawson-Hughes, B.

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

Delfosse, C.

G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
[Crossref] [PubMed]

Delpy, D. T.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref] [PubMed]

DeMambro, V. E.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Descamps, M.

G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
[Crossref] [PubMed]

Ding, L.-X.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Donahue, L. R.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Dooley, K. A.

Draper, E. R. C.

Drewniak, N.

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Ellis, C. B.

M. D. Brodt, C. B. Ellis, and M. J. Silva, “Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties,” J. Bone Miner. Res. 14(12), 2159–2166 (1999).
[Crossref] [PubMed]

Esmonde-White, F.

Essenpreis, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref] [PubMed]

Everall, N.

Feng, G.

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

Finney, W. F.

Firbank, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref] [PubMed]

Fogelman, I.

G. M. Blake and I. Fogelman, “The role of DXA bone density scans in the diagnosis and treatment of osteoporosis,” Postgrad. Med. J. 83(982), 509–517 (2007).
[Crossref] [PubMed]

Gallant, M. A.

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

Garland, M.

W. Chew, E. Widjaja, and M. Garland, “Band-Target Entropy Minimization (BTEM): an advanced method for recovering unknown pure component spectra. application to the ftir spectra of unstable organometallic mixtures,” Organometallics 21(9), 1982–1990 (2002).
[Crossref]

Gikas, P. D.

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

Golay, M. J. E.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Goldstein, S. A.

Goodship, A. E.

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

Granke, M.

Guglielmi, G.

J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
[Crossref] [PubMed]

Haaland, D. M.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

Hipp, J. A.

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

Hiraoka, M.

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref] [PubMed]

Hong, J.

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

Inzana, J. A.

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
[Crossref] [PubMed]

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

Jaramillo, D.

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

Kerns, J. G.

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

King, A.

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

Klinck, R. J.

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

Ko, M.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Kohn, D. H.

M. Raghavan, N. D. Sahar, D. H. Kohn, and M. D. Morris, “Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone,” Bone 50(4), 942–953 (2012).
[Crossref] [PubMed]

Kreider, J. M.

Kusano, N.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Laparra, J.

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Leroy, G.

G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
[Crossref] [PubMed]

Liang, Y.-Z.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Link, T. M.

J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
[Crossref] [PubMed]

Liu, Z.-X.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

MacNeil, J. A.

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

Maher, J. R.

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
[Crossref] [PubMed]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
[Crossref] [PubMed]

Makowski, A. J.

Mandair, G. S.

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

Matousek, P.

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

Morris, M. D.

Mulkern, R. V.

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

Nalla, R. K.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
[Crossref] [PubMed]

Nyman, J. S.

Ochoa, M.

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

Organ, J. M.

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

Parker, A. W.

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

Pearson, K.

K. Pearson, “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling,” Lond. Edinb. Dubl. Phil. Mag. 50(302), 157–175 (1900).
[Crossref]

Penel, G.

G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
[Crossref] [PubMed]

Pouillès, J.-M.

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Puzas, J. E.

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

Qi, D.

Raghavan, M.

M. Raghavan, N. D. Sahar, D. H. Kohn, and M. D. Morris, “Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone,” Bone 50(4), 942–953 (2012).
[Crossref] [PubMed]

Reinholdt, L. G.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Ribot, C. A.

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Ritchie, R. O.

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
[Crossref] [PubMed]

Rosen, C. J.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Sahar, N. D.

M. Raghavan, N. D. Sahar, D. H. Kohn, and M. D. Morris, “Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone,” Bone 50(4), 942–953 (2012).
[Crossref] [PubMed]

Savitzky, A.

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Schulmerich, M. V.

Schwarz, E. M.

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

Sheu, T.-J.

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

Shultz, K. L.

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

Silva, M. J.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

M. D. Brodt, C. B. Ellis, and M. J. Silva, “Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties,” J. Bone Miner. Res. 14(12), 2159–2166 (1999).
[Crossref] [PubMed]

Smith, C.

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

Snyder, B. D.

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

Solomon, D. H.

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

Sowoidnich, K.

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

Takahata, M.

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
[Crossref] [PubMed]

Thomas, E. V.

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

Thomopoulos, S.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Tosteson, A.

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

Towrie, M.

Trémollieres, F. A.

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

Uppuganti, S.

Vinton, J.

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

Wassen, M. H.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Widjaja, E.

W. Chew, E. Widjaja, and M. Garland, “Band-Target Entropy Minimization (BTEM): an advanced method for recovering unknown pure component spectra. application to the ftir spectra of unstable organometallic mixtures,” Organometallics 21(9), 1982–1990 (2002).
[Crossref]

Williams, D.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Wong, J. B.

