Abstract

In vivo photoacoustic (PA) flow cytometry (PAFC) has great clinical potential for early, noninvasive diagnosis of cancer, infections (e.g., malaria and bacteremia), sickle anemia, and cardiovascular disorders, including stroke prevention through detection of circulating white clots with negative PA contrast. For clinical applications, this diagnostic platform still requires optimization and calibration. We have already demonstrated that this need can be partially addressed by in vivo examination of large mouse blood vessels, which are similar to human vessels used. Here, we present an alternative method for PAFC optimization that utilizes novel, clinically relevant phantoms resembling pigmented skin, tissue, vessels, and flowing blood. This phantom consists of a scattering-absorbing medium with a melanin layer and plastic tube with flowing beads to model light-absorbing red blood cells (RBCs) and circulating tumor cells (CTCs), as well as transparent beads to model white blood cells and clots. Using a laser diode, we demonstrated the extraordinary ability of PAFC to dynamically detect fast-moving mimic CTCs with positive PA contrast and white clots with negative PA contrast in an RBC background. Time-resolved detection of the delayed PA signals from blood vessels demonstrated complete suppression of the PA background from the modeled pigmented skin. This novel, medically relevant, dynamic blood flow phantom can be used to calibrate and maintain PAFC parameters for routine clinical applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical clearing in photoacoustic flow cytometry

Yulian A. Menyaev, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Mazen A. Juratli, Ekaterina I. Galanzha, Valery V. Tuchin, and Vladimir P. Zharov
Biomed. Opt. Express 4(12) 3030-3041 (2013)

Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery

Yulian A. Menyaev, Kai A. Carey, Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Ekaterina I. Galanzha, Jason S. Stumhofer, and Vladimir P. Zharov
Biomed. Opt. Express 7(9) 3643-3658 (2016)

Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser

Dmitry A. Nedosekin, Mustafa Sarimollaoglu, Evgeny V. Shashkov, Ekaterina I. Galanzha, and Vladimir P. Zharov
Opt. Express 18(8) 8605-8620 (2010)

References

  • View by:
  • |
  • |
  • |

  1. V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
    [Crossref] [PubMed]
  2. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
    [Crossref] [PubMed]
  3. E. I. Galanzha and V. P. Zharov, “Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo,” Cancers (Basel) 5(4), 1691–1738 (2013).
    [Crossref] [PubMed]
  4. C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
    [Crossref] [PubMed]
  5. Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
    [Crossref] [PubMed]
  6. C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
    [Crossref] [PubMed]
  7. J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
    [Crossref] [PubMed]
  8. E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
    [Crossref] [PubMed]
  9. D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
    [Crossref] [PubMed]
  10. D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
    [Crossref] [PubMed]
  11. S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
    [Crossref] [PubMed]
  12. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
    [Crossref] [PubMed]
  13. M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterization of a PVCP based tissue-mimicking phantom for Quantitative Photoacoustic Imaging,” Proc. SPIE - Int. Soc. Opt. Eng. 9539, 953911 (2015).
  14. M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
    [Crossref] [PubMed]
  15. J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
    [Crossref]
  16. G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
    [Crossref] [PubMed]
  17. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
    [Crossref] [PubMed]
  18. C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
    [Crossref] [PubMed]
  19. W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
    [Crossref] [PubMed]
  20. A. V. Bykov, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” in Proceedings of SPIE 8091, Optical Coherence Tomography and Coherence Techniques V, 80911R (2011).
  21. N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
    [Crossref] [PubMed]
  22. S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
    [Crossref] [PubMed]
  23. L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
    [Crossref] [PubMed]
  24. Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: An emerging optical modality in diagnostic and theranostic medicine,” J. Biosens. Bioelectron. 2, 3 (2011).
    [Crossref]
  25. J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
    [Crossref] [PubMed]
  26. Y.A. Menyaev, D.A. Nedosekin, M. Sarimollaoglu, M.A. Juratli, E.I. Galanzha, V.V. Tuchin, and V.P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030 (2013).
  27. J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).
  28. D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
    [Crossref]

2017 (2)

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

2016 (7)

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

2015 (1)

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

2014 (1)

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

2013 (5)

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

Y.A. Menyaev, D.A. Nedosekin, M. Sarimollaoglu, M.A. Juratli, E.I. Galanzha, V.V. Tuchin, and V.P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030 (2013).

