Abstract

Cerebral near-infrared spectroscopy (NIRS) oximetry may help clinicians to improve patient treatment. However, the application of NIRS oximeters is increasingly causing confusion to the users due to the inconsistency of tissue oxygen haemoglobin saturation (StO2) readings provided by different oximeters. To establish a comparability of oximeters, in our study we performed simultaneous measurements on the liquid phantom mimicking properties of neonatal heads and compared the tested device to a reference NIRS oximeter (OxiplexTS). We evaluated the NIRS oximeters FORE-SIGHT, NIRO and SenSmart, and reproduced previous results with the INVOS and OxyPrem v1.3 oximeters. In general, linear relationships of the StO2 values with respect to the reference were obtained. Device specific hypoxic and hyperoxic thresholds (as used in the SafeBoosC study, www.safeboosc.eu) and a table allowing for conversion of StO2 values are provided.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of tissue oximeters on a liquid phantom with adjustable optical properties

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf
Biomed. Opt. Express 7(8) 2973-2992 (2016)

Calibration of a prototype NIRS oximeter against two commercial devices on a blood-lipid phantom

Simon Hyttel-Sorensen, Stefan Kleiser, Martin Wolf, and Gorm Greisen
Biomed. Opt. Express 4(9) 1662-1672 (2013)

A comparison between two NIRS oximeters (INVOS, OxyPrem) using measurement on the arm of adults and head of infants after caesarean section

Simon Hyttel-Sorensen, Trine Witzner Hessel, Amalia la Cour, and Gorm Greisen
Biomed. Opt. Express 5(10) 3671-3683 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).
  2. P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117, 813–823 (2013).
    [Crossref] [PubMed]
  3. S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28, 149–155 (2014).
    [Crossref]
  4. T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of invos and fore-sight near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
    [Crossref] [PubMed]
  5. L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
    [Crossref] [PubMed]
  6. S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four nirs-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
    [Crossref] [PubMed]
  7. A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
    [Crossref] [PubMed]
  8. K. L. Tomlin, A.-M. Neitenbach, and U. Borg, “Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers,” BMC Anesthesiol. 17, 6 (2017).
    [Crossref] [PubMed]
  9. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
    [Crossref] [PubMed]
  10. L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
    [Crossref] [PubMed]
  11. L. M. L. Dix, F. van Bel, and P. M. A. Lemmers, “Monitoring cerebral oxygenation in neonates: An update,” Front. Pediatr.5 (2017).
    [Crossref]
  12. W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
    [Crossref] [PubMed]
  13. B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
    [Crossref] [PubMed]
  14. H. D. Clay, “Validity and reliability of the SjO2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
    [Crossref] [PubMed]
  15. H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
    [Crossref] [PubMed]
  16. N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
    [PubMed]
  17. P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
    [Crossref]
  18. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
    [Crossref] [PubMed]
  19. M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
    [Crossref]
  20. P. B. Benni, D. MacLeod, K. Ikeda, and H.-M. Lin, “A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements,” J. Clin. Monit. Comput. (2017).
    [Crossref] [PubMed]
  21. H. Sorensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for nirs-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2013).
  22. P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
    [Crossref]
  23. S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116, 834–840 (2012).
    [Crossref] [PubMed]
  24. H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
    [Crossref]
  25. M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte carlo simulations from neonate to adult,” Biomed. Opt. Express 2, 552–567 (2011).
    [Crossref] [PubMed]
  26. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
    [Crossref]
  27. M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
    [Crossref]
  28. L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3d-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8, 1754–1762 (2017).
    [Crossref] [PubMed]
  29. P. Diep, S. Pannem, J. Sweer, J. Lo, M. S. G. Stueber, Y. Zhao, S. Tabassum, R. Istfan, J. Wu, S. Erramilli, and D. Roblyer, “Three-dimensional printed optical phantoms with customized absorption and scattering properties,” Biomed. Opt. Express 6, 4212–4220 (2015).
    [Crossref] [PubMed]
  30. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).
  31. J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
    [Crossref] [PubMed]
  32. E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
    [Crossref] [PubMed]
  33. A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
    [Crossref]
  34. C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
    [Crossref] [PubMed]
  35. X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).
  36. E. N. Marieb and K. N. Hoehn, Human Anatomy and Physiology, (Pearson,2000).
  37. H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
    [Crossref] [PubMed]
  38. S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
    [Crossref] [PubMed]
  39. M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
    [Crossref] [PubMed]
  40. S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two nirs oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
    [Crossref] [PubMed]
  41. S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
    [Crossref] [PubMed]
  42. N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7, 4605–4619 (2016).
    [Crossref] [PubMed]
  43. D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).
  44. Nonin, “Model 8004CA, Instructions for use - english,” Tech. Rep. 9539-001-03, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441-5443, USA (2016).
  45. Nonin, “Model 8004CB-NA, Instructions for use - english,” Tech. Rep. 9223-001-03, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441-5443, USA (2016).
  46. R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
    [Crossref] [PubMed]
  47. C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).
  48. D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).
  49. S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
    [Crossref] [PubMed]
  50. J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
    [Crossref] [PubMed]
  51. K. Linnet, “Evaluation of regression procedures for methods comparison studies,” Clin. Chem. 39, 424–432 (1993).
    [PubMed]
  52. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
    [PubMed]
  53. Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
    [Crossref] [PubMed]
  54. I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
    [Crossref] [PubMed]

