Abstract

This paper reports the application of wavelength modulated differential photothermal radiometry (WM-DPTR) to blood alcohol (ethanol) concentration (BAC) measurements in the mid-infrared range to prevent impaired driving. In-vivo alcohol consumption measurements performed in the BAC range of interest (0-80 mg/dl) with an optimal wavelength pair demonstrated the alcohol detection capability of WM-DPTR with high resolution (~5 mg/dl) and a low detection limit (~10 mg/dl). Oral glucose tolerance tests using both glucose and alcohol sensitive wavelength pairs in the normal-to-hyperglycemia range (~80–320 mg/dl) proved the blood glucose screening ability and ethanol detection specificity of WM-DPTR. The immunity of WM-DPTR to temperature and glucose variation makes the differential signals alcohol sensitive and specific, yielding precise and accurate noninvasive alcohol measurements in the interstitial fluid.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry

Xinxin Guo, Andreas Mandelis, Yijun Liu, Bo Chen, Qun Zhou, and Felix Comeau
Biomed. Opt. Express 5(7) 2333-2340 (2014)

Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry

Xinxin Guo, Andreas Mandelis, and Bernard Zinman
Biomed. Opt. Express 3(11) 3012-3021 (2012)

Glucose sensing in oral mucosa simulating phantom using differential absorption based frequency domain low-coherence interferometry

Pauline John, Nilesh J. Vasa, Sujatha Narayanan Unni, and Suresh R. Rao
Appl. Opt. 56(29) 8257-8265 (2017)

References

  • View by:
  • |
  • |
  • |

  1. 2016 Alcohol-Impaired Driving Traffic Safety Fact Sheet, National Highway Traffic Safety Administration, (2017).
  2. MADD Annual Report 2016–17, MADD Canada (2017).
  3. S. A. Ferguson, E. Traube, A. Zaouk, and R. Strassburger, “Driver alcohol detection system for safety (DADSS) – a non-regulatory approach in the development and deployment of vehicle safety technology to reduce alcohol-impaired driving,” in Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (Stuttgart, Germany, 2009), pp. 09–0464.
  4. U. S. Department of Transportation National Highway Traffic Safety Administration, J. Pollard, E. Nadler, and M. Stearns, Review of technology to prevent alcohol-impaired crashes (TOPIC), (Createspace Independent Pub., 2007)
  5. M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
    [Crossref]
  6. J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
    [Crossref]
  7. A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
    [Crossref] [PubMed]
  8. A. S. Campbell, J. Kim, and J. Wang, “Wearable electrochemical alcohol biosensors,” Curr. Opin. Electrochem. 10, 126–135 (2018).
  9. A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
    [Crossref] [PubMed]
  10. A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E 84(4), 041917 (2011).
    [Crossref] [PubMed]
  11. X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, and F. Comeau, “Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry,” Biomed. Opt. Express 5(7), 2333–2340 (2014).
    [Crossref] [PubMed]
  12. Y. J. Liu, A. Mandelis, and X. Guo, “An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry,” Rev. Sci. Instrum. 86(11), 115003 (2015).
    [Crossref] [PubMed]
  13. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
    [Crossref] [PubMed]
  14. W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
    [Crossref] [PubMed]
  15. BAC calculator, http://educalcool.qc.ca/en/facts-tips-and-tools/tools/blood-alcohol-calculator/#.WZ3OeCiGNaS .
  16. S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
    [Crossref] [PubMed]
  17. C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
    [Crossref]
  18. Glucose tolerance test, https://en.wikipedia.org/wiki/Glucose_tolerance_test .

2018 (2)

A. S. Campbell, J. Kim, and J. Wang, “Wearable electrochemical alcohol biosensors,” Curr. Opin. Electrochem. 10, 126–135 (2018).

