Abstract

We propose methods to quantitatively calculate the fluctuation rate of red blood cells with nanometric axial and millisecond temporal sensitivity at the single-cell level by using time-lapse holographic cell imaging. For this quantitative analysis, cell membrane fluctuations (CMFs) were measured for RBCs stored at different storage times. Measurements were taken over the whole membrane for both the ring and dimple sections separately. The measurements show that healthy RBCs that maintain their discocyte shape become stiffer with storage time. The correlation analysis demonstrates a significant negative correlation between CMFs and the sphericity coefficient, which characterizes the morphological type of erythrocyte. In addition, we show the correlation results between CMFs and other morphological properties such as projected surface area, surface area, mean corpuscular volume, and mean corpuscular hemoglobin.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods

Inkyu Moon, Faliu Yi, Yeon H. Lee, Bahram Javidi, Daniel Boss, and Pierre Marquet
Opt. Express 21(25) 30947-30957 (2013)

Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells

Inkyu Moon, Bahram Javidi, Faliu Yi, Daniel Boss, and Pierre Marquet
Opt. Express 20(9) 10295-10309 (2012)

Cell morphology-based classification of red blood cells using holographic imaging informatics

Faliu Yi, Inkyu Moon, and Bahram Javidi
Biomed. Opt. Express 7(6) 2385-2399 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Tu, “Geometry of membranes,” J. Geom. Symmetry Phys. 24, 45–75 (2011).
  2. H. Strey, M. Peterson, and E. Sackmann, “Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition,” Biophys. J. 69(2), 478–488 (1995).
    [Crossref] [PubMed]
  3. B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
    [Crossref] [PubMed]
  4. R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
    [Crossref]
  5. B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
    [Crossref] [PubMed]
  6. C. Uzoigwe, “The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels,” Med. Hypotheses 67(5), 1159–1163 (2006).
    [Crossref] [PubMed]
  7. R. T. Card, “Red cell membrane changes during storage,” Transfus. Med. Rev. 2(1), 40–47 (1988).
    [Crossref] [PubMed]
  8. J. Laurie, D. Wyncoll, and C. Harrison, “New versus old blood - the debate continues,” Crit. Care 14(2), 130 (2010).
    [Crossref] [PubMed]
  9. A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
    [PubMed]
  10. D. J. Kor, C. M. Van Buskirk, and O. Gajic, “Red blood cell storage lesion,” Bosn. J. Basic Med. Sci. 9(Suppl 1), 21–27 (2009).
    [Crossref] [PubMed]
  11. G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
    [Crossref] [PubMed]
  12. J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
    [Crossref] [PubMed]
  13. H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
    [Crossref] [PubMed]
  14. I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
    [Crossref] [PubMed]
  15. S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
    [Crossref] [PubMed]
  16. M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
    [PubMed]
  17. D. Carl, B. Kemper, G. Wernicke, and G. von Bally, “Parameter-optimized digital holographic microscope for high-resolution living-cell analysis,” Appl. Opt. 43(36), 6536–6544 (2004).
    [Crossref] [PubMed]
  18. F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
    [Crossref] [PubMed]
  19. I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
    [Crossref]
  20. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
    [Crossref] [PubMed]
  21. A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
    [Crossref]
  22. I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
    [Crossref] [PubMed]
  23. F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
    [Crossref] [PubMed]
  24. K. Alm, H. Cirenajwis, L. Gisselsson, A. Wingren, B. Janicke, A. Molder, S. Oredsson, and J. Persson, Digital Holography and Cell Studies (InTech, 2011).
  25. B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
    [Crossref] [PubMed]
  26. I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
    [Crossref] [PubMed]
  27. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
    [Crossref] [PubMed]
  28. B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
    [Crossref] [PubMed]
  29. B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
    [Crossref] [PubMed]
  30. I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
    [Crossref] [PubMed]
  31. K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
    [Crossref] [PubMed]
  32. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
    [Crossref] [PubMed]
  33. K. Jaferzadeh and I. Moon, “Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging,” J. Biomed. Opt. 21(12), 126015 (2016).
    [Crossref] [PubMed]
  34. I. Moon, F. Yi, and B. Rappaz, “Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy,” Appl. Opt. 55(3), A86–A94 (2016).
    [Crossref] [PubMed]
  35. B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,” Opt. Express 26(10), 13614–13627 (2018).
    [Crossref] [PubMed]
  36. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
    [Crossref] [PubMed]
  37. M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, “Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path,” Appl. Opt. 41(35), 7437–7444 (2002).
    [Crossref] [PubMed]
  38. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
    [Crossref] [PubMed]
  39. F. Brochard and J. Lennon, “Frequency spectrum of flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
    [Crossref]
  40. S. Levin and R. Korenstein, “Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton,” Biophys. J. 60(3), 733–737 (1991).
    [Crossref] [PubMed]
  41. A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast microscopy - a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. 48(12), 2139–2151 (1987).
    [Crossref]
  42. J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
    [Crossref] [PubMed]
  43. N. Gov and S. A. Safran, “Red blood cell shape and fluctuations: cytoskeleton confinement and ATP activity,” J. Biol. Phys. 31(3-4), 453–464 (2005).
    [Crossref] [PubMed]
  44. N. S. Gov and S. A. Safran, “Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects,” Biophys. J. 88(3), 1859–1874 (2005).
    [Crossref] [PubMed]
  45. G. Marcelli, K. H. Parker, and C. P. Winlove, “Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model,” Biophys. J. 89(4), 2473–2480 (2005).
    [Crossref] [PubMed]
  46. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
    [Crossref] [PubMed]
  47. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
    [Crossref] [PubMed]
  48. P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
    [Crossref] [PubMed]
  49. R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
    [Crossref] [PubMed]
  50. N. Mukhopadhyay, Probability and Statistical Inference (CRC Press, 2000)
  51. O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
    [Crossref] [PubMed]
  52. M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).
  53. J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