2017 (4)

K. L. Tomlin, A.-M. Neitenbach, and U. Borg, “Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers,” BMC Anesthesiol. 17, 6 (2017).
[Crossref] [PubMed]

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3d-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8, 1754–1762 (2017).
[Crossref] [PubMed]

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

2016 (3)

2015 (3)

P. Diep, S. Pannem, J. Sweer, J. Lo, M. S. G. Stueber, Y. Zhao, S. Tabassum, R. Istfan, J. Wu, S. Erramilli, and D. Roblyer, “Three-dimensional printed optical phantoms with customized absorption and scattering properties,” Biomed. Opt. Express 6, 4212–4220 (2015).
[Crossref] [PubMed]

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

2014 (4)

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28, 149–155 (2014).
[Crossref]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of invos and fore-sight near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two nirs oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

2013 (5)

H. Sorensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for nirs-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2013).

D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).

C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117, 813–823 (2013).
[Crossref] [PubMed]

2012 (3)

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116, 834–840 (2012).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

2011 (3)

2007 (1)

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

2006 (1)

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

2005 (2)

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref]

2003 (1)

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

2001 (1)

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

2000 (2)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

H. D. Clay, “Validity and reliability of the SjO2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
[Crossref] [PubMed]

1999 (3)

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).

1998 (2)

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

1997 (3)

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

1995 (2)

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

1993 (3)

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

K. Linnet, “Evaluation of regression procedures for methods comparison studies,” Clin. Chem. 39, 424–432 (1993).
[PubMed]

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

1991 (1)

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

1990 (1)

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

1973 (1)

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Alderliesten, T.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Ames, W. A.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Andresen, B.

Arri, S. J.

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Austin, T.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Baenziger, O.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

Baerts, W.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Barbieri, B.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).

Barbieri, B. B.

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Batchelder, P.

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

Benders, M.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Benkwitz, C.

C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).

Benni, P. B.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

P. B. Benni, D. MacLeod, K. Ikeda, and H.-M. Lin, “A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements,” J. Clin. Monit. Comput. (2017).
[Crossref] [PubMed]

Biallas, M.

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Bickler, P. E.

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117, 813–823 (2013).
[Crossref] [PubMed]

Boas, D. A.

Borch, K.

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

Borg, U.

K. L. Tomlin, A.-M. Neitenbach, and U. Borg, “Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers,” BMC Anesthesiol. 17, 6 (2017).
[Crossref] [PubMed]

Bozkurt, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref]

Brun, N. C.

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

Bucher, H. U.

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Buursma, A.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Cerussi, A. E.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Chance, B.

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Chen, B.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Cheng, C.

D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).

Chitnis, D.

Claris, O.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Clay, H. D.

H. D. Clay, “Validity and reliability of the SjO2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
[Crossref] [PubMed]

Colier, W.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Coplin, W. M.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Davie, S. N.

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116, 834–840 (2012).
[Crossref] [PubMed]

Dehaes, M.

Delpy, D. T.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

Dempsey, E.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Dempsey, L. A.

Diep, P.

Dix, L. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Dix, L. M. L.