A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
[Crossref] [PubMed]

2016 (2)

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
[Crossref] [PubMed]

2015 (1)

Y. J. Liu, A. Mandelis, and X. Guo, “An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry,” Rev. Sci. Instrum. 86(11), 115003 (2015).
[Crossref] [PubMed]

2014 (2)

X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, and F. Comeau, “Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry,” Biomed. Opt. Express 5(7), 2333–2340 (2014).
[Crossref] [PubMed]

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

2011 (1)

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E 84(4), 041917 (2011).
[Crossref] [PubMed]

2010 (1)

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

2008 (2)

C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
[Crossref]

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

2003 (1)

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Bambot, S.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Bandodkar, A.

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Bhide, A.

A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
[Crossref] [PubMed]

Campbell, A. S.

A. S. Campbell, J. Kim, and J. Wang, “Wearable electrochemical alcohol biosensors,” Curr. Opin. Electrochem. 10, 126–135 (2018).

Chen, B.

Cho, T. N.

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Cinti, S.

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Comeau, F.

Davis, J.

C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
[Crossref]

Dunn, M.

C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
[Crossref]

Faupel, M.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Ferguson, S. A.

S. A. Ferguson, E. Traube, A. Zaouk, and R. Strassburger, “Driver alcohol detection system for safety (DADSS) – a non-regulatory approach in the development and deployment of vehicle safety technology to reduce alcohol-impaired driving,” in Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (Stuttgart, Germany, 2009), pp. 09–0464.

Feuvrel, K. E.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Groenendaal, W.

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

Guo, X.

Y. J. Liu, A. Mandelis, and X. Guo, “An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry,” Rev. Sci. Instrum. 86(11), 115003 (2015).
[Crossref] [PubMed]

X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, and F. Comeau, “Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry,” Biomed. Opt. Express 5(7), 2333–2340 (2014).
[Crossref] [PubMed]

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E 84(4), 041917 (2011).
[Crossref] [PubMed]

Hatfield, K.

C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
[Crossref]

Hilbers, P. A. J.

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

Imani, S.

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Jeerapan, I.

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Kamakoti, V.

A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
[Crossref] [PubMed]

Karstoft, K.

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

Kim, J.

A. S. Campbell, J. Kim, and J. Wang, “Wearable electrochemical alcohol biosensors,” Curr. Opin. Electrochem. 10, 126–135 (2018).

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Knudsen, S. H.

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. J.

Y. J. Liu, A. Mandelis, and X. Guo, “An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry,” Rev. Sci. Instrum. 86(11), 115003 (2015).
[Crossref] [PubMed]

Mandelis, A.

Y. J. Liu, A. Mandelis, and X. Guo, “An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry,” Rev. Sci. Instrum. 86(11), 115003 (2015).
[Crossref] [PubMed]

X. Guo, A. Mandelis, Y. Liu, B. Chen, Q. Zhou, and F. Comeau, “Noninvasive in-vehicle alcohol detection with wavelength-modulated differential photothermal radiometry,” Biomed. Opt. Express 5(7), 2333–2340 (2014).
[Crossref] [PubMed]

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E 84(4), 041917 (2011).
[Crossref] [PubMed]

Mercier, P. P.

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Mongin, D.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Muthukumar, S.

A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
[Crossref] [PubMed]

A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
[Crossref] [PubMed]

Panangadan, A.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Pedersen, B. K.

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

Pidva, R.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Poulsen, T.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Prasad, S.

A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
[Crossref] [PubMed]

A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
[Crossref] [PubMed]

Saini, A.

A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
[Crossref] [PubMed]

Sandby-Møller, J.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Schmidt, K. A.

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

Selvam, A. P.

A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
[Crossref] [PubMed]

Solomon, T. P. J.

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

Strassburger, R.

S. A. Ferguson, E. Traube, A. Zaouk, and R. Strassburger, “Driver alcohol detection system for safety (DADSS) – a non-regulatory approach in the development and deployment of vehicle safety technology to reduce alcohol-impaired driving,” in Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (Stuttgart, Germany, 2009), pp. 09–0464.

Talukder, A.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Titchenal, C. A.

C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
[Crossref]

Traube, E.