2016 (3)

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging,” J. Biomed. Opt. 21(12), 126015 (2016).
[Crossref] [PubMed]

I. Moon, F. Yi, and B. Rappaz, “Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy,” Appl. Opt. 55(3), A86–A94 (2016).
[Crossref] [PubMed]

2015 (4)

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

2014 (2)

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

2013 (4)

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

2012 (3)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

2011 (1)

Z. Tu, “Geometry of membranes,” J. Geom. Symmetry Phys. 24, 45–75 (2011).

2010 (2)

J. Laurie, D. Wyncoll, and C. Harrison, “New versus old blood - the debate continues,” Crit. Care 14(2), 130 (2010).
[Crossref] [PubMed]

A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
[PubMed]

2009 (4)

D. J. Kor, C. M. Van Buskirk, and O. Gajic, “Red blood cell storage lesion,” Bosn. J. Basic Med. Sci. 9(Suppl 1), 21–27 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

2008 (5)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
[Crossref] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[Crossref] [PubMed]

2007 (1)

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

2006 (2)

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

C. Uzoigwe, “The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels,” Med. Hypotheses 67(5), 1159–1163 (2006).
[Crossref] [PubMed]

2005 (6)

2004 (1)

2002 (1)

1999 (1)

1998 (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

1995 (1)

H. Strey, M. Peterson, and E. Sackmann, “Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition,” Biophys. J. 69(2), 478–488 (1995).
[Crossref] [PubMed]

1994 (1)

R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
[Crossref]

1991 (1)

S. Levin and R. Korenstein, “Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton,” Biophys. J. 60(3), 733–737 (1991).
[Crossref] [PubMed]

1988 (1)

R. T. Card, “Red cell membrane changes during storage,” Transfus. Med. Rev. 2(1), 40–47 (1988).
[Crossref] [PubMed]

1987 (1)

A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast microscopy - a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. 48(12), 2139–2151 (1987).
[Crossref]

1975 (1)

F. Brochard and J. Lennon, “Frequency spectrum of flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[Crossref]

1952 (1)

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[Crossref] [PubMed]

Abazyan, B.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Anand, A.

Andemariam, B.

Balduzzi, D.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Barbul, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

Bardyn, M.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

Barer, R.