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo,” Cancers (Basel) 5(4), 1691–1738 (2013).
[Crossref] [PubMed]

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

2012 (3)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref] [PubMed]

2011 (5)

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: An emerging optical modality in diagnostic and theranostic medicine,” J. Biosens. Bioelectron. 2, 3 (2011).
[Crossref]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

2010 (1)

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

2005 (1)

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Armanetti, P.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Avigo, C.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Bandi, J.

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Basnakian, A.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

Beard, P.

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

Beard, P. C.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

Beix, V.

N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref] [PubMed]

Biris, A. S.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

Blocka, K. L.

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Bodapati, S.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

Bohndiek, S. E.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

Cabrelli, L. C.

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

Cai, C.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Carey, K. A.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

Carneiro, A. A. O.

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

Cavigli, L.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Cecchini, M.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Cox, B. T.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

Deana, A. M.

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

Dervishi, E.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

Di Lascio, N.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

DiMaioa, J. M.

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Dobrosavljevi Vukojevi, D.

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Fahmi, T.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

Faita, F.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Fan, W.

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Fonseca, M.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

Frank, M. H.

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

Galanzha, E. I.

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo,” Cancers (Basel) 5(4), 1691–1738 (2013).
[Crossref] [PubMed]

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

Galanzha, E.I.

Gambhir, S. S.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

Garra, B. S.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Griffin, R. J.

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

Heijblom, M.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Hungr, N.

N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref] [PubMed]

Jamshidi-Parsian, A.

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

Janji, G.

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Jia, C.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Jiang, H.

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: An emerging optical modality in diagnostic and theranostic medicine,” J. Biosens. Bioelectron. 2, 3 (2011).
[Crossref]

Joshua Pfefer, T.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Juratli, M.A.

Keyrouz, S. G.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

King, D. R.

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Kore, R. A.

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

Korugaa, D.

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Kothapalli, S. R.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

Kusmic, C.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Lalovic, C.

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Laufer, J.

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

Long, J. A.

N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref] [PubMed]

Ma, J.

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

Manohar, S.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Masciullo, C.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Mehta, J. L.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

Menichetti, L.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Menyaev, Y. A.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

Menyaev, Y.A.

Meucci, S.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Muncanc, J.

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Nedosekin, D. A.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

Nedosekin, D.A.

Nima, Z. A.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

Nolan, J.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

O’Neill, B. E.

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: An emerging optical modality in diagnostic and theranostic medicine,” J. Biosens. Bioelectron. 2, 3 (2011).
[Crossref]

Oraevsky, A. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Pavan, T. Z.

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

Pelissari, P. I.

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

Pini, R.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Piras, D.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Plant, K. D.

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Proskurnin, M. A.

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

Ratto, F.

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

Sandell, J. L.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Sarimollaoglu, M.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

Y.A. Menyaev, D.A. Nedosekin, M. Sarimollaoglu, M.A. Juratli, E.I. Galanzha, V.V. Tuchin, and V.P. Zharov, “Optical clearing in photoacoustic flow cytometry,” Biomed. Opt. Express 4(12), 3030 (2013).

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

Sawant, R.

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

Spirou, G. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Steenbergen, W.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Stumhofer, J. S.

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: An emerging optical modality in diagnostic and theranostic medicine,” J. Biosens. Bioelectron. 2, 3 (2011).
[Crossref]

Tárnok, A.

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

Thatcher, J. E.

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Torchilin, V. P.

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

Troccaz, J.

N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref] [PubMed]

Tuchin, V. V.

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

Tuchin, V.V.

Van De Sompel, D.

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

van Leeuwen, T. G.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Verkhusha, V. V.

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

Vitkin, I. A.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Vogt, W. C.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Wear, K. A.

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

Whelan, W. M.

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

Xia, W.

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

Zeqiri, B.

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

Zhang, E.

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

Zharov, V. P.

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

Y. A. Menyaev, K. A. Carey, D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery,” Biomed. Opt. Express 7(9), 3643–3658 (2016).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo,” Cancers (Basel) 5(4), 1691–1738 (2013).
[Crossref] [PubMed]

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

Zharov, V.P.

