Abstract

We present a bimodal imaging system able to obtain epi-detected mutiplex coherent anti-Stokes Raman scattering (M-CARS) and second harmonic generation (SHG) signals coming from biological samples. We studied a fragment of mouse parietal bone and could detect broadband anti-Stokes and SHG responses originating from bone cells and collagen respectively. In addition we compared two post-processing methods to retrieve the imaginary part of the third-order nonlinear susceptibility related to the spontaneous Raman scattering.

© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser

Iestyn Pope, Wolfgang Langbein, Peter Watson, and Paola Borri
Opt. Express 21(6) 7096-7106 (2013)

Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy

Christoph Pohling, Tiago Buckup, Axel Pagenstecher, and Marcus Motzkus
Biomed. Opt. Express 2(8) 2110-2116 (2011)

References

  • View by:
  • |
  • |
  • |

  1. L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
    [Crossref] [PubMed]
  2. B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
    [Crossref] [PubMed]
  3. A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
    [Crossref]
  4. E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
    [Crossref] [PubMed]
  5. H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
    [Crossref]
  6. Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
    [Crossref]
  7. A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
    [Crossref] [PubMed]
  8. A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
    [Crossref]
  9. J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
    [Crossref]
  10. Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
    [Crossref]
  11. A. Lukic, S. Dochow, H. Bae, G. Matz, I. Latka, B. Messerschmidt, M. Schmitt, and J. Popp, “Endoscopic fiber probe for nonlinear spectroscopic imaging,” Optica 4, 496–501 (2017).
    [Crossref]
  12. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
    [Crossref]
  13. G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
    [Crossref]
  14. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923 (2008).
    [Crossref] [PubMed]
  15. C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
    [Crossref] [PubMed]
  16. H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20, 9551 (2012).
    [Crossref] [PubMed]
  17. H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
    [Crossref]
  18. E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
    [Crossref]
  19. A. Awonusi, M. D. Morris, and M. M. J. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcif. Tissue Int. 81, 46–52 (2007).
    [Crossref] [PubMed]
  20. G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 47 (2015).
    [Crossref] [PubMed]
  21. G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
    [Crossref]
  22. I. R. Hill and I. W. Levin, “Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n-alkyl carboxylic acids,” J. Chem. Phys. 70, 842–851 (1979).
    [Crossref]
  23. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
    [Crossref] [PubMed]
  24. E. M. Vartiainen, H. A. Rinia, M. Müller, and M. Bonn, “Direct extraction of Raman line-shapes from congested CARS spectra,” Opt. Express 14, 3622 (2006).
    [Crossref] [PubMed]
  25. A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
    [Crossref]
  26. P. Deladurantaye, A. Paquet, C. Paré, H. Zheng, M. Doucet, D. Gay, M. Poirier, J.-F. Cormier, O. Mermut, B. C. Wilson, and E. J. Seibel, “Advances in engineering of high contrast CARS imaging endoscopes,” Opt. Express 22, 25053–25064 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

2015 (3)

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 47 (2015).
[Crossref] [PubMed]

Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

2014 (2)

P. Deladurantaye, A. Paquet, C. Paré, H. Zheng, M. Doucet, D. Gay, M. Poirier, J.-F. Cormier, O. Mermut, B. C. Wilson, and E. J. Seibel, “Advances in engineering of high contrast CARS imaging endoscopes,” Opt. Express 22, 25053–25064 (2014).
[Crossref] [PubMed]

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

2013 (1)

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

2010 (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

2009 (3)

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
[Crossref]

B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (2)

G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
[Crossref]

A. Awonusi, M. D. Morris, and M. M. J. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcif. Tissue Int. 81, 46–52 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (2)

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[Crossref]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[Crossref]

2001 (2)

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

1979 (1)

I. R. Hill and I. W. Levin, “Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n-alkyl carboxylic acids,” J. Chem. Phys. 70, 842–851 (1979).
[Crossref]

1964 (1)

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Aamer, K. A.

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

Awonusi, A.

A. Awonusi, M. D. Morris, and M. M. J. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcif. Tissue Int. 81, 46–52 (2007).
[Crossref] [PubMed]

Bae, H.

Bagnaninchi, P.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

Ball, M. D.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Bar-Nur, O.

B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
[Crossref] [PubMed]

Benvenisty, N.

B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
[Crossref] [PubMed]

Blum, B.

B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
[Crossref] [PubMed]

Bonn, M.

Book, L. D.

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Boonrungsiman, S.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Boyd, A. R.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Burke, G. A.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Camp, C. H.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Canfield, N.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Capitaine, E.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Cheng, J.-x.

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

Chiang, H. K.

H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
[Crossref]

Cicerone, M. T.

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Cormier, J.-F.

Couderc, V.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20, 9551 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923 (2008).
[Crossref] [PubMed]

Deladurantaye, P.

Dochow, S.

Doucet, M.

Downes, A.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

Duclère, J.-R.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Duponchel, L.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Elfick, A.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

Evans, N. D.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Feng, Y.-C.