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[Crossref] [PubMed]

Barodka, V. M.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Berkowitz, D. E.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Bhaduri, B.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

Bosman, G. J.

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
[Crossref] [PubMed]

Boss, D.

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Breton, B.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Brochard, F.

F. Brochard and J. Lennon, “Frequency spectrum of flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[Crossref]

Brock, R.

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

Brousse, V.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Brugnara, C.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

Buffet, P. A.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Burton, D. R.

Canellini, G.

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

Cano, E.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

Carapezza, E.

Card, R. T.

R. T. Card, “Red cell membrane changes during storage,” Transfus. Med. Rev. 2(1), 40–47 (1988).
[Crossref] [PubMed]

Carl, D.

Chambon, M.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Charrière, F.

Chokkalingam, V.

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

Cluitmans, J. C.

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

Cohen, D. B.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Colomb, T.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

Coppola, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Crettaz, D.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

Cuche, E.

D’Alessandro, A.

A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
[PubMed]

Daneshpanah, M.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

David, P. H.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Debeir, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Decaestecker, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Delobel, J.

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

Depeursinge, C.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Deplaine, G.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Di Caprio, G.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Dubois, F.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Eliceiri, K. W.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Emery, Y.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

Engelhardt, H.

A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast microscopy - a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. 48(12), 2139–2151 (1987).
[Crossref]

Evans, J.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Ferraro, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Frank, S. M.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Gajic, O.

D. J. Kor, C. M. Van Buskirk, and O. Gajic, “Red blood cell storage lesion,” Bosn. J. Basic Med. Sci. 9(Suppl 1), 21–27 (2009).
[Crossref] [PubMed]

Galli, A.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Gdeisat, M. A.

Gov, N.

N. Gov and S. A. Safran, “Red blood cell shape and fluctuations: cytoskeleton confinement and ATP activity,” J. Biol. Phys. 31(3-4), 453–464 (2005).
[Crossref] [PubMed]

Gov, N. S.

N. S. Gov and S. A. Safran, “Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects,” Biophys. J. 88(3), 1859–1874 (2005).
[Crossref] [PubMed]

Gratzer, W.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Grazzini, G.

A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
[PubMed]

Hamelin, R.

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

Harrison, C.

J. Laurie, D. Wyncoll, and C. Harrison, “New versus old blood - the debate continues,” Crit. Care 14(2), 130 (2010).
[Crossref] [PubMed]

Herráez, M. A.

Hoffmann, A.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Hogue, C. W.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Huck, W. T.

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

Jaferzadeh, K.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

K. Jaferzadeh and I. Moon, “Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging,” J. Biomed. Opt. 21(12), 126015 (2016).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

Jang, S.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Janssen, A. M.

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

Javidi, B.

B. Javidi, A. Markman, S. Rawat, T. O’Connor, A. Anand, and B. Andemariam, “Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy,” Opt. Express 26(10), 13614–13627 (2018).
[Crossref] [PubMed]

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

Ji, M.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Kandel, M.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

Kemper, B.

Kim, K.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Kiss, R.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Kor, D. J.

D. J. Kor, C. M. Van Buskirk, and O. Gajic, “Red blood cell storage lesion,” Bosn. J. Basic Med. Sci. 9(Suppl 1), 21–27 (2009).
[Crossref] [PubMed]

Korenstein, R.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
[Crossref]

S. Levin and R. Korenstein, “Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton,” Biophys. J. 60(3), 733–737 (1991).
[Crossref] [PubMed]

Kühn, J.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

Lalor, M. J.

Laurie, J.

J. Laurie, D. Wyncoll, and C. Harrison, “New versus old blood - the debate continues,” Crit. Care 14(2), 130 (2010).
[Crossref] [PubMed]

Lee, S.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Lee, Y. H.

Legros, J. C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Lennon, J.

F. Brochard and J. Lennon, “Frequency spectrum of flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[Crossref]

Levin, S.

R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
[Crossref]

S. Levin and R. Korenstein, “Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton,” Biophys. J. 60(3), 733–737 (1991).
[Crossref] [PubMed]

Lion, N.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

Liumbruno, G.