Zhu, T. C.

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

Acta Phys. Pol. A (1)

D. Korugaa, J. Bandi, G. Janji, C. Lalovic, J. Muncanc, and D. Dobrosavljevi Vukojevi, “Epidermal layers characterization by opto-magnetic spectroscopy based on digital image of skin,” Acta Phys. Pol. A 121(3), 606–610 (2012).
[Crossref]

Anal. Cell Pathol. (Amst.) (2)

C. Cai, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, M. A. Proskurnin, and V. P. Zharov, “Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo,” Anal. Cell Pathol. (Amst.) 2016, 2642361 (2016).
[Crossref] [PubMed]

J. Nolan, M. Sarimollaoglu, D. A. Nedosekin, A. Jamshidi-Parsian, E. I. Galanzha, R. A. Kore, R. J. Griffin, and V. P. Zharov, “In vivo flow cytometry of circulating tumor-associated exosomes,” Anal. Cell Pathol. (Amst.) 2016, 1628057 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Cancers (Basel) (1)

E. I. Galanzha and V. P. Zharov, “Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo,” Cancers (Basel) 5(4), 1691–1738 (2013).
[Crossref] [PubMed]

Cytometry A (3)

C. Cai, K. A. Carey, D. A. Nedosekin, Y. A. Menyaev, M. Sarimollaoglu, E. I. Galanzha, J. S. Stumhofer, and V. P. Zharov, “In vivo photoacoustic flow cytometry for early malaria diagnosis,” Cytometry A 89(6), 531–542 (2016).
[Crossref] [PubMed]

V. V. Tuchin, A. Tárnok, and V. P. Zharov, “In vivo flow cytometry: a horizon of opportunities,” Cytometry A 79(10), 737–745 (2011).
[Crossref] [PubMed]

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A 79(10), 814–824 (2011).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Laufer, E. Zhang, and P. Beard, “Evaluation of absorbing chromophores used in tissue phantoms for quantitative photoacoustic spectroscopy and imaging,” IEEE J. Sel. Top. Quantum Electron. 16(3), 600–607 (2010).
[Crossref]

J. Biomed. Opt. (4)

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002 (2011).
[Crossref] [PubMed]

C. Avigo, N. Di Lascio, P. Armanetti, C. Kusmic, L. Cavigli, F. Ratto, S. Meucci, C. Masciullo, M. Cecchini, R. Pini, F. Faita, and L. Menichetti, “Organosilicon phantom for photoacoustic imaging,” J. Biomed. Opt. 20(4), 046008 (2015).
[Crossref] [PubMed]

W. C. Vogt, C. Jia, K. A. Wear, B. S. Garra, and T. Joshua Pfefer, “Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties,” J. Biomed. Opt. 21(10), 101405 (2016).
[Crossref] [PubMed]

J. Biophotonics (2)

D. A. Nedosekin, M. Sarimollaoglu, E. I. Galanzha, R. Sawant, V. P. Torchilin, V. V. Verkhusha, J. Ma, M. H. Frank, A. S. Biris, and V. P. Zharov, “Synergy of photoacoustic and fluorescence flow cytometry of circulating cells with negative and positive contrasts,” J. Biophotonics 6(5), 425–434 (2013).
[Crossref] [PubMed]

J. L. Sandell and T. C. Zhu, “A review of in-vivo optical properties of human tissues and its impact on PDT,” J. Biophotonics 4(11-12), 773–787 (2011).
[Crossref] [PubMed]

J. Biosens. Bioelectron. (1)

Y. Sun, H. Jiang, and B. E. O’Neill, “Photoacoustic imaging: An emerging optical modality in diagnostic and theranostic medicine,” J. Biosens. Bioelectron. 2, 3 (2011).
[Crossref]

Med. Phys. (1)

N. Hungr, J. A. Long, V. Beix, and J. Troccaz, “A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures,” Med. Phys. 39(4), 2031–2041 (2012).
[Crossref] [PubMed]

Methods (1)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

Photoacoustics (1)