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

Wopenka, B.

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

Ye, F.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhang, Q.-M.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhang, Z.-M.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zhou, H.

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Zuscik, M. J.

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

Anal. Chem. (2)

D. M. Haaland and E. V. Thomas, “Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information,” Anal. Chem. 60(11), 1193–1202 (1988).
[Crossref]

A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36(8), 1627–1639 (1964).
[Crossref]

Analyst (Lond.) (1)

K. Sowoidnich, J. H. Churchwell, K. Buckley, A. E. Goodship, A. W. Parker, and P. Matousek, “Spatially offset Raman spectroscopy for photon migration studies in bones with different mineralization levels,” Analyst (Lond.) 142(17), 3219–3226 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (3)

Bone (4)

M. Raghavan, N. D. Sahar, D. H. Kohn, and M. D. Morris, “Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone,” Bone 50(4), 942–953 (2012).
[Crossref] [PubMed]

H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, and S. K. Boyd, “Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis,” Bone 41(4), 505–515 (2007).
[Crossref] [PubMed]

M. A. Gallant, D. M. Brown, J. M. Organ, M. R. Allen, and D. B. Burr, “Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing,” Bone 53(1), 301–305 (2013).
[Crossref] [PubMed]

G. Penel, C. Delfosse, M. Descamps, and G. Leroy, “Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy,” Bone 36(5), 893–901 (2005).
[Crossref] [PubMed]

Calcif. Tissue Int. (1)

J. Hong, J. A. Hipp, R. V. Mulkern, D. Jaramillo, and B. D. Snyder, “Magnetic Resonance Imaging Measurements of Bone Density and Cross-Sectional Geometry,” Calcif. Tissue Int. 66(1), 74–78 (2000).
[Crossref] [PubMed]

Clin. Orthop. Relat. Res. (1)

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res. 469(8), 2160–2169 (2011).
[Crossref] [PubMed]

Environ. Health Perspect. (1)

E. E. Beier, J. R. Maher, T.-J. Sheu, D. A. Cory-Slechta, A. J. Berger, M. J. Zuscik, and J. E. Puzas, “Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of WNT signaling,” Environ. Health Perspect. 121(1), 97–104 (2013).
[PubMed]

Eur. Radiol. (1)

J. Damilakis, J. E. Adams, G. Guglielmi, and T. M. Link, “Radiation exposure in X-ray-based imaging techniques used in osteoporosis,” Eur. Radiol. 20(11), 2707–2714 (2010).
[Crossref] [PubMed]

J. Biomech. (1)

J. A. Inzana, J. R. Maher, M. Takahata, E. M. Schwarz, A. J. Berger, and H. A. Awad, “Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis,” J. Biomech. 46(4), 723–730 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

J. R. Maher, J. A. Inzana, H. A. Awad, and A. J. Berger, “Overconstrained library-based fitting method reveals age- and disease-related differences in transcutaneous Raman spectra of murine bones,” J. Biomed. Opt. 18(7), 077001 (2013).
[Crossref] [PubMed]

J. W. Ager, R. K. Nalla, K. L. Breeden, and R. O. Ritchie, “Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone,” J. Biomed. Opt. 10(3), 034012 (2005).
[Crossref] [PubMed]

J. R. Maher, M. Takahata, H. A. Awad, and A. J. Berger, “Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis,” J. Biomed. Opt. 16(8), 087012 (2011).
[Crossref] [PubMed]

J. Biophotonics (1)

G. Feng, M. Ochoa, J. R. Maher, H. A. Awad, and A. J. Berger, “Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue,” J. Biophotonics 10(8), 990–996 (2017).
[Crossref] [PubMed]

J. Bone Miner. Res. (5)

M. D. Brodt, C. B. Ellis, and M. J. Silva, “Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties,” J. Bone Miner. Res. 14(12), 2159–2166 (1999).
[Crossref] [PubMed]

W. G. Beamer, K. L. Shultz, H. F. Coombs, V. E. DeMambro, L. G. Reinholdt, C. L. Ackert-Bicknell, E. Canalis, C. J. Rosen, and L. R. Donahue, “BMD regulation on mouse distal chromosome 1, candidate genes, and response to ovariectomy or dietary fat,” J. Bone Miner. Res. 26(1), 88–99 (2011).
[Crossref] [PubMed]

M. J. Silva, M. D. Brodt, B. Wopenka, S. Thomopoulos, D. Williams, M. H. Wassen, M. Ko, N. Kusano, and R. A. Bank, “Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 Mouse,” J. Bone Miner. Res. 21(1), 78–88 (2006).
[Crossref] [PubMed]