A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
[PubMed]

Magistretti, P.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

Magistretti, P. J.

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

Marcelli, G.

G. Marcelli, K. H. Parker, and C. P. Winlove, “Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model,” Biophys. J. 89(4), 2473–2480 (2005).
[Crossref] [PubMed]

Markman, A.

Marquet, P.

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38(34), 6994–7001 (1999).
[Crossref] [PubMed]

Memmolo, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Mena, J.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Mercereau-Puijalon, O.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Merola, F.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Miccio, L.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Milon, G.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Mittelman, L.

R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
[Crossref]

Mohandas, N.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Moniatte, M.

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

Monnom, O.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Moon, I.

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

K. Jaferzadeh and I. Moon, “Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging,” J. Biomed. Opt. 21(12), 126015 (2016).
[Crossref] [PubMed]

I. Moon, F. Yi, and B. Rappaz, “Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy,” Appl. Opt. 55(3), A86–A94 (2016).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

I. Moon, F. Yi, Y. H. Lee, B. Javidi, D. Boss, and P. Marquet, “Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods,” Opt. Express 21(25), 30947–30957 (2013).
[Crossref] [PubMed]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13(12), 4492–4506 (2005).
[Crossref] [PubMed]

Mueller, M.

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

Ndour, A.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Ness, P. M.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Netti, P.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Nguyen, M.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Novotný, V. M.

G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
[Crossref] [PubMed]

O’Connor, T.

Ono, M.

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Parent, J.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Park, H.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Park, Y.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Parker, K.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Parker, K. H.

G. Marcelli, K. H. Parker, and C. P. Winlove, “Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model,” Biophys. J. 89(4), 2473–2480 (2005).
[Crossref] [PubMed]

Perrot, S.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Peterson, M.

H. Strey, M. Peterson, and E. Sackmann, “Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition,” Biophys. J. 69(2), 478–488 (1995).
[Crossref] [PubMed]

Popescu, G.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

Prudent, M.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

Puglisi, R.

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Rappaz, B.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

I. Moon, F. Yi, and B. Rappaz, “Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy,” Appl. Opt. 55(3), A86–A94 (2016).
[Crossref] [PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

B. Rappaz, F. Charrière, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium,” Opt. Lett. 33(7), 744–746 (2008).
[Crossref] [PubMed]

B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. Magistretti, “Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy,” Opt. Express 13(23), 9361–9373 (2005).
[Crossref] [PubMed]

P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005).
[Crossref] [PubMed]

Rasband, W. S.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Rawat, S.

Rubin, O.

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

Ruttimann, U. E.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Sackmann, E.

H. Strey, M. Peterson, and E. Sackmann, “Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition,” Biophys. J. 69(2), 478–488 (1995).
[Crossref] [PubMed]

A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast microscopy - a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. 48(12), 2139–2151 (1987).
[Crossref]

Safeukui, I.

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Safran, S. A.

N. Gov and S. A. Safran, “Red blood cell shape and fluctuations: cytoskeleton confinement and ATP activity,” J. Biol. Phys. 31(3-4), 453–464 (2005).
[Crossref] [PubMed]

N. S. Gov and S. A. Safran, “Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects,” Biophys. J. 88(3), 1859–1874 (2005).
[Crossref] [PubMed]

Schneider, C. A.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Shaffer, E.

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Shim, H.

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Simanis, V.

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

Sleep, J.

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

Son, Y.

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

Stern, A.

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

Strey, H.

H. Strey, M. Peterson, and E. Sackmann, “Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition,” Biophys. J. 69(2), 478–488 (1995).
[Crossref] [PubMed]

Tangella, K.

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

Thévenaz, P.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Tissot, J.

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

Tissot, J. D.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

Tu, Z.

Z. Tu, “Geometry of membranes,” J. Geom. Symmetry Phys. 24, 45–75 (2011).

Turcatti, G.

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

B. Rappaz, I. Moon, F. Yi, B. Javidi, P. Marquet, and G. Turcatti, “Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy,” Opt. Express 23(10), 13333–13347 (2015).
[Crossref] [PubMed]

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Tuvia, S.