S. A. Ferguson, E. Traube, A. Zaouk, and R. Strassburger, “Driver alcohol detection system for safety (DADSS) – a non-regulatory approach in the development and deployment of vehicle safety technology to reduce alcohol-impaired driving,” in Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (Stuttgart, Germany, 2009), pp. 09–0464.

van Hall, G.

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

van Riel, N. A. W.

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

Venugopal, M.

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

von Basum, G.

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

Wang, J.

A. S. Campbell, J. Kim, and J. Wang, “Wearable electrochemical alcohol biosensors,” Curr. Opin. Electrochem. 10, 126–135 (2018).

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Wulf, H. C.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Zaouk, A.

S. A. Ferguson, E. Traube, A. Zaouk, and R. Strassburger, “Driver alcohol detection system for safety (DADSS) – a non-regulatory approach in the development and deployment of vehicle safety technology to reduce alcohol-impaired driving,” in Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (Stuttgart, Germany, 2009), pp. 09–0464.

Zhou, Q.

ACS Sens. (1)

J. Kim, I. Jeerapan, S. Imani, T. N. Cho, A. Bandodkar, S. Cinti, P. P. Mercier, and J. Wang, “Noninvasive alcohol monitoring using a wearable tattoo-based iontophoretic-biosensing system,” ACS Sens. 1(8), 1011–1019 (2016).
[Crossref]

Acta Derm. Venereol. (1)

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits,” Acta Derm. Venereol. 83(6), 410–413 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Curr. Opin. Electrochem. (1)

A. S. Campbell, J. Kim, and J. Wang, “Wearable electrochemical alcohol biosensors,” Curr. Opin. Electrochem. 10, 126–135 (2018).

IEEE Sens. J. (1)

M. Venugopal, K. E. Feuvrel, D. Mongin, S. Bambot, M. Faupel, A. Panangadan, A. Talukder, and R. Pidva, “Clinical evaluation of a novel interstitial fluid sensor system for remote continuous alcohol monitoring,” IEEE Sens. J. 8(1), 71–80 (2008).
[Crossref]

Int. J. Sport Nutr. (1)

C. A. Titchenal, K. Hatfield, M. Dunn, and J. Davis, “Does prior exercise affect oral glucose tolerance test results?” Int. J. Sport Nutr. 5(Suppl 1), 14 (2008).
[Crossref]

J. Diabetes Sci. Technol. (1)

W. Groenendaal, G. von Basum, K. A. Schmidt, P. A. J. Hilbers, and N. A. W. van Riel, “Quantifying the composition of human skin for glucose sensor development,” J. Diabetes Sci. Technol. 4(5), 1032–1040 (2010).
[Crossref] [PubMed]

Phys. Rev. E (1)

A. Mandelis and X. Guo, “Wavelength-modulated differential photothermal radiometry: theory and experimental applications to glucose detection in water,” Phys. Rev. E 84(4), 041917 (2011).
[Crossref] [PubMed]

Physiol. Rep. (1)

S. H. Knudsen, K. Karstoft, B. K. Pedersen, G. van Hall, and T. P. J. Solomon, “The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum,” Physiol. Rep. 2(8), e12114 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

Y. J. Liu, A. Mandelis, and X. Guo, “An absolute calibration method of an ethyl alcohol biosensor based on wavelength-modulated differential photothermal radiometry,” Rev. Sci. Instrum. 86(11), 115003 (2015).
[Crossref] [PubMed]

Sci. Rep. (2)

A. Bhide, S. Muthukumar, A. Saini, and S. Prasad, “Simultaneous lancet-free monitoring of alcohol and glucose from low-volumes of perspired human sweat,” Sci. Rep. 8(1), 6507 (2018).
[Crossref] [PubMed]

A. P. Selvam, S. Muthukumar, V. Kamakoti, and S. Prasad, “A wearable biochemical sensor for monitoring alcohol consumption lifestyle through Ethyl glucuronide (EtG) detection in human sweat,” Sci. Rep. 6(1), 23111 (2016).
[Crossref] [PubMed]

Other (6)

2016 Alcohol-Impaired Driving Traffic Safety Fact Sheet, National Highway Traffic Safety Administration, (2017).

MADD Annual Report 2016–17, MADD Canada (2017).

