Abstract

Cell metabolism and viability are directly reflected in their mitochondria. Imaging-based analysis of mitochondrial morphological structure, size and dynamic characteristics can therefore provide critical insight into cell function. However, mitochondria are often very abundant, and due to their close to diffraction-limit size, it is often non-trivial to distinguish a tubular or large mitochondrion from an ensemble of punctate mitochondria. In this paper, we use membrane potential dependent fluorescence fluctuations of individual mitochondria to resolve them using an approach similar to single molecule localization microscopy. We use 2-photon microscopy to image mitochondrial intensity fluctuations at 200 μm deep inside an intact in-vivo mouse soleus muscle. By analyzing the acquired images, we can reconstruct images with an extra layer of information about individual mitochondria, separated from their ensemble. Our analysis shows a factor of 14 improvement in detection of mitochondria.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mitochondrial swelling and restorable fragmentation stimulated by femtosecond laser

Fan Shi, Hao He, Yintao Wang, Dayong Liu, Minglie Hu, and Chingyue Wang
Biomed. Opt. Express 6(11) 4539-4545 (2015)

Molecular response of mitochondria to a short-duration femtosecond-laser stimulation

Yujie Zhu and Hao He
Biomed. Opt. Express 8(11) 4965-4973 (2017)

NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers

Haiyang Tang, Huilu Yao, Guiwen Wang, Yun Wang, Yong-qing Li, and Meifu Feng
Opt. Express 15(20) 12708-12716 (2007)

References

  • View by:
  • |
  • |
  • |

  1. K. G. Hales and M. T. Fuller, “Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase,” Cell 90(1), 121–129 (1997).
    [Crossref] [PubMed]
  2. Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
    [Crossref] [PubMed]
  3. P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria,” J. Cell Sci. 118(23), 5411–5419 (2005).
    [Crossref] [PubMed]
  4. Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
    [Crossref] [PubMed]
  5. P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
    [Crossref] [PubMed]
  6. E. Frazier Ann, C. Kiu, D. Stojanovski, J. Hoogenraad Nicholas, and T. Ryan Michael, “Mitochondrial morphology and distribution in mammalian cells,” in Biological Chemistry, (2006), p. 1551.
  7. D.-F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes Dev. 22(12), 1577–1590 (2008).
    [Crossref] [PubMed]
  8. P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
    [Crossref] [PubMed]
  9. M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
    [Crossref] [PubMed]
  10. S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
    [Crossref] [PubMed]
  11. J. Xu, K. F. Tehrani, and P. Kner, “Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy,” ACS Nano 9(3), 2917–2925 (2015).
    [Crossref] [PubMed]
  12. L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
    [Crossref] [PubMed]
  13. M. Brunstein, K. Wicker, K. Hérault, R. Heintzmann, and M. Oheim, “Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks,” Opt. Express 21(22), 26162–26173 (2013).
    [Crossref] [PubMed]
  14. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  15. S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
    [Crossref] [PubMed]
  16. S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
    [Crossref] [PubMed]
  17. T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
    [Crossref] [PubMed]
  18. R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
    [Crossref] [PubMed]
  19. B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
    [Crossref] [PubMed]
  20. S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
    [Crossref] [PubMed]
  21. K. M. Abdel-Hamid and M. Tymianski, “Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins,” J. Neurosci. 17(10), 3538–3553 (1997).
    [PubMed]
  22. D. G. Nicholls and M. W. Ward, “Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts,” Trends Neurosci. 23(4), 166–174 (2000).
    [Crossref] [PubMed]
  23. K. F. Tehrani, E. G. Pendleton, C. P. Lin, and L. J. Mortensen, “Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta,” in 2016), 97110D–97110D–97118.
  24. L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
    [Crossref] [PubMed]
  25. K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

2016 (3)

Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
[Crossref] [PubMed]

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
[Crossref] [PubMed]

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

2015 (4)

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
[Crossref] [PubMed]

J. Xu, K. F. Tehrani, and P. Kner, “Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy,” ACS Nano 9(3), 2917–2925 (2015).
[Crossref] [PubMed]

P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
[Crossref] [PubMed]

2013 (1)

2012 (1)

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

2011 (2)

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

2009 (1)

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

2008 (2)

D.-F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes Dev. 22(12), 1577–1590 (2008).
[Crossref] [PubMed]