R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
[Crossref]

Unser, M.

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

Uzoigwe, C.

C. Uzoigwe, “The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels,” Med. Hypotheses 67(5), 1159–1163 (2006).
[Crossref] [PubMed]

Van Buskirk, C. M.

D. J. Kor, C. M. Van Buskirk, and O. Gajic, “Red blood cell storage lesion,” Bosn. J. Basic Med. Sci. 9(Suppl 1), 21–27 (2009).
[Crossref] [PubMed]

Van Ham, P.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

von Bally, G.

Wernicke, G.

Werre, J. M.

G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
[Crossref] [PubMed]

Willekens, F. L.

G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
[Crossref] [PubMed]

Winlove, C. P.

G. Marcelli, K. H. Parker, and C. P. Winlove, “Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model,” Biophys. J. 89(4), 2473–2480 (2005).
[Crossref] [PubMed]

Wyncoll, D.

J. Laurie, D. Wyncoll, and C. Harrison, “New versus old blood - the debate continues,” Crit. Care 14(2), 130 (2010).
[Crossref] [PubMed]

Yeom, S.

Yi, F.

Yourassowsky, C.

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

Zilker, A.

A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast microscopy - a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. 48(12), 2139–2151 (1987).
[Crossref]

Zolla, L.

A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
[PubMed]

Anesth. Analg. (1)

S. M. Frank, B. Abazyan, M. Ono, C. W. Hogue, D. B. Cohen, D. E. Berkowitz, P. M. Ness, and V. M. Barodka, “Decreased erythrocyte deformability after transfusion and the effects of erythrocyte storage duration,” Anesth. Analg. 116(5), 975–981 (2013).
[Crossref] [PubMed]

Appl. Opt. (4)

Assay Drug Dev. Technol. (1)

J. Kühn, E. Shaffer, J. Mena, B. Breton, J. Parent, B. Rappaz, M. Chambon, Y. Emery, P. Magistretti, C. Depeursinge, P. Marquet, and G. Turcatti, “Label-free cytotoxicity screening assay by digital holographic microscopy,” Assay Drug Dev. Technol. 11(2), 101–107 (2013).
[Crossref] [PubMed]

Biomechanics of Active Movement and Division of Cells (1)

R. Korenstein, S. Tuvia, L. Mittelman, and S. Levin, “Local bending fluctuations of the cell membrane,” Biomechanics of Active Movement and Division of Cells 84, 415–423 (1994).
[Crossref]

BioMed Res. Int. (1)

J. C. Cluitmans, V. Chokkalingam, A. M. Janssen, R. Brock, W. T. Huck, and G. J. Bosman, “Alterations in red blood cell deformability during storage: a microfluidic approach,” BioMed Res. Int. 2014, 764268 (2014).
[Crossref] [PubMed]

Biophys. J. (5)

H. Strey, M. Peterson, and E. Sackmann, “Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition,” Biophys. J. 69(2), 478–488 (1995).
[Crossref] [PubMed]

S. Levin and R. Korenstein, “Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton,” Biophys. J. 60(3), 733–737 (1991).
[Crossref] [PubMed]

J. Evans, W. Gratzer, N. Mohandas, K. Parker, and J. Sleep, “Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence,” Biophys. J. 94(10), 4134–4144 (2008).
[Crossref] [PubMed]

N. S. Gov and S. A. Safran, “Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects,” Biophys. J. 88(3), 1859–1874 (2005).
[Crossref] [PubMed]

G. Marcelli, K. H. Parker, and C. P. Winlove, “Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model,” Biophys. J. 89(4), 2473–2480 (2005).
[Crossref] [PubMed]

Blood (1)

I. Safeukui, P. A. Buffet, G. Deplaine, S. Perrot, V. Brousse, A. Ndour, M. Nguyen, O. Mercereau-Puijalon, P. H. David, G. Milon, and N. Mohandas, “Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen,” Blood 120(2), 424–430 (2012).
[Crossref] [PubMed]

Blood Cells Mol. Dis. (1)

