Abstract

In this work, we investigate some major issues for the use of silicon photomultiplier (SiPM) devices in continuous wave functional near-infrared spectroscopy (CW fNIRS). We analyzed the after-pulsing effect, proposing the physical mechanism causing it, and determining its relevance for CW fNIRS. We studied the SiPM transients occurring as the SiPM device goes from the dark (LED in off state) to the illumination (LED in on state) conditions, and vice-versa. Finally, we studied the SiPM SNR in standard CW fNIRS operation.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of sensitivity in continuous wave near infrared spectroscopy systems by using silicon photomultipliers

Roberto Pagano, Sebania Libertino, Delfo Sanfilippo, Giorgio Fallica, and Salvatore Lombardo
Biomed. Opt. Express 7(4) 1183-1192 (2016)

Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments

R. Zimmermann, F. Braun, T. Achtnich, O. Lambercy, R. Gassert, and M. Wolf
Biomed. Opt. Express 4(5) 659-666 (2013)

Multi-channel medical device for time domain functional near infrared spectroscopy based on wavelength space multiplexing

Rebecca Re, Davide Contini, Massimo Turola, Lorenzo Spinelli, Lucia Zucchelli, Matteo Caffini, Rinaldo Cubeddu, and Alessandro Torricelli
Biomed. Opt. Express 4(10) 2231-2246 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
    [Crossref] [PubMed]
  2. R. Pagano, S. Libertino, D. Sanfilippo, G. Fallica, and S. Lombardo, “Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers,” Biomed. Opt. Express 7(4), 1183–1192 (2016).
    [Crossref] [PubMed]
  3. D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
    [Crossref] [PubMed]
  4. R. Zimmermann, F. Braun, T. Achtnich, O. Lambercy, R. Gassert, and M. Wolf, “Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments,” Biomed. Opt. Express 4(5), 659–666 (2013).
    [Crossref] [PubMed]
  5. N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
    [Crossref]
  6. I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).
  7. A. Pellicer and M. C. Bravo, “Near-infrared spectroscopy: A methodology-focused review,” Semin. Fetal Neonatal Med. 16(1), 42–49 (2011).
    [Crossref] [PubMed]
  8. S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
    [Crossref] [PubMed]
  9. X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
    [Crossref] [PubMed]
  10. M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
    [Crossref] [PubMed]
  11. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
    [Crossref] [PubMed]
  12. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
    [Crossref] [PubMed]
  13. M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
    [Crossref]
  14. F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
    [Crossref]
  15. J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
    [Crossref]
  16. M. A. Ward and A. Vacheret, “Impact of after-pulse, pixel crosstalk and recovery time in multi-pixel photon counter response,” Nucl. Instrum. Methods Phys. Res. A 610(1), 370–373 (2009).
    [Crossref]
  17. A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003)
  18. D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority carrier lifetime vs. doping in diffused layers of n+/p Si diodes,” IEEE Trans. El. Dev. 29(2), 284–291 (1982).
    [Crossref]
  19. D. B. M. Klaassen, “A unified mobility model for device simulation - II Temperature dependence of carrier mobility and lifetime,” Sol. St. Elect. 35(7), 961–967 (1992).
    [Crossref]
  20. J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in non-degenerate Si,” Sol. St. Electr. 25(8), 741–747 (1982).
    [Crossref]
  21. A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
    [Crossref]
  22. “Thermal Resistance Theory and Practice,” Special Subject Book, January 2000, Infineon technologies, https://www.infineon.com/dgdl/smdpack.pdf?fileId=db3a304330f6860601311905ea1d4599
  23. G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
    [Crossref]
  24. M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
    [Crossref]

2017 (4)

N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
[Crossref]

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

2016 (1)

2015 (2)

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
[Crossref]

2014 (2)

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

2013 (1)

2012 (1)

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

2011 (1)