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

2006 (2)

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

2005 (1)

P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria,” J. Cell Sci. 118(23), 5411–5419 (2005).
[Crossref] [PubMed]

2004 (2)

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
[Crossref] [PubMed]

P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
[Crossref] [PubMed]

2000 (1)

D. G. Nicholls and M. W. Ward, “Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts,” Trends Neurosci. 23(4), 166–174 (2000).
[Crossref] [PubMed]

1999 (1)

R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
[Crossref] [PubMed]

1997 (2)

K. G. Hales and M. T. Fuller, “Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase,” Cell 90(1), 121–129 (1997).
[Crossref] [PubMed]

K. M. Abdel-Hamid and M. Tymianski, “Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins,” J. Neurosci. 17(10), 3538–3553 (1997).
[PubMed]

Abdel-Hamid, K. M.

K. M. Abdel-Hamid and M. Tymianski, “Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins,” J. Neurosci. 17(10), 3538–3553 (1997).
[PubMed]

Alt, C.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Arai, F.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Babcock, H. P.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Balaban, R. S.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Barbieri, J.

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bi, G.-Q.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Brown, E. B.

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

Brunstein, M.

Chalmers, S.

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
[Crossref] [PubMed]

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
[Crossref] [PubMed]

Chan, D. C.

P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
[Crossref] [PubMed]

Cleland, M. M.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

Colyer, R.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Combs, C. A.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Connelly, P. S.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Cui, J.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Dertinger, T.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Enderlein, J.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Frenette, P. S.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Fuller, M. T.

K. G. Hales and M. T. Fuller, “Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase,” Cell 90(1), 121–129 (1997).
[Crossref] [PubMed]

Gelbard, H. A.

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

Girkin, J. M.

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
[Crossref] [PubMed]

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
[Crossref] [PubMed]

Glancy, B.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Grotyohann, L. W.

R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
[Crossref] [PubMed]

Gustafsson, M. G.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Hales, K. G.

K. G. Hales and M. T. Fuller, “Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase,” Cell 90(1), 121–129 (1997).
[Crossref] [PubMed]

Hall, E. D.

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

Hartnell, L. M.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Hayashi, Y.

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
[Crossref] [PubMed]

Heintzmann, R.

Hérault, K.

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hollenbeck, P. J.

P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria,” J. Cell Sci. 118(23), 5411–5419 (2005).
[Crossref] [PubMed]

Hsu, Y.-C.

Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
[Crossref] [PubMed]

Huang, B.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Ito, K

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Ito, K.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Iyer, G.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Jeong, S.-Y.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

Karbowski, M.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

Kennady, P. K.

P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
[Crossref] [PubMed]

Kner, P.

J. Xu, K. F. Tehrani, and P. Kner, “Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy,” ACS Nano 9(3), 2917–2925 (2015).
[Crossref] [PubMed]

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Li, Z.

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
[Crossref] [PubMed]

Lin, C. P.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Malide, D.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Mar, J. C.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Mbye, L. H.

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

McCarron, J. G.

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
[Crossref] [PubMed]

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
[Crossref] [PubMed]

Mishra, P.

P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
[Crossref] [PubMed]

Mizoguchi, T.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Nicholls, D. G.

D. G. Nicholls and M. W. Ward, “Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts,” Trends Neurosci. 23(4), 166–174 (2000).
[Crossref] [PubMed]

Norman, J. P.

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

Norris, K. L.

D.-F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes Dev. 22(12), 1577–1590 (2008).
[Crossref] [PubMed]

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

Oheim, M.

Okamoto, K.

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Ormerod, M. G.

P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
[Crossref] [PubMed]

Pande, G.

P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Perry, S. W.

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

Pham, A. H.

P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
[Crossref] [PubMed]

Pinho, S.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Rego, E. H.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Runnels, J. M.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Saunter, C. D.

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
[Crossref] [PubMed]

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
[Crossref] [PubMed]

Saxton, W. M.

P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria,” J. Cell Sci. 118(23), 5411–5419 (2005).
[Crossref] [PubMed]

Scaduto, R. C.

R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
[Crossref] [PubMed]

Shao, L.

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Sheng, M.

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
[Crossref] [PubMed]

Shim, S.-H.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Singh, I. N.