B. Rappaz, A. Barbul, A. Hoffmann, D. Boss, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Spatial analysis of erythrocyte membrane fluctuations by digital holographic microscopy,” Blood Cells Mol. Dis. 42(3), 228–232 (2009).
[Crossref] [PubMed]

Blood Transfus. (2)

A. D’Alessandro, G. Liumbruno, G. Grazzini, and L. Zolla, “Red blood cell storage: the story so far,” Blood Transfus. 8(2), 82–88 (2010).
[PubMed]

M. Bardyn, B. Rappaz, K. Jaferzadeh, D. Crettaz, J. D. Tissot, I. Moon, G. Turcatti, N. Lion, and M. Prudent, “Red blood cells ageing markers: a multi-parametric analysis,” Blood Transfus. 15(3), 239–248 (2017).
[PubMed]

Bosn. J. Basic Med. Sci. (1)

D. J. Kor, C. M. Van Buskirk, and O. Gajic, “Red blood cell storage lesion,” Bosn. J. Basic Med. Sci. 9(Suppl 1), 21–27 (2009).
[Crossref] [PubMed]

Crit. Care (1)

J. Laurie, D. Wyncoll, and C. Harrison, “New versus old blood - the debate continues,” Crit. Care 14(2), 130 (2010).
[Crossref] [PubMed]

Cytometry A (1)

B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, “Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,” Cytometry A 73(10), 895–903 (2008).
[Crossref] [PubMed]

IEEE Trans. Image Process. (1)

P. Thévenaz, U. E. Ruttimann, and M. Unser, “A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. 7(1), 27–41 (1998).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (1)

I. Moon and B. Javidi, “3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging,” IEEE Trans. Med. Imaging 27(12), 1782–1790 (2008).
[Crossref] [PubMed]

J. Biol. Phys. (1)

N. Gov and S. A. Safran, “Red blood cell shape and fluctuations: cytoskeleton confinement and ATP activity,” J. Biol. Phys. 31(3-4), 453–464 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

K. Jaferzadeh and I. Moon, “Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy,” J. Biomed. Opt. 20(11), 111218 (2015).
[Crossref] [PubMed]

F. Dubois, C. Yourassowsky, O. Monnom, J. C. Legros, O. Debeir, P. Van Ham, R. Kiss, and C. Decaestecker, “Digital holographic microscopy for the three-dimensional dynamic analysis of in vitro cancer cell migration,” J. Biomed. Opt. 11(5), 054032 (2006).
[Crossref] [PubMed]

K. Jaferzadeh and I. Moon, “Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging,” J. Biomed. Opt. 21(12), 126015 (2016).
[Crossref] [PubMed]

B. Rappaz, E. Cano, T. Colomb, J. Kühn, C. Depeursinge, V. Simanis, P. J. Magistretti, and P. Marquet, “Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy,” J. Biomed. Opt. 14(3), 034049 (2009).
[Crossref] [PubMed]

J. Geom. Symmetry Phys. (1)

Z. Tu, “Geometry of membranes,” J. Geom. Symmetry Phys. 24, 45–75 (2011).

J. Phys. (2)

F. Brochard and J. Lennon, “Frequency spectrum of flicker phenomenon in erythrocytes,” J. Phys. 36(11), 1035–1047 (1975).
[Crossref]

A. Zilker, H. Engelhardt, and E. Sackmann, “Dynamic reflection interference contrast microscopy - a new method to study surface excitations of cells and to measure membrane bending elastic-moduli,” J. Phys. 48(12), 2139–2151 (1987).
[Crossref]

J. R. Soc. Interface (1)

I. Moon and B. Javidi, “Three-dimensional identification of stem cells by computational holographic imaging,” J. R. Soc. Interface 4(13), 305–313 (2007).
[Crossref] [PubMed]

Lab Chip (1)

F. Merola, L. Miccio, P. Memmolo, G. Di Caprio, A. Galli, R. Puglisi, D. Balduzzi, G. Coppola, P. Netti, and P. Ferraro, “Digital holography as a method for 3D imaging and estimating the biovolume of motile cells,” Lab Chip 13(23), 4512–4516 (2013).
[Crossref] [PubMed]