L. M. L. Dix, F. van Bel, and P. M. A. Lemmers, “Monitoring cerebral oxygenation in neonates: An update,” Front. Pediatr.5 (2017).
[Crossref]

Dobbing, J.

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Dong, E.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Doyle, T. P.

C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).

Dullenkopf, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

Dykes, F. D.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Ebeling, B.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Erramilli, S.

Fantini, S.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Feiner, J. R.

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117, 813–823 (2013).
[Crossref] [PubMed]

Firbank, M.

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

Foster, T. H.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Franceschini, M. A.

Franz, A. R.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Frenkel, C.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Frey, B.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

Fumagalli, M.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Gerber, A.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

Glatz, A. C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Gluud, C.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Grady, M. S.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Grant, G. A.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Grant, P. E.

Gratton, E.

M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, “Influence of a superficial layer in the quantitative spectroscopic study of strongly scattering media,” Appl. Opt. 37, 7447–7458 (1998).
[Crossref]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

Greisen, G.

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28, 149–155 (2014).
[Crossref]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of invos and fore-sight near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two nirs oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four nirs-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

Grevstad, B.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Grocott, H. P.

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116, 834–840 (2012).
[Crossref] [PubMed]

Hagmann, C.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Hamilton, M. C.

C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).

Hatazawa, J.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Hattinger-Jürgenssen, E.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Heard, M.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Hebden, J. C.

Hessel, T. W.

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28, 149–155 (2014).
[Crossref]

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of invos and fore-sight near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two nirs oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

Hielscher, A.

H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Hill, K. D.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Hirsch, R.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Hoehn, K. N.

E. N. Marieb and K. N. Hoehn, Human Anatomy and Physiology, (Pearson,2000).

Hoffman, J.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Hofstätter, E.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Houston, R.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Hueber, D. M.

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).

Hull, E. L.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Hvidtfeldt, M.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Hyttel-Sorensen, S.

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of invos and fore-sight near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28, 149–155 (2014).
[Crossref]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two nirs oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four nirs-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

Iida, H.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Ikeda, K.

D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).

P. B. Benni, D. MacLeod, K. Ikeda, and H.-M. Lin, “A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements,” J. Clin. Monit. Comput. (2017).
[Crossref] [PubMed]

Istfan, R.

Ito, H.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Jacques, S.

H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Janssen, D. R.

C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).

Kanno, I.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Karen, T.

Kim, J. G.

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

Kleiser, S.

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7, 4605–4619 (2016).
[Crossref] [PubMed]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).

Kohl-Bareis, M.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Koo, Y. H.

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

Kreeger, R. N.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Kurth, C. D.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

la Cour, A.

Lam, A. M.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Lemmers, P.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Lemmers, P. M.

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Lemmers, P. M. A.

L. M. L. Dix, F. van Bel, and P. M. A. Lemmers, “Monitoring cerebral oxygenation in neonates: An update,” Front. Pediatr.5 (2017).
[Crossref]

Lin, H.-M.

P. B. Benni, D. MacLeod, K. Ikeda, and H.-M. Lin, “A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements,” J. Clin. Monit. Comput. (2017).
[Crossref] [PubMed]

Linnet, K.

K. Linnet, “Evaluation of regression procedures for methods comparison studies,” Clin. Chem. 39, 424–432 (1993).
[PubMed]

Lipnick, M. S.

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

Liu, G.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Liu, H.

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Lo, J.

Lundby, C.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Lv, X.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

MacLeod, D.

D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).

P. B. Benni, D. MacLeod, K. Ikeda, and H.-M. Lin, “A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements,” J. Clin. Monit. Comput. (2017).
[Crossref] [PubMed]

MacLeod, D. B.

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

Maier, J. S.

March, K. S.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Marieb, E. N.

E. N. Marieb and K. N. Hoehn, Human Anatomy and Physiology, (Pearson,2000).

Mashimo, T.

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

Meeuwsen-van der Roest, W. P.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Meyer, B.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Minnich, B.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Moen, A.

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

Montenegro, L. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

Muehlemann, T.

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Nasseri, N.

Naulaers, G.

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

Neitenbach, A.-M.

K. L. Tomlin, A.-M. Neitenbach, and U. Borg, “Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers,” BMC Anesthesiol. 17, 6 (2017).
[Crossref] [PubMed]

Nichols, M. G.