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

Singh, R.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Singh, S.

P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Springer, J. E.

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

Subramaniam, S.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Suda, T.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Suen, D.-F.

D.-F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes Dev. 22(12), 1577–1590 (2008).
[Crossref] [PubMed]

Sullivan, P. G.

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

Tehrani, K. F.

J. Xu, K. F. Tehrani, and P. Kner, “Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy,” ACS Nano 9(3), 2917–2925 (2015).
[Crossref] [PubMed]

Teruya-Feldstein, J.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Turcotte, R.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Tymianski, M.

K. M. Abdel-Hamid and M. Tymianski, “Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins,” J. Neurosci. 17(10), 3538–3553 (1997).
[PubMed]

Varuzhanyan, G.

P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
[Crossref] [PubMed]

Vaughan, J. C.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Wang, X.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Ward, M. W.

D. G. Nicholls and M. W. Ward, “Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts,” Trends Neurosci. 23(4), 166–174 (2000).
[Crossref] [PubMed]

Wei, Y.-H.

Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
[Crossref] [PubMed]

Weiss, S.

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

Wicker, K.

Wu, Y.-T.

Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
[Crossref] [PubMed]

Xia, C.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Xu, C.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Xu, J.

J. Xu, K. F. Tehrani, and P. Kner, “Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy,” ACS Nano 9(3), 2917–2925 (2015).
[Crossref] [PubMed]

Youle, R. J.

D.-F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes Dev. 22(12), 1577–1590 (2008).
[Crossref] [PubMed]

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

Yu, T.-H.

Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
[Crossref] [PubMed]

Yu, Z.-X.

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Zhong, G.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Zhuang, X.

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Zimmerman, S. E.

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

ACS Nano (1)

J. Xu, K. F. Tehrani, and P. Kner, “Multicolor 3D Super-resolution Imaging by Quantum Dot Stochastic Optical Reconstruction Microscopy,” ACS Nano 9(3), 2917–2925 (2015).
[Crossref] [PubMed]

Biophys. J. (1)

R. C. Scaduto and L. W. Grotyohann, “Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives,” Biophys. J. 76(1), 469–477 (1999).
[Crossref] [PubMed]

Biotechniques (1)

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial membrane potential probes and the proton gradient: a practical usage guide,” Biotechniques 50(2), 98–115 (2011).
[Crossref] [PubMed]

Cell (2)

K. G. Hales and M. T. Fuller, “Developmentally Regulated Mitochondrial Fusion Mediated by a Conserved, Novel, Predicted GTPase,” Cell 90(1), 121–129 (1997).
[Crossref] [PubMed]

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell 119(6), 873–887 (2004).
[Crossref] [PubMed]

Cell Metab. (1)

P. Mishra, G. Varuzhanyan, A. H. Pham, and D. C. Chan, “Mitochondrial Dynamics is a Distinguishing Feature of Skeletal Muscle Fiber Types and Regulates Organellar Compartmentalization,” Cell Metab. 22(6), 1033–1044 (2015).
[Crossref] [PubMed]

Cytometry A (1)

P. K. Kennady, M. G. Ormerod, S. Singh, and G. Pande, “Variation of mitochondrial size during the cell cycle: A multiparameter flow cytometric and microscopic study,” Cytometry A 62(2), 97–108 (2004).
[Crossref] [PubMed]

Exp. Neurol. (1)

L. H. Mbye, I. N. Singh, P. G. Sullivan, J. E. Springer, and E. D. Hall, “Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog,” Exp. Neurol. 209(1), 243–253 (2008).
[Crossref] [PubMed]

Genes Dev. (1)

D.-F. Suen, K. L. Norris, and R. J. Youle, “Mitochondrial dynamics and apoptosis,” Genes Dev. 22(12), 1577–1590 (2008).
[Crossref] [PubMed]

J. Cell Sci. (1)

P. J. Hollenbeck and W. M. Saxton, “The axonal transport of mitochondria,” J. Cell Sci. 118(23), 5411–5419 (2005).
[Crossref] [PubMed]

J. Neurosci. (1)

K. M. Abdel-Hamid and M. Tymianski, “Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins,” J. Neurosci. 17(10), 3538–3553 (1997).
[PubMed]