A. Pellicer and M. C. Bravo, “Near-infrared spectroscopy: A methodology-focused review,” Semin. Fetal Neonatal Med. 16(1), 42–49 (2011).
[Crossref] [PubMed]

2010 (2)

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
[Crossref] [PubMed]

2009 (1)

M. A. Ward and A. Vacheret, “Impact of after-pulse, pixel crosstalk and recovery time in multi-pixel photon counter response,” Nucl. Instrum. Methods Phys. Res. A 610(1), 370–373 (2009).
[Crossref]

2007 (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

2006 (1)

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

2004 (1)

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

2002 (1)

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

1992 (1)

D. B. M. Klaassen, “A unified mobility model for device simulation - II Temperature dependence of carrier mobility and lifetime,” Sol. St. Elect. 35(7), 961–967 (1992).
[Crossref]

1982 (2)

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in non-degenerate Si,” Sol. St. Electr. 25(8), 741–747 (1982).
[Crossref]

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority carrier lifetime vs. doping in diffused layers of n+/p Si diodes,” IEEE Trans. El. Dev. 29(2), 284–291 (1982).
[Crossref]

Abisso, S.

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Achtnich, T.

Adamo, G.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Agrò, D.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Albrow, M.

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Aranda, V. M.

J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
[Crossref]

Arora, N. D.

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority carrier lifetime vs. doping in diffused layers of n+/p Si diodes,” IEEE Trans. El. Dev. 29(2), 284–291 (1982).
[Crossref]

Arqueros, F.

J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
[Crossref]

Bar, J.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Barbarino, P. P.

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

Blanco, F.

J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
[Crossref]

Bosco, G.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Boulton, R. G.

M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
[Crossref] [PubMed]

Braun, F.

Bravo, M. C.

A. Pellicer and M. C. Bravo, “Near-infrared spectroscopy: A methodology-focused review,” Semin. Fetal Neonatal Med. 16(1), 42–49 (2011).
[Crossref] [PubMed]

Bray, S.

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

Budzyñski, T.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Bunce, S. C.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Busacca, A.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Carbone, B.

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Chamberlain, S. G.

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority carrier lifetime vs. doping in diffused layers of n+/p Si diodes,” IEEE Trans. El. Dev. 29(2), 284–291 (1982).
[Crossref]

Chiarelli, A. M.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

Choi, J. H.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Contini, D.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Cui, X.

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

Curcio, L.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Dalla Mora, A.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Di Sieno, L.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Fallica, G.

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

R. Pagano, S. Libertino, D. Sanfilippo, G. Fallica, and S. Lombardo, “Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers,” Biomed. Opt. Express 7(4), 1183–1192 (2016).
[Crossref] [PubMed]

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

Fossum, J. G.

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in non-degenerate Si,” Sol. St. Electr. 25(8), 741–747 (1982).
[Crossref]

Garcia, D.

N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
[Crossref]

Gassert, R.

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

R. Zimmermann, F. Braun, T. Achtnich, O. Lambercy, R. Gassert, and M. Wolf, “Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments,” Biomed. Opt. Express 4(5), 659–666 (2013).
[Crossref] [PubMed]

Giaconia, G. C.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Grabiec, P.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Gratton, E.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Grodecki, R.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Grynglas, M.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Izzetoglu, K.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Izzetoglu, M.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Klaassen, D. B. M.

D. B. M. Klaassen, “A unified mobility model for device simulation - II Temperature dependence of carrier mobility and lifetime,” Sol. St. Elect. 35(7), 961–967 (1992).
[Crossref]

Krzemiñski, S.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Lambercy, O.

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

R. Zimmermann, F. Braun, T. Achtnich, O. Lambercy, R. Gassert, and M. Wolf, “Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments,” Biomed. Opt. Express 4(5), 659–666 (2013).
[Crossref] [PubMed]

Lee, D. S.