Med. Hypotheses (1)

C. Uzoigwe, “The human erythrocyte has developed the biconcave disc shape to optimise the flow properties of the blood in the large vessels,” Med. Hypotheses 67(5), 1159–1163 (2006).
[Crossref] [PubMed]

Nat. Methods (1)

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012).
[Crossref] [PubMed]

Nature (1)

R. Barer, “Interference microscopy and mass determination,” Nature 169(4296), 366–367 (1952).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. IEEE (2)

A. Anand, I. Moon, and B. Javidi, “Automated disease identification with 3-D optical imaging: a medical diagnostic tool,” Proc. IEEE 105(5), 924–946 (2017).
[Crossref]

I. Moon, M. Daneshpanah, B. Javidi, and A. Stern, “Automated three dimensional identification and tracking of micro/nano biological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009).
[Crossref]

Sci. Rep. (3)

H. Park, S. Lee, M. Ji, K. Kim, Y. Son, S. Jang, and Y. Park, “Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging,” Sci. Rep. 6(1), 34257 (2016).
[Crossref] [PubMed]

B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, and G. Popescu, “Optical assay of erythrocyte function in banked blood,” Sci. Rep. 4(1), 6211 (2015).
[Crossref] [PubMed]

Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling individual human red blood cells using common-path diffraction optical tomography,” Sci. Rep. 4(1), 6659 (2015).
[Crossref] [PubMed]

Transfus. Med. (1)

G. J. Bosman, J. M. Werre, F. L. Willekens, and V. M. Novotný, “Erythrocyte ageing in vivo and in vitro: structural aspects and implications for transfusion,” Transfus. Med. 18(6), 335–347 (2008).
[Crossref] [PubMed]

Transfus. Med. Hemother. (1)

O. Rubin, G. Canellini, J. Delobel, N. Lion, and J. D. Tissot, “Red blood cell microparticles: clinical relevance,” Transfus. Med. Hemother. 39(5), 342–347 (2012).
[Crossref] [PubMed]

Transfus. Med. Rev. (1)

R. T. Card, “Red cell membrane changes during storage,” Transfus. Med. Rev. 2(1), 40–47 (1988).
[Crossref] [PubMed]

Transfusion (1)

M. Prudent, B. Rappaz, R. Hamelin, J. Delobel, M. Mueller, P. Marquet, M. Moniatte, G. Turcatti, J. Tissot, and N. Lion, “Loss of protein TyR-phosphorylation during in vitro storage of human erythrocytes: impact on RBC morphology,” Transfusion 54, 49A–50A (2014).

Other (2)

N. Mukhopadhyay, Probability and Statistical Inference (CRC Press, 2000)

K. Alm, H. Cirenajwis, L. Gisselsson, A. Wingren, B. Janicke, A. Molder, S. Oredsson, and J. Persson, Digital Holography and Cell Studies (InTech, 2011).

Supplementary Material (2)