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

Nicolson, S. C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

O’Keefe, G. E.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Oeseburg, B.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Ogoh, S.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Okudera, T.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Onaral, B.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref]

Ostojic, D.

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).

Palmer, K. S.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Pannem, S.

Paunescu, L. A.

Pellicer, A.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Peng, L. F.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Persad, M.

Pichler, G.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Pienaar, R.

Plomgaard, A. M.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Powell, S.

Rais-Bahrami, K.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Ramamoorthy, C.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Rasmussen, P.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

H. Sorensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for nirs-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2013).

Riera, J.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four nirs-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

Rivera, O.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Roblyer, D.

Roche-Labarbe, N.

Rolfe, P.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Rollins, M. D.

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117, 813–823 (2013).
[Crossref] [PubMed]

Rome, J.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

Rosen, A.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref]

Rosen, H.

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref]

Sanchez, L.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Sands, J.

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Sato, K.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Saugstad, O. D.

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

Schaller, C.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Schneider, A.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Schramm, J.

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Secher, N. H.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

H. Sorensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for nirs-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2013).

Selb, J.

Severinghaus, J. W.

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

Shaw, C.

D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).

Shen, S. W.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Shimosegawa, E.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Short, B. L.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Siebenmann, C.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Sliva, D. D.

Sorensen, H.

H. Sorensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for nirs-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2013).

Sorensen, L. C.

Sørensen, H.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Spencer, S. A.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Steven, J. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

Stueber, M. S. G.

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).

Sweer, J.

Tabassum, S.

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).

Tamura, H.

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Tanner, A. J.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Tashiro, C.

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

Thayer, W. S.

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

Thorniley, M. S.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Tomasson, J.

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Tomlin, K. L.

K. L. Tomlin, A.-M. Neitenbach, and U. Borg, “Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers,” BMC Anesthesiol. 17, 6 (2017).
[Crossref] [PubMed]

Uchida, I.

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

van Bel, F.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

L. M. L. Dix, F. van Bel, and P. M. A. Lemmers, “Monitoring cerebral oxygenation in neonates: An update,” Front. Pediatr.5 (2017).
[Crossref]

van Oeveren, W.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Wagoner, S. F.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Wald, M.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Wang, H.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Watzman, H. M.

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

Weiss, M.

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

Weisser, C.

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Wickramasinghe, Y. A.

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Winkel, P.

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Winn, H. R.

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Wolf, M.

N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7, 4605–4619 (2016).
[Crossref] [PubMed]

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

Wu, J.

Xu, R. X.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Xue, Y.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Yoshiya, I.

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

Young, T. L.

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

Zaar, M.

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Zhao, Y.

Zhou, X.

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

Zijlstra, W. G.

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Acta Paediatr. (2)

T. W. Hessel, S. Hyttel-Sorensen, and G. Greisen, “Cerebral oxygenation after birth - a comparison of invos and fore-sight near-infrared spectroscopy oximeters,” Acta Paediatr. 103, 488–493 (2014).
[Crossref] [PubMed]

A. Schneider, B. Minnich, E. Hofstätter, C. Weisser, E. Hattinger-Jürgenssen, and M. Wald, “Comparison of four near-infrared spectroscopy devices shows that they are only suitable for monitoring cerebral oxygenation trends in preterm infants,” Acta Paediatr. 103, 934–938 (2014).
[Crossref] [PubMed]

Adv. Exp. Med. Biol. (2)

P. B. Benni, B. Chen, F. D. Dykes, S. F. Wagoner, M. Heard, A. J. Tanner, T. L. Young, K. Rais-Bahrami, O. Rivera, and B. L. Short, “Validation of the cas neonatal nirs system by monitoring vv-ecmo patients: preliminary results,” Adv. Exp. Med. Biol. 566, 195–201 (2005).
[Crossref]

S. Kleiser, S. Hyttel-Sorensen, G. Greisen, and M. Wolf, “Comparison of near-infrared oximeters in a liquid optical phantom with varying intralipid and blood content,” Adv. Exp. Med. Biol. 876, 413–418 (2016).
[Crossref] [PubMed]

Am. J. Physiol. (1)