H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
[Crossref]

Flach, C. R.

G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
[Crossref]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Gay, D.

Gentleman, E.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Golan-Lev, T.

B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
[Crossref] [PubMed]

Golay, M. J.

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Greiner, J. F. W.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Hachmeister, H.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Hamaguchi, H.-o.

Hartshorn, C. M.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Heddleston, J.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Hight Walker, A. R.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Hill, I. R.

I. R. Hill and I. W. Levin, “Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n-alkyl carboxylic acids,” J. Chem. Phys. 70, 842–851 (1979).
[Crossref]

Hofemeier, A. D.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Hsu, C.-Y. S.

Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
[Crossref]

Huang, Z.

Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
[Crossref]

Hung, S.-C.

H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
[Crossref]

Huser, T.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Jell, G.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Kaji, Y.

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

Kaltschmidt, B.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Kaltschmidt, C.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Kaneyasu, J. F.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Kano, H.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20, 9551 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923 (2008).
[Crossref] [PubMed]

Latka, I.

Lee, Y. J.

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Lefort, C.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Leproux, P.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

H. Segawa, M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-o. Hamaguchi, “Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation),” Opt. Express 20, 9551 (2012).
[Crossref] [PubMed]

M. Okuno, H. Kano, P. Leproux, V. Couderc, and H.-O. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923 (2008).
[Crossref] [PubMed]

Levin, I. W.

I. R. Hill and I. W. Levin, “Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n-alkyl carboxylic acids,” J. Chem. Phys. 70, 842–851 (1979).
[Crossref]

Liu, Z.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Louot, C.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Lukic, A.

Mandair, G. S.

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 47 (2015).
[Crossref] [PubMed]

Marsac, P. J.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Matz, G.

McCafferty, M. M.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

McManus, L. L.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Meenan, B. J.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Mendelsohn, R.

G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
[Crossref]

Mermut, O.

Messerschmidt, B.

Modreanu, M.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Moghe, P. V.

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

Moore, D. J.

G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
[Crossref]

Morris, M. D.

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 47 (2015).
[Crossref] [PubMed]

A. Awonusi, M. D. Morris, and M. M. J. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcif. Tissue Int. 81, 46–52 (2007).
[Crossref] [PubMed]

Mouras, R.

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

Müller, M.

Nolte, L.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

O’Hare, P.

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Okuno, M.

Oshika, T.

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

Ould Moussa, N.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Oyen, M. L.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Ozawa, T.

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

Pagnoux, D.

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Paquet, A.

Paré, C.

Patel, P. J.

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

Peng, F.-Y.

H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
[Crossref]

Pilger, C.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Poirier, M.

Popp, J.

Porter, A.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Rhodes, T. A.

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Rinia, H. A.

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Savitzky, A.

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

Schins, J. M.

G. W. H. Wurpel, J. M. Schins, and M. Müller, “Chemical specificity in three-dimensional imaging with multiplex coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 27, 1093–1095 (2002).
[Crossref]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[Crossref]

Schmitt, M.

Schürmann, M.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Segawa, H.

Seibel, E. J.

Shean, T. A. V.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Stevens, M. M.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Sudhoff, H.

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Sunney Xie, X.

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

Swain, R. J.

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Tecklenburg, M. M. J.

A. Awonusi, M. D. Morris, and M. M. J. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcif. Tissue Int. 81, 46–52 (2007).
[Crossref] [PubMed]

Vartiainen, E. M.

Vega, S. L.

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

Volkmer, A.

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Wang, Z.

Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
[Crossref]

Wilson, B. C.

Wurpel, G. W. H.

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

Zhang, G.

G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
[Crossref]

Zheng, H.

Zheng, W.

Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
[Crossref]

Anal. Bioanal. Chem. (1)

G. Zhang, D. J. Moore, C. R. Flach, and R. Mendelsohn, “Vibrational microscopy and imaging of skin: from single cells to intact tissue,” Anal. Bioanal. Chem. 387, 1591–1599 (2007).
[Crossref]

Anal. Chem. (2)

A. Savitzky and M. J. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 1627–1639 (1964).
[Crossref]

C. M. Hartshorn, Y. J. Lee, C. H. Camp, Z. Liu, J. Heddleston, N. Canfield, T. A. Rhodes, A. R. Hight Walker, P. J. Marsac, and M. T. Cicerone, “Multicomponent chemical imaging of pharmaceutical solid dosage forms with broadband CARS microscopy,” Anal. Chem. 85, 8102–8111 (2013).
[Crossref] [PubMed]

Analyst (1)

L. L. McManus, G. A. Burke, M. M. McCafferty, P. O’Hare, M. Modreanu, A. R. Boyd, and B. J. Meenan, “Raman spectroscopic monitoring of the osteogenic differentiation of human mesenchymal stem cells,” Analyst 136, 2471 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Z. Wang, W. Zheng, C.-Y. S. Hsu, and Z. Huang, “Epi-detected quadruple-modal nonlinear optical microscopy for label-free imaging of the tooth,” Appl. Phys. Lett. 106, 033701 (2015).
[Crossref]