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in non-degenerate Si,” Sol. St. Electr. 25(8), 741–747 (1982).
[Crossref]

Libertino, S.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

R. Pagano, S. Libertino, D. Sanfilippo, G. Fallica, and S. Lombardo, “Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers,” Biomed. Opt. Express 7(4), 1183–1192 (2016).
[Crossref] [PubMed]

Lombardo, S.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

R. Pagano, S. Libertino, D. Sanfilippo, G. Fallica, and S. Lombardo, “Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers,” Biomed. Opt. Express 7(4), 1183–1192 (2016).
[Crossref] [PubMed]

Los, S.

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Mazzillo, M.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

McCulloch, D. L.

M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
[Crossref] [PubMed]

McIntosh, M. A.

M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
[Crossref] [PubMed]

Mello, D.

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

Merla, A.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

Michalos, A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Molnár, J.

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

Musienko, Y.

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

Nagy, F.

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

Nguyen, T.

N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
[Crossref]

Onaral, B.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Otte, N. A.

N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
[Crossref]

Pagano, R.

Parisi, A.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Paunescu, L. A.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Pellicer, A.

A. Pellicer and M. C. Bravo, “Near-infrared spectroscopy: A methodology-focused review,” Semin. Fetal Neonatal Med. 16(1), 42–49 (2011).
[Crossref] [PubMed]

Piana, A.

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Pifferi, A.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Pompeo, F. D.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

Pourrezaei, K.

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

Purushotham, D.

N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
[Crossref]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

Ramberg, E.

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Reiss, A. L.

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

Renna, L.

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

Romeo, M.

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

Ronzhin, A.

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Rosado, J.

J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
[Crossref]

Roulston, D. J.

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority carrier lifetime vs. doping in diffused layers of n+/p Si diodes,” IEEE Trans. El. Dev. 29(2), 284–291 (1982).
[Crossref]

Sanfilippo, D.

R. Pagano, S. Libertino, D. Sanfilippo, G. Fallica, and S. Lombardo, “Improvement of sensitivity in continuous wave near infra-red spectroscopy systems by using silicon photomultipliers,” Biomed. Opt. Express 7(4), 1183–1192 (2016).
[Crossref] [PubMed]

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Scholkmann, F.

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

Sciuto, A.

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

Shahani, U.

M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
[Crossref] [PubMed]

Stivala, S.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Tomasino, A.

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

Toronov, V.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Tosi, A.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Uszyñski, A.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Vacheret, A.

M. A. Ward and A. Vacheret, “Impact of after-pulse, pixel crosstalk and recovery time in multi-pixel photon counter response,” Nucl. Instrum. Methods Phys. Res. A 610(1), 370–373 (2009).
[Crossref]

Valvo, G.

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Villa, F.

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

Ward, M. A.

M. A. Ward and A. Vacheret, “Impact of after-pulse, pixel crosstalk and recovery time in multi-pixel photon counter response,” Nucl. Instrum. Methods Phys. Res. A 610(1), 370–373 (2009).
[Crossref]

Wêgrzecka, I.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Wêgrzecki, M.

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Wolf, M.

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

R. Zimmermann, F. Braun, T. Achtnich, O. Lambercy, R. Gassert, and M. Wolf, “Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments,” Biomed. Opt. Express 4(5), 659–666 (2013).
[Crossref] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Wolf, U.

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

Wyser, D.

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

Zappasodi, F.

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

Zimmermann, R.