N. C. Brun, A. Moen, K. Borch, O. D. Saugstad, and G. Greisen, “Near-infrared monitoring of cerebral tissue oxygen saturation and blood volume in newborn piglets,” Am. J. Physiol. 273, H682–H686 (1997).
[PubMed]

Anesth. Analg. (3)

P. E. Bickler, J. R. Feiner, M. S. Lipnick, P. Batchelder, D. B. MacLeod, and J. W. Severinghaus, “Effects of acute, profound hypoxia on healthy humans: Implications for safety of tests evaluating pulse oximetry or tissue oximetry performance,” Anesth. Analg. 124, 146–153 (2017).
[Crossref]

P. E. Bickler, J. R. Feiner, and M. D. Rollins, “Factors affecting the performance of 5 cerebral oximeters during hypoxia in healthy volunteers,” Anesth. Analg. 117, 813–823 (2013).
[Crossref] [PubMed]

D. MacLeod, K. Ikeda, C. Cheng, and C. Shaw, “Validation of the next generation fore-sight elite tissue oximeters for adult cerebral tissue oxygen saturation,” Anesth. Analg. 116, 1–182 (2013).

Anesthesiology (2)

H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology 93, 947–953 (2000).
[Crossref] [PubMed]

S. N. Davie and H. P. Grocott, “Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies,” Anesthesiology 116, 834–840 (2012).
[Crossref] [PubMed]

Ann. Nucl. Med. (1)

H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, and T. Okudera, “Arterial fraction of cerebral blood volume in humans measured by positron emission tomography,” Ann. Nucl. Med. 15, 111–116 (2001).
[Crossref] [PubMed]

Ann. Thorac. Surg. (1)

R. N. Kreeger, C. Ramamoorthy, S. C. Nicolson, W. A. Ames, R. Hirsch, L. F. Peng, A. C. Glatz, K. D. Hill, J. Hoffman, J. Tomasson, and C. D. Kurth, “Evaluation of pediatric near-infrared cerebral oximeter for cardiac disease,” Ann. Thorac. Surg. 94, 1527–1533 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Arch. Dis. Child. (1)

J. Dobbing and J. Sands, “Quantitative growth and development of human brain,” Arch. Dis. Child. 48, 757–767 (1973).
[Crossref] [PubMed]

Biomed. Eng. Online (1)

A. Bozkurt, A. Rosen, H. Rosen, and B. Onaral, “A portable near-infrared spectroscopy system for bedside monitoring of newborn brain,” Biomed. Eng. Online 4, 29 (2005).
[Crossref]

Biomed. Opt. Express (7)

L. A. Dempsey, M. Persad, S. Powell, D. Chitnis, and J. C. Hebden, “Geometrically complex 3d-printed phantoms for diffuse optical imaging,” Biomed. Opt. Express 8, 1754–1762 (2017).
[Crossref] [PubMed]

P. Diep, S. Pannem, J. Sweer, J. Lo, M. S. G. Stueber, Y. Zhao, S. Tabassum, R. Istfan, J. Wu, S. Erramilli, and D. Roblyer, “Three-dimensional printed optical phantoms with customized absorption and scattering properties,” Biomed. Opt. Express 6, 4212–4220 (2015).
[Crossref] [PubMed]

S. Hyttel-Sorensen, L. C. Sorensen, J. Riera, and G. Greisen, “Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four nirs-instruments on the human forearm,” Biomed. Opt. Express 2, 3047–3057 (2011).
[Crossref] [PubMed]

S. Hyttel-Sorensen, T. W. Hessel, A. la Cour, and G. Greisen, “A comparison between two nirs oximeters (invos, oxyprem) using measurement on the arm of adults and head of infants after caesarean section,” Biomed. Opt. Express 5, 3671–3683 (2014).
[Crossref] [PubMed]

N. Nasseri, S. Kleiser, D. Ostojic, T. Karen, and M. Wolf, “Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy,” Biomed. Opt. Express 7, 4605–4619 (2016).
[Crossref] [PubMed]

M. Dehaes, P. E. Grant, D. D. Sliva, N. Roche-Labarbe, R. Pienaar, D. A. Boas, M. A. Franceschini, and J. Selb, “Assessment of the frequency-domain multi-distance method to evaluate the brain optical properties: Monte carlo simulations from neonate to adult,” Biomed. Opt. Express 2, 552–567 (2011).
[Crossref] [PubMed]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7, 2973–2992 (2016).
[Crossref] [PubMed]