NameDescription
» Visualization 1       Time-lapse sequences of RBC fluctuations with k = 0.84 and a STD calculated from three points.
» Visualization 2       Time-lapse sequences of RBC fluctuations with k = 0.95 and a STD calculated from three points.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic of the off-axis DHM setup.
Fig. 2
Fig. 2 (a) recorded off-axis hologram (white line is 500μm in CCD plane), (b) filter to remove the twin image and zero-order noise, (c) Fourier transformation of the off-axis hologram, (d) the filtered off-axis hologram in the Fourier domain, (e) amplitude image; the intensity is adjusted for the best visualization, and (f) the contrast phase image after numerical reconstruction (red line is 10μm in the image plane).
Fig. 3
Fig. 3 Distribution of temporal deviations within a ROI; the left-side distribution represents the background and the right side corresponds to the RBC area (cell membrane and noise together).
Fig. 4
Fig. 4 Thickness signals and STD of changes in three different regions recorded at 20Hz over a 10s period (“A” denotes a background location, “B” is on the cell ring, and “C” is in the dimple region). The standard deviations of the signal are 17, 42, and 29nm, respectively (See Visualization 1).
Fig. 5
Fig. 5 (a) RBC mesh with normal vectors. (b) X-Z view of the membrane surface and its normal vector.
Fig. 6
Fig. 6 Deviation map of (a) the ring and (b) dimple sections of a RBC, and (c) the background (after 4 day of storage). Color-bar scale has units of nanometers.
Fig. 7
Fig. 7 Blue points show the points obtained by using r. The red points identify the maximum values within a range of 3 × 3 pixels from the blue points. The green point shows the geometric center of the cell and is obtained by finding the geometrical center of the bounding box on projected area or RBC.
Fig. 8
Fig. 8 Evolution of fluctuations amplitude over storage time for (a) the whole membrane, (b) the ring, and (c) the dimple region. The length of the error bars measures two standard deviations (Statistical test is two-sample Kolmogorov-Smirnov test; p<0.05 is considered as significant).
Fig. 9
Fig. 9 MCH changes versus storage time. Blue points are MCH obtained by Sysmex KX-21 hematology analyzer and red points are MCH obtained by Eq. (18).
Fig. 10
Fig. 10 Correlation measurements between he fluctuation rate and the morphological and hemoglobin parameters, for the entire membrane and the dimple region of discocyte RBCs. (a) sphericity coefficient (k factor), (b) PSA, (c) MCH, (d) MCV, and (e) surface area. Storage time is 4 days and n = 33. (An asterisk * indicates a significant linear correlation by Pearson p<0.05).
Fig. 11
Fig. 11 Correlation analysis between the CMF amplitude and the sphericity coefficient (k factor) and MCH for the entire membrane and the dimple region of discocyte RBCs for two storage times of 43 days and 71 days. (a) and (b) sphericity coefficient for 43 and 71 days, respectively. (c) and (d) MCH for 43 and 71 days, respectively (n = 33; Asterisk * indicates a significant linear correlation by Pearson p<0.05).
Fig. 12
Fig. 12 (a) 3D reconstruction of a RBC (age 4 days) with k = 0.85, (b) temporal deviation distribution and (c) fluctuation map (average over the whole surface is 34.78nm); (d) 3D reconstruction of a RBC (age 71 days) with k = 0.95, (e) deviation distribution and (f) fluctuation map (average over the whole surface is 26.33nm). Color-bar scales are in nanometers. See Visualization 1 and Visualization 2 in the supplementary materials.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I H = | R | 2 + | O | 2 + R O+ O R,
I H F =IFFT{ FFT( I H )×Filter }= R * O
R D (k,l)= A R exp[ i( 2π λ )( k x kΔx+ k y lΔy ) ],
Ψ( m,n )=AΦ(m,n)exp[ iπ λd ( m 2 Δ ξ 2 + n 2 Δ η 2 ) ]× FFT { R D ( k,l ) I H F ( k,l) )×exp[ iπ λd ( k 2 Δ x 2 + l 2 Δ y 2 ) ] } m,n ,
Φ(m,n)=exp[ iπ λD ( m 2 Δ ξ 2 + n 2 Δ η 2 ) ],
Δξ=Δη= λd NΔx ,
1 D = 1 d i ( 1+ d o d i ),
I(x,y)=Re [ Ψ( m,n ) ] 2 +Im [ Ψ( m,n ) ] 2 .
ϕ(x,y)= tan 1 { Im[ Ψ( m,n ) ] Re[ Ψ( m,n ) ] }.
h(x,y)= λ×ϕ(x,y) 2π( n RBC n m ) ,
CM F cell (x,y)= [ ( std( h cell + h background )(x,y) ) 2 ( std( h background ) ) 2 ] 1 2 .
h n ( x,y )=h( x,y )×cos(θ(x,y)).
θ(i,j)= tan 1 { N z (i,j) (( N x 2 (i,j)+ N y 2 (i,j)) },
k= h c h t .
r ( PSA π ) 1 2 ,
PSA=N p 2 ,
V p 2 (i,j) S p h(i,j) ,
MCH= 10 ϕ SP λPSA 2π α Hb ,

Metrics