F. A. Trémollieres, J.-M. Pouillès, N. Drewniak, J. Laparra, C. A. Ribot, and P. Dargent-Molina, “Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool,” J. Bone Miner. Res. 25(5), 1002–1009 (2010).
[Crossref] [PubMed]

R. Burge, B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson, “Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025,” J. Bone Miner. Res. 22(3), 465–475 (2007).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

K. Buckley, J. G. Kerns, J. Vinton, P. D. Gikas, C. Smith, A. W. Parker, P. Matousek, and A. E. Goodship, “Towards the in vivo prediction of fragility fractures with Raman spectroscopy,” J. Raman Spectrosc. 46(7), 610–618 (2015).
[Crossref] [PubMed]

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Ye, and H. Zhou, “An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy,” J. Raman Spectrosc. 41(6), 659–669 (2010).
[Crossref]

Lond. Edinb. Dubl. Phil. Mag. (1)

K. Pearson, “X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling,” Lond. Edinb. Dubl. Phil. Mag. 50(302), 157–175 (1900).
[Crossref]

Organometallics (1)

W. Chew, E. Widjaja, and M. Garland, “Band-Target Entropy Minimization (BTEM): an advanced method for recovering unknown pure component spectra. application to the ftir spectra of unstable organometallic mixtures,” Organometallics 21(9), 1982–1990 (2002).
[Crossref]

Phys. Med. Biol. (1)

M. Firbank, M. Hiraoka, M. Essenpreis, and D. T. Delpy, “Measurement of the optical properties of the skull in the wavelength range 650-950 nm,” Phys. Med. Biol. 38(4), 503–510 (1993).
[Crossref] [PubMed]

Postgrad. Med. J. (1)

G. M. Blake and I. Fogelman, “The role of DXA bone density scans in the diagnosis and treatment of osteoporosis,” Postgrad. Med. J. 83(982), 509–517 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic of collection fiber images at the tissue surface, with ring 3 being the outermost zone. (b) Setup for live mouse measurement, with focusing/collecting lens above the right tibia and nose cone for anesthesia. (c) Zoomed in view with Raman sampling locations above the tibia indicated by overlaid red dots.
Fig. 2
Fig. 2 Transcutaneous Raman spectra acquired over one mouse tibia with different source-detector offsets, from 0 (Offset 1) to 0.5 mm (Offset 3), based upon the rings defined in Fig. 1(a). Spectra are normalized to the area under the peak at 1660 cm−1. The relative increase in the phosphate peak from Offset 1 to Offset 3 indicates the stronger relative contribution of bone in Offset 3.
Fig. 3
Fig. 3 (a) Tibial aBMD as a function of mouse age. (b) Same for MT. (c) Same for carbonate to phosphate peak area ratio (CTPR). CTPR values are normalized to the mean band-area ratio of the 4-week-old group. Error bars represent the standard error of the mean.
Fig. 4
Fig. 4 (a) Correlation between predicted aBMD based on PLSR of Raman spectra measured transcutaneously on live mice and that of the reference obtained by DXA. (b) Correlation between predicted aBMD based on PLSR of Raman spectra measured on exposed bone and that of the reference obtained by DXA.
Fig. 5
Fig. 5 (a) Correlation between predicted vBMD based on PLSR of Raman spectra measured transcutaneously on live mice and that of the reference obtained by microCT. (b) Correlation between predicted vBMD based on PLSR of Raman spectra measured on exposed bone and that of the reference obtained by microCT.
Fig. 6
Fig. 6 (a) Correlation between predicted MT based on PLSR of Raman spectra measured transcutaneously on live mice and that of the reference obtained by bone torsion test. (b) Correlation between predicted MT based on PLSR of Raman spectra measured on exposed bone and that of the reference obtained by bone torsion test.
Fig. 7
Fig. 7 Correlation between predicted MT based on PLSR of multiple microCT values (bone area, tissue area, vBMD, cortical thickness) and that of the reference obtained by torsion test.
Fig. 8
Fig. 8 (a) Correlation between predicted aBMD based on PLSR of Raman spectra from ring 1 (marked by red triangles) compared with ring 3 (marked with blue circles) measured transcutaneously on live mice and that of the reference obtained by DXA. Correlation coefficients were similar for the two offsets. (b) Correlation between predicted MT based on PLSR of Raman spectra from ring 1 (marked by red triangles) compared with ring 3 (marked with blue circles) measured transcutaneously on live mice and that of the reference obtained by torsion test. In this case, the correlation was noticeably stronger for the larger offset (r2 = 0.53 versus 0.19).

Tables (2)

Tables Icon

Table 1 Accuracy of bone quality prediction using Raman spectra as predictor

Tables Icon

Table 2 Typical ranks used in PLSR models for different predictions