S. A. Ferguson, E. Traube, A. Zaouk, and R. Strassburger, “Driver alcohol detection system for safety (DADSS) – a non-regulatory approach in the development and deployment of vehicle safety technology to reduce alcohol-impaired driving,” in Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles (Stuttgart, Germany, 2009), pp. 09–0464.

U. S. Department of Transportation National Highway Traffic Safety Administration, J. Pollard, E. Nadler, and M. Stearns, Review of technology to prevent alcohol-impaired crashes (TOPIC), (Createspace Independent Pub., 2007)

BAC calculator, http://educalcool.qc.ca/en/facts-tips-and-tools/tools/blood-alcohol-calculator/#.WZ3OeCiGNaS .

Glucose tolerance test, https://en.wikipedia.org/wiki/Glucose_tolerance_test .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Ethanol absorption band (a) and glucose confounding bands (b) in MIR range.
Fig. 2
Fig. 2 Baseline wavelength λB and system parameter R and ΔP effect on glucose induced system error in blood alcohol concentration measurements (simulations). (a) ΔP = 180°; (b) ΔP = 179.9°.
Fig. 3
Fig. 3 Baseline wavelength λB effect on phase change induced by ethanol and glucose. (a) λB = 9.77 µm; (b) λB = 8.5 µm.
Fig. 4
Fig. 4 WM-DPTR system. (a) schematic diagram of system setup: The modulated laser beam is steered to sample surface; the generated IR emission is collected by a MCZT detector through a pair of parabolic mirrors and then sent to lock-in amplifier for demodulation; the amplitude and phase of the PTR signal are sent to a computer for further processing; (b) finger holder used for in-vivo measurements: a flat region of the finger back is exposed to the laser beam through a measurement window.
Fig. 5
Fig. 5 Principle of pulsed laser Quasi-CW modulation. (a) in-phase modulation; (b)180° out-of-phase modulation; (c) wavelength modulation.
Fig. 6
Fig. 6 Osciloscope images of 10 Hz wavelength modulation. (a) modulated optical signal with 20-ms settling time between two wavelengths λA andλB; (b) modulated thermal waves from a metal sample.
Fig. 7
Fig. 7 Ethanol and glucose PTR (symbols + line) and absorption (line) spectra comparison in MIR range. (a) ethanol; (b) glucose.
Fig. 8
Fig. 8 Comparison between differential signal (solid squares + solid lines) and breath alcohol concentration BrAC (open circles + dashed lines) during alcohol consumption measurements. (a) amplitude AAB of Sub.1; (b) phase PAB of Sub.2. The differential signals were measured with the alcohol sensitive wavelength pair.
Fig. 9
Fig. 9 Comparison between differential signal of Sub.3 (solid squares + solid lines) and breath alcohol concentration BrAC (open circles + dashed lines) during alcohol consumption measurements (five doses consumed). (a) amplitude AAB; (b) phase PAB. The differential signals were measured with the alcohol sensitive wavelength pair.
Fig. 10
Fig. 10 Comparison between single-wavelength signal (solid squares + solid lines) of Sub. 1 at peak wavelength λA = 9.56 µm and finger temperature (open circles + dashed lines) during alcohol consumption measurements. (a) single-wavelength amplitude AA; (b) single phase PA.
Fig. 11
Fig. 11 Comparison between differential phase PAB (solid squares + solid lines) measured with the alcohol sensitive wavelength pair and blood glucose concentration BGC (open circles + dashed lines) during oral glucose tolerance test (OGTT) measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S AB ={ S A ( t );                                                                            0t τ p S A  ( t ) S A ( t τ 0 2 )+ S B ( t τ 0 2 );                                     τ 0 2 t τ 0