D. A. Nedosekin, T. Fahmi, Z. A. Nima, J. Nolan, C. Cai, M. Sarimollaoglu, E. Dervishi, A. Basnakian, A. S. Biris, and V. P. Zharov, “Photoacoustic flow cytometry for nanomaterial research,” Photoacoustics 6, 16–25 (2017).
[Crossref] [PubMed]

Phys. Med. Biol. (3)

M. Fonseca, B. Zeqiri, P. C. Beard, and B. T. Cox, “Characterisation of a phantom for multiwavelength quantitative photoacoustic imaging,” Phys. Med. Biol. 61(13), 4950–4973 (2016).
[Crossref] [PubMed]

G. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50(14), N141–N153 (2005).
[Crossref] [PubMed]

L. C. Cabrelli, P. I. Pelissari, A. M. Deana, A. A. O. Carneiro, and T. Z. Pavan, “Stable phantom materials for ultrasound and optical imaging,” Phys. Med. Biol. 62(2), 432–447 (2017).
[Crossref] [PubMed]

PLoS One (2)

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

S. E. Bohndiek, S. Bodapati, D. Van De Sompel, S. R. Kothapalli, and S. S. Gambhir, “Development and application of stable phantoms for the evaluation of photoacoustic imaging instruments,” PLoS One 8(9), e75533 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

J. E. Thatcher, K. D. Plant, D. R. King, K. L. Blocka, W. Fan, and J. M. DiMaioa, “Dynamic tissue phantoms and their use in assessment of a non-invasive optical plethysmography imaging device,” Proc. SPIE 9107, 910718 (2014).

Other (2)

M. Fonseca, B. Zeqiri, P. Beard, and B. Cox, “Characterization of a PVCP based tissue-mimicking phantom for Quantitative Photoacoustic Imaging,” Proc. SPIE - Int. Soc. Opt. Eng. 9539, 953911 (2015).

A. V. Bykov, A. P. Popov, A. V. Priezzhev, and R. Myllylä, “Multilayer tissue phantoms with embedded capillary system for OCT and DOCT imaging,” in Proceedings of SPIE 8091, Optical Coherence Tomography and Coherence Techniques V, 80911R (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of real biotissue structure. (b) The typical PA trace with positive, negative, and mixed PA peak contrast [2]. (c) Schematics of blood vessel phantom. (d) Optical absorption of human blood, magnetic beads, platelets, and melanin [4-5].
Fig. 2
Fig. 2 (a) Schematic of PAFC system. (b) Image of the blood vessel phantom built in a hand phantom with connecting tubes inside “hand.” (c) Schematic of the laser diode with a single bar. (d) Laser beam fragment image on the sample. (e) The typical spectral line of laser diode pulse with width of 25 ns at wavelength of 808 nm.
Fig. 3
Fig. 3 (a and b) Typical examples of PA waveforms from ~1-mm vein at a depth of 1 mm in a human obtained with spherical (a) and cylindrical (b) transducers. (c and d) Typical examples of PA waveforms from the vessel phantom with similar properties to the human tissues acquired by spherical (c) and cylindrical (d) transducers.
Fig. 4
Fig. 4 Comparison of SNRs from a human and our phantom at different averaging numbers for spherical (a) and cylindrical (b) transducers.
Fig. 5
Fig. 5 (a) PA trace at laser off and on (as example). Typical PA traces from artificial blood consisted of 5-µm absorbing magnetic beads as RBC phantoms and rare 41-µm absorbing magnetic beads representing RBC aggregates or CTC clusters at different averaging signal times using spherical (a, c, e), and cylindrical (b, d, f) transducers.
Fig. 6
Fig. 6 Typical PA traces from artificial blood and 100-µm transparent silica particles as white clot phantom at different averaging signal numbers using spherical (a, c, e) and cylindrical (b, d, f) transducers.
Fig. 7
Fig. 7 PA signals with positive contrasts from absorbing magnetic beads with different sizes (8, 23, and 41 µm).
Fig. 8
Fig. 8 Typical PA traces recorded during in vitro PAFC monitoring of individual magnetic (1) , silica beads( 2) and their clusters (3) in phantom model acquired by a spherical transducer.
Fig. 9
Fig. 9 The reproducibility of the PA signal amplitude of phantom skin and vessel over time.