BMC Anesthesiol. (1)

K. L. Tomlin, A.-M. Neitenbach, and U. Borg, “Detection of critical cerebral desaturation thresholds by three regional oximeters during hypoxia: a pilot study in healthy volunteers,” BMC Anesthesiol. 17, 6 (2017).
[Crossref] [PubMed]

BMJ (Clinical research ed.) (1)

S. Hyttel-Sorensen, A. Pellicer, T. Alderliesten, T. Austin, F. van Bel, M. Benders, O. Claris, E. Dempsey, A. R. Franz, M. Fumagalli, C. Gluud, B. Grevstad, C. Hagmann, P. Lemmers, W. van Oeveren, G. Pichler, A. M. Plomgaard, J. Riera, L. Sanchez, P. Winkel, M. Wolf, and G. Greisen, “Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase ii randomised clinical trial,” BMJ (Clinical research ed.) 350, g7635 (2015).

Clin. Chem. (2)

K. Linnet, “Evaluation of regression procedures for methods comparison studies,” Clin. Chem. 39, 424–432 (1993).
[PubMed]

W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37, 1633–1638 (1991).
[PubMed]

Clin. Physiol. Funct. Imaging. (1)

H. Sørensen, P. Rasmussen, C. Siebenmann, M. Zaar, M. Hvidtfeldt, S. Ogoh, K. Sato, M. Kohl-Bareis, N. H. Secher, and C. Lundby, “Extra-cerebral oxygenation influence on near-infrared-spectroscopy-determined frontal lobe oxygenation in healthy volunteers: a comparison between invos-4100 and niro-200nx,” Clin. Physiol. Funct. Imaging. 35, 177–184 (2015).
[Crossref]

Front. Physiol. (1)

H. Sorensen, N. H. Secher, and P. Rasmussen, “A note on arterial to venous oxygen saturation as reference for nirs-determined frontal lobe oxygen saturation in healthy humans,” Front. Physiol. 4, 403 (2013).

J. Biomed. Opt. (3)

L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt. 11, 054005 (2006).
[Crossref] [PubMed]

S. J. Arri, T. Muehlemann, M. Biallas, H. U. Bucher, and M. Wolf, “Precision of cerebral oxygenation and hemoglobin concentration measurements in neonates measured by near-infrared spectroscopy,” J. Biomed. Opt. 16, 047005 (2011).
[Crossref] [PubMed]

M. A. Franceschini, S. Fantini, A. E. Cerussi, B. B. Barbieri, B. Chance, and E. Gratton, “Quantitative spectroscopic determination of hemoglobin concentration and saturation in a turbid medium: analysis of the effect of water absorption,” J. Biomed. Opt. 2, 147–153 (1997).
[Crossref] [PubMed]

J. Clin. Anesth. (1)

I. Uchida, C. Tashiro, Y. H. Koo, T. Mashimo, and I. Yoshiya, “Carboxyhemoglobin and methemoglobin levels in banked blood,” J. Clin. Anesth. 2, 86–90 (1990).
[Crossref] [PubMed]

J. Clin. Monit. Comput. (1)

S. Hyttel-Sorensen, T. W. Hessel, and G. Greisen, “Peripheral tissue oximetry: comparing three commercial near-infrared spectroscopy oximeters on the forearm,” J. Clin. Monit. Comput. 28, 149–155 (2014).
[Crossref]

J. Near. Infrared Spectrosc. (1)

M. Wolf, G. Naulaers, F. van Bel, S. Kleiser, and G. Greisen, “A review of near-infrared spectroscopy for term and preterm newborns,” J. Near. Infrared Spectrosc. 20, 43–55 (2012).
[Crossref]

J. Neurosci. Nurs. (1)

H. D. Clay, “Validity and reliability of the SjO2 catheter in neurologically impaired patients: a critical review of the literature,” J. Neurosci. Nurs. 32, 194–203 (2000).
[Crossref] [PubMed]

J. Thorac. Cardiovasc. Surg. (1)

C. Benkwitz, M. C. Hamilton, D. R. Janssen, and T. P. Doyle, “Validation of the fore-sight elite tissue oximeter in context with simultaneous vital sign recording in pediatric patients undergoing cardiac catheterization,” J. Thorac. Cardiovasc. Surg. 146, 1153 (2013).