J. Physiol. (1)

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Age decreases mitochondrial motility and increases mitochondrial size in vascular smooth muscle,” J. Physiol. 594(15), 4283–4295 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

L. Shao, P. Kner, E. H. Rego, and M. G. Gustafsson, “Super-resolution 3D microscopy of live whole cells using structured illumination,” Nat. Methods 8(12), 1044–1046 (2011).
[Crossref] [PubMed]

Nature (2)

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, “Role of Bax and Bak in mitochondrial morphogenesis,” Nature 443(7112), 658–662 (2006).
[Crossref] [PubMed]

B. Glancy, L. M. Hartnell, D. Malide, Z.-X. Yu, C. A. Combs, P. S. Connelly, S. Subramaniam, and R. S. Balaban, “Mitochondrial reticulum for cellular energy distribution in muscle,” Nature 523(7562), 617–620 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (2)

T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, “Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI),” Proc. Natl. Acad. Sci. U.S.A. 106(52), 22287–22292 (2009).
[Crossref] [PubMed]

S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, “Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes,” Proc. Natl. Acad. Sci. U.S.A. 109(35), 13978–13983 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Chalmers, C. D. Saunter, J. M. Girkin, and J. G. McCarron, “Flicker-assisted localization microscopy reveals altered mitochondrial architecture in hypertension,” Sci. Rep. 5(1), 16875 (2015).
[Crossref] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

K Ito, R. Turcotte, J. Cui, S. E. Zimmerman, S. Pinho, T. Mizoguchi, F. Arai, J. M. Runnels, C. Alt, J. Teruya-Feldstein, J. C. Mar, R. Singh, T. Suda, C. P. Lin, P. S. Frenette, and K. Ito, “Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance,” Science 354(1), 1156 (2016).

Semin. Cell Dev. Biol. (1)

Y.-C. Hsu, Y.-T. Wu, T.-H. Yu, and Y.-H. Wei, “Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer,” Semin. Cell Dev. Biol. 52, 119–131 (2016).
[Crossref] [PubMed]

Trends Neurosci. (1)

D. G. Nicholls and M. W. Ward, “Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts,” Trends Neurosci. 23(4), 166–174 (2000).
[Crossref] [PubMed]

Other (2)

K. F. Tehrani, E. G. Pendleton, C. P. Lin, and L. J. Mortensen, “Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta,” in 2016), 97110D–97110D–97118.

E. Frazier Ann, C. Kiu, D. Stojanovski, J. Hoogenraad Nicholas, and T. Ryan Michael, “Mitochondrial morphology and distribution in mammalian cells,” in Biological Chemistry, (2006), p. 1551.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 In vitro images of tubular and punctate mitochondria of mesenchymal stem cells, shown in (a) and (b), respectively. The cells are labeled with mitotracker green, and imaged using single photon excitation. We show motion of single mitochondria in a large assembly in (c), by 2-photon imaging of MSC mitochondria stained with TMRE. The zoomed-in timelapse of the boxed area in (c) are shown in (d). Scale bars are 10µm. The boxed area is 6.35 x 3.33 µm.
Fig. 2
Fig. 2 Mitochondrial blinking. (a-f) show a timelapse of MSC mitochondria intensity fluctuations. (g-j) are timelapse images of mouse soleus muscle. Both samples were stained with TMRE. (k,l) show average intensity in the boxed areas of (g-j), and (a-f), respectively. Scalebars are 5um.
Fig. 3
Fig. 3 Stack average (a) and reconstructed image (b) of a cultured MSC in vitro. (c) shows the zoomed in version of boxes in (a,b). (d) and (e) show mitochondria area distribution, for (a) and (b), respectively. The total number of mitochondria is compared in (f). Cross sections shown with arrows in (c) ii and ii’ are shown in (g). Black and red lines in (g) represent conventional and FaLM imaging, respectively. Scalebars are 5µm.
Fig. 4
Fig. 4 Mouse Soleus muscle. (a) Stack average. (b) Reconstructed image. (c,d) are the zoomed in version of boxes in (a,b) respectively. (e,f) show the distributions of the mitochondria area for (a,b) respectively. The total number of mitochondria for each mode is shown in (g). A-A’ cross sections in (c) and (d) are shown in (h). Black and red lines in (h) represent conventional and FaLM imaging, respectively. Scalebars are 1µm.

Metrics