Biomed. Opt. Express (2)

IEEE Eng. Med. Biol. Mag. (1)

S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy: An emerging neuroimaging modality,” IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Adamo, A. Parisi, S. Stivala, A. Tomasino, D. Agrò, L. Curcio, G. C. Giaconia, A. Busacca, and G. Fallica, “Silicon Photomultipliers Signal-to-Noise Ratio in the Continuous Wave Regime,” IEEE J. Sel. Top. Quantum Electron. 20(6), 284 (2014).
[Crossref]

IEEE Trans Radiat Plasma Med Sci. (1)

M. Mazzillo, D. Mello, P. P. Barbarino, M. Romeo, Y. Musienko, A. Sciuto, S. Libertino, S. Lombardo, and G. Fallica, “Noise Reduction in Silicon Photomultipliers for Use in Functional Near-Infrared Spectroscopy,” IEEE Trans Radiat Plasma Med Sci. 1(3), 212–220 (2017).
[Crossref]

IEEE Trans. El. Dev. (2)

D. J. Roulston, N. D. Arora, and S. G. Chamberlain, “Modeling and measurement of minority carrier lifetime vs. doping in diffused layers of n+/p Si diodes,” IEEE Trans. El. Dev. 29(2), 284–291 (1982).
[Crossref]

M. Mazzillo, A. Ronzhin, S. Los, S. Abisso, D. Sanfilippo, G. Valvo, B. Carbone, A. Piana, G. Fallica, M. Albrow, and E. Ramberg, “Electro-optical performances of p on n and n on p Silicon Photomultipliers,” IEEE Trans. El. Dev. 59(12), 3419–3425 (2012).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

M. A. McIntosh, U. Shahani, R. G. Boulton, and D. L. McCulloch, “Absolute quantification of oxygenated hemoglobin within the visual cortex with functional near infrared spectroscopy (fNIRS),” Invest. Ophthalmol. Vis. Sci. 51(9), 4856–4860 (2010).
[Crossref] [PubMed]

J. Appl. Phys. (1)

A. Dalla Mora, A. Tosi, D. Contini, L. Di Sieno, G. Bosco, F. Villa, and A. Pifferi, “Memory effect in silicon time-gated single-photon avalanche diodes,” J. Appl. Phys. 117(11), 114501 (2015).
[Crossref]

J. Biomed. Opt. (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref] [PubMed]

Neuroimage (2)

M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, “Different Time Evolution of Oxyhemoglobin and Deoxyhemoglobin Concentration Changes in the Visual and Motor Cortices during Functional Stimulation: A Near-Infrared Spectroscopy Study,” Neuroimage 16(3), 704–712 (2002).
[Crossref] [PubMed]

X. Cui, S. Bray, and A. L. Reiss, “Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics,” Neuroimage 49(4), 3039–3046 (2010).
[Crossref] [PubMed]

Neurophotonics (2)

D. Wyser, O. Lambercy, F. Scholkmann, M. Wolf, and R. Gassert, “Wearable and modular functional near-infrared spectroscopy instrument with multidistance measurements at four wavelengths,” Neurophotonics 4(4), 041413 (2017).
[Crossref] [PubMed]

A. M. Chiarelli, S. Libertino, F. Zappasodi, M. Mazzillo, F. D. Pompeo, A. Merla, S. Lombardo, and G. Fallica, “Characterization of a fiber-less, multichannel optical probe for continuous wave functional near-infrared spectroscopy based on silicon photomultipliers detectors: in-vivo assessment of primary sensorimotor response,” Neurophotonics 4(3), 035002 (2017).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. A (4)

F. Nagy, M. Mazzillo, L. Renna, G. Valvo, D. Sanfilippo, B. Carbone, A. Piana, G. Fallica, and J. Molnár, “Afterpulse and delayed crosstalk analysis on a STMicroelectronics silicon photomultiplier,” Nucl. Instrum. Methods Phys. Res. A 759, 44–49 (2014).
[Crossref]

J. Rosado, V. M. Aranda, F. Blanco, and F. Arqueros, “Modeling crosstalk and afterpulsing in silicon photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 787, 153–156 (2015).
[Crossref]

M. A. Ward and A. Vacheret, “Impact of after-pulse, pixel crosstalk and recovery time in multi-pixel photon counter response,” Nucl. Instrum. Methods Phys. Res. A 610(1), 370–373 (2009).
[Crossref]