Med. Phys. (1)

H. Liu, B. Chance, A. Hielscher, S. Jacques, and et al., “Influence of blood vessels on the measurement of hemoglobin oxygenation as determined by time-resolved reflectance spectroscopy,” Med. Phys. 22, 1209–1217 (1995).
[Crossref] [PubMed]

Neurosurgery (1)

W. M. Coplin, G. E. O’Keefe, M. S. Grady, G. A. Grant, K. S. March, H. R. Winn, and A. M. Lam, “Thrombotic, infectious, and procedural complications of the jugular bulb catheter in the intensive care unit,” Neurosurgery 41, 101–107 (1997).
[Crossref] [PubMed]

Paediatr. Anaesth. (1)

A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the invos 5100 cerebral oximeter,” Paediatr. Anaesth. 13, 384–391 (2003).
[Crossref] [PubMed]

Pediatr. Res. (2)

L. M. Dix, F. van Bel, W. Baerts, and P. M. Lemmers, “Comparing near-infrared spectroscopy devices and their sensors for monitoring regional cerebral oxygen saturation in the neonate,” Pediatr. Res. 74, 557–563 (2013).
[Crossref] [PubMed]

Y. A. Wickramasinghe, K. S. Palmer, R. Houston, S. A. Spencer, P. Rolfe, M. S. Thorniley, B. Oeseburg, and W. Colier, “Effect of fetal hemoglobin on the determination of neonatal cerebral oxygenation by near-infrared spectroscopy,” Pediatr. Res. 34, 15–17 (1993).
[Crossref] [PubMed]

Phys. Med. Biol. (4)

M. Firbank and D. T. Delpy, “A design for a stable and reproducible phantom for use in near-infrared imaging and spectroscopy,” Phys. Med. Biol. 38, 847–853 (1993).
[Crossref]

J. G. Kim and H. Liu, “Variation of haemoglobin extinction coefficients can cause errors in the determination of haemoglobin concentration measured by near-infrared spectroscopy,” Phys. Med. Biol. 52, 6295–6322 (2007).
[Crossref] [PubMed]

E. L. Hull, M. G. Nichols, and T. H. Foster, “Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes,” Phys. Med. Biol. 43, 3381–3404 (1998).
[Crossref] [PubMed]

C. D. Kurth, H. Liu, W. S. Thayer, and B. Chance, “A dynamic phantom brain model for near-infrared spectroscopy,” Phys. Med. Biol. 40, 2079–2092 (1995).
[Crossref] [PubMed]

SPIE (3)

X. Lv, Y. Xue, H. Wang, S. W. Shen, X. Zhou, G. Liu, E. Dong, and R. X. Xu, “3d printing of microtube in solid phantom to simulate tissue oxygenation and perfusion (conference presentation),” SPIE 10056, 1005606 (2017).

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using nir spatially resolved spectroscopy,” SPIE 3597, 582–592 (1999).

D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” SPIE 3597, 618–631 (1999).

Stroke (1)

B. Meyer, C. Schaller, C. Frenkel, B. Ebeling, and J. Schramm, “Distributions of local oxygen saturation and its response to changes of mean arterial blood pressure in the cerebral cortex adjacent to arteriovenous malformations,” Stroke 30, 2623–2630 (1999).
[Crossref] [PubMed]

Other (5)

L. M. L. Dix, F. van Bel, and P. M. A. Lemmers, “Monitoring cerebral oxygenation in neonates: An update,” Front. Pediatr.5 (2017).
[Crossref]

P. B. Benni, D. MacLeod, K. Ikeda, and H.-M. Lin, “A validation method for near-infrared spectroscopy based tissue oximeters for cerebral and somatic tissue oxygen saturation measurements,” J. Clin. Monit. Comput. (2017).
[Crossref] [PubMed]

E. N. Marieb and K. N. Hoehn, Human Anatomy and Physiology, (Pearson,2000).

Nonin, “Model 8004CA, Instructions for use - english,” Tech. Rep. 9539-001-03, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441-5443, USA (2016).

Nonin, “Model 8004CB-NA, Instructions for use - english,” Tech. Rep. 9223-001-03, Nonin Medical, Inc., 13700 1st Avenue North Plymouth, MN, 55441-5443, USA (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) FORE-SIGHT small with fixation band vs. OxiplexTS for three different ctHb. Data was obtained in phantom 1. The sensor was repositioned after the 1st of 4 deoxygenations at ctHb = 75 μM. (b) FORE-SIGHT small adhesive vs. OxiplexTS measured in phantom 1. (c) FORE-SIGHT adult vs. OxiplexTS in phantom 2. The sensor was repositioned after ctHb = 30 μM. There were two consecutive deoxygenations at ctHb = 30 μM and 75 μM. (d) SenSmart adult vs. OxiplexTS measured in phantom 2 and 3. In phantom 2, the sensor was repositioned after ctHb = 30μM. There were two consecutive deoxygenations at ctHb = 30μM and 75 μM. In phantom 3, there were 3 deoxygenations with sensor repositioning in between at ctHb = 47.5 μM with the second one being performed with a new sensor.
Fig. 2
Fig. 2 (a) NIRO-200NX small reusable vs. OxiplexTS three different ctHb measured in phantom 2. The sensor was repositioned after ctHb = 47.5 μM. (b) NIRO-200NX small single-use vs. OxiplexTS in phantom 1. The sensor was repositioned after the 1st of 4 deoxygenations at ctHb = 75 μM. (c) NIRO-200NX large reusable vs. OxiplexTS in phantom 2. The sensor was repositioned after ctHb = 47.5 μM. (d) NIRO-200NX large single-use vs. OxiplexTS in phantom 2. The sensor was repositioned after ctHb = 30 μM. There were two consecutive deoxygenations at ctHb = 30 μM and 75 μM.
Fig. 3
Fig. 3 (a) INVOS adult vs. OxiplexTS for three different ctHb measured in phantom 3. There were 3 deoxygenations with sensor repositioning in between at ctHb = 47.5 μM with the second one being performed with a new sensor. Data from [38] is marked with (old). (b) Oxyprem v1.3 vs. OxiplexTS in phantom 3. There were 2 deoxygenations at ctHb = 47.5 μM with sensor repositioning in between. Data from [38] is marked with (old).
Fig. 4
Fig. 4 In vivo comparison [4] of simultaneous StO2 recordings in neonates with the old FORE-SIGHT instrument (FS1) with small sensor and INVOS neonatal as scatter density plot (gray dots, darker means higher occurrence). The red line corresponds to the deming regression [51] of this data (y = 1.98x − 73.7). This agrees reasonably with the relation (dashed green line) we obtained in this in vitro phantom study with the new FORE-SIGHT Elite instrument (FS Elite) at ctHb = 47.5 μM (y = 2.34x − 90, see Table 4).

Tables (6)

Tables Icon

Table 1 Amount of blood added and resulting ctHb and htc of the liquid phantoms for each of the three mixtures.

Tables Icon

Table 2 Coefficients for linear transformation StO2, Devicex = a * StO2, OxiplexTS + b.

Tables Icon

Table 3 SafeBoosC intervention thresholds for ctHb = 47.5 μM and range of uncertainty due to variation of ctHb in the range of 30 μM to 75 μM (threshold at ctHb = 75 μM - threshold at ctHb = 30 μM). All values are given as StO2 [%].

Tables Icon

Table 4 Coefficients for linear transformation of StO2 [%] from any oximeter to the scale of oximeters investigated in [38]: StO2,to = a * StO2,from + b. Coefficients were determined at ctHb = 47.5 μM. Data at ctHb = 45 μM reprinted from [38] are printed italic. Part 1.

Tables Icon

Table 5 Coefficients for linear transformation of StO2 [%] from any oximeter to the scale of any other oximeter: StO2,to = a * StO2,from + b. Coefficients were determined at ctHb = 47.5 μM. Names of oximeters investigated in [38] at ctHb = 45 μM are printed italic. Part 2.

Tables Icon

Table 6 Coefficients for linear transformation of StO2 [%] from any oximeter to the scale of any other oximeter: StO2,to = a * StO2,from + b. Coefficients were determined at ctHb = 47.5 μM. Names of oximeters investigated in [38] at ctHb = 45 μM are printed italic. Part 3.

Metrics