N. A. Otte, D. Garcia, T. Nguyen, and D. Purushotham, “Characterization of Three High Efficiency and Blue Sensitive Silicon Photomultipliers,” Nucl. Instrum. Methods Phys. Res. A 846, 106–125 (2017).
[Crossref]

Opto-Electron. Rev. (1)

I. Wêgrzecka, M. Wêgrzecki, M. Grynglas, J. Bar, A. Uszyñski, R. Grodecki, P. Grabiec, S. Krzemiñski, and T. Budzyñski, “Design and Properties of silicon avalanche photodiodes,” Opto-Electron. Rev. 12(1), 95–104 (2004).

Semin. Fetal Neonatal Med. (1)

A. Pellicer and M. C. Bravo, “Near-infrared spectroscopy: A methodology-focused review,” Semin. Fetal Neonatal Med. 16(1), 42–49 (2011).
[Crossref] [PubMed]

Sol. St. Elect. (1)

D. B. M. Klaassen, “A unified mobility model for device simulation - II Temperature dependence of carrier mobility and lifetime,” Sol. St. Elect. 35(7), 961–967 (1992).
[Crossref]

Sol. St. Electr. (1)

J. G. Fossum and D. S. Lee, “A physical model for the dependence of carrier lifetime on doping density in non-degenerate Si,” Sol. St. Electr. 25(8), 741–747 (1982).
[Crossref]

Other (2)

“Thermal Resistance Theory and Practice,” Special Subject Book, January 2000, Infineon technologies, https://www.infineon.com/dgdl/smdpack.pdf?fileId=db3a304330f6860601311905ea1d4599

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2003)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Scheme of the experimental set-up used to measure SiPM after-pulsing, SiPM temperature transients and signal-to-noise ratio. The distance D was about 10 cm for the first two measurements and about 80 cm for the SNR.
Fig. 2
Fig. 2 SiPM transient after 529 nm and 735 nm wavelength LED switch-off, averaged on 500 traces, 100 MHz sampling frequency
Fig. 3
Fig. 3 SiPM transient after 700 nm (a) and 529 nm (b) LED switch off, averaged on 1000 traces, 5 GHz sampling frequency.
Fig. 4
Fig. 4 (a) averaged SiPM response after 700 nm LED switch off (500 traces, 100 MHz sampling rate); (b) averaged SiPM response after 529 nm LED switch off (500 traces, 100 MHz sampling rate); (c) Normalized SiPM switch off transient (after 700 nm LED switch off) at various temperatures. The figure legends indicate the SiPM device temperatures measured in forward bias, see experimental section for further explanation.
Fig. 5
Fig. 5 SiPM Dark Current temperature dependence (V bias = 32.5 V).
Fig. 6
Fig. 6 (a) SiPM dissipated power as the 700 nm LED is switched on at various levels of LED illumination. When the LED is switched on, the SiPM current and dissipated power rise to a level (L1), and then slowly increase to a steady state L2; (b) reports the temperature rise ΔT as function of steady state SiPM power dissipation (SiPM biased at 30.5 V). ΔT can be estimated from the difference L2-L1, since ΔT is expected to be an increasing function of L2-L1. Figure 6(b) reports the difference L2-L1 as a function of the steady-state dissipated power L2. By considering the temperature dependence of the SiPM dark current reported in Fig. 5, and by assuming the same temperature dependence for the SiPM current under illumination, we can also evaluate the corresponding temperature change in °C, and this is reported on the right axis.
Fig. 7
Fig. 7 Signal to Noise Ratio as a function of bias voltages of the SiPM. Photocurrent measured under LED illumination with a square wave of 17 Hz and 50% duty cycle; (a) 700 nm LED; (b) 830 nm LED. (c) SNR at 31.5 V bias voltage measured (dots) and extrapolated (lines, linear fit) as function of the effective sampling frequency.