Bonekey Rep. (1)

G. S. Mandair and M. D. Morris, “Contributions of Raman spectroscopy to the understanding of bone strength,” Bonekey Rep. 47 (2015).
[Crossref] [PubMed]

Calcif. Tissue Int. (1)

A. Awonusi, M. D. Morris, and M. M. J. Tecklenburg, “Carbonate Assignment and Calibration in the Raman Spectrum of Apatite,” Calcif. Tissue Int. 81, 46–52 (2007).
[Crossref] [PubMed]

J. Biophotonics (1)

H. Segawa, Y. Kaji, P. Leproux, V. Couderc, T. Ozawa, T. Oshika, and H. Kano, “Multimodal and multiplex spectral imaging of rat cornea ex vivo using a white-light laser source,” J. Biophotonics 8, 705–713 (2015).
[Crossref]

J. Chem. Phys. (1)

I. R. Hill and I. W. Levin, “Vibrational spectra and carbon–hydrogen stretching mode assignments for a series of n-alkyl carboxylic acids,” J. Chem. Phys. 70, 842–851 (1979).
[Crossref]

J. Phys. Chem. B (2)

J.-x. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105, 1277–1280 (2001).
[Crossref]

M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106, 3715–3723 (2002).
[Crossref]

J. Raman Spectrosc. (2)

A. Downes, R. Mouras, P. Bagnaninchi, and A. Elfick, “Raman spectroscopy and CARS microscopy of stem cells and their derivatives,” J. Raman Spectrosc. 42, 1864–1870 (2011).
[Crossref]

H. K. Chiang, F.-Y. Peng, S.-C. Hung, and Y.-C. Feng, “In situ Raman spectroscopic monitoring of hydroxyapatite as human mesenchymal stem cells differentiate into osteoblasts,” J. Raman Spectrosc. 40, 546–549 (2009).
[Crossref]

Nat. Biotechnol. (1)

B. Blum, O. Bar-Nur, T. Golan-Lev, and N. Benvenisty, “The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells,” Nat. Biotechnol. 27, 281 (2009).
[Crossref] [PubMed]

Nat. Mater. (1)

E. Gentleman, R. J. Swain, N. D. Evans, S. Boonrungsiman, G. Jell, M. D. Ball, T. A. V. Shean, M. L. Oyen, A. Porter, and M. M. Stevens, “Comparative materials differences revealed in engineered bone as a function of cell-specific differentiation,” Nat. Mater. 8, 763–770 (2009).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Optica (1)

Phys. Rev. B (1)

E. Capitaine, N. Ould Moussa, C. Louot, C. Lefort, D. Pagnoux, J.-R. Duclère, J. F. Kaneyasu, H. Kano, L. Duponchel, V. Couderc, and P. Leproux, “Coherent anti-Stokes Raman scattering under electric field stimulation,” Phys. Rev. B 94, 245136 (2016).
[Crossref]

Phys. Rev. Lett. (1)

A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy,” Phys. Rev. Lett. 87, 023901 (2001).
[Crossref]

Sci. Rep. (1)

A. D. Hofemeier, H. Hachmeister, C. Pilger, M. Schürmann, J. F. W. Greiner, L. Nolte, H. Sudhoff, C. Kaltschmidt, T. Huser, and B. Kaltschmidt, “Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells,” Sci. Rep. 6, 26716 (2016).
[Crossref] [PubMed]

Science (1)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330, 1368–1370 (2010).
[Crossref] [PubMed]

Tissue Eng. Part C Methods (1)

Y. J. Lee, S. L. Vega, P. J. Patel, K. A. Aamer, P. V. Moghe, and M. T. Cicerone, “Quantitative, Label-Free Characterization of Stem Cell Differentiation at the Single-Cell Level by Broadband Coherent Anti-Stokes Raman Scattering Microscopy,” Tissue Eng. Part C Methods 20, 562–569 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the epi-detected M-CARS and SHG imaging system (C: laser coupler; CCD: CCD camera; DL: delay line (delimited by the red dashed line); LP: long-pass filter; M: mirror; N1: notch dichroic mirror; N2: notch filter; Obj: objective; PCF: photonic crystal fiber; GTP: Glan-Taylor polarizer; PM: parabolic mirror; S: sample; SP: short-pass filter; λ/2: half-wave plate).
Fig. 2
Fig. 2 Schematic representation of the mouse parietal bone area studied in the experiment. The bregma and the lambda are both classical anatomical landmarks located on the midline of the outer surface of the skull, that are often used as reference points for stereotaxic surgery in this region. The bregma and the lambda are indeed the meeting point respectively between frontal and parietal bones, and between parietal and occipital bones. Here the cranium bone was extracted from the parietal region, down left from the lambda, as highlighted by the red circle.
Fig. 3
Fig. 3 Typical raw CARS spectra of mouse parietal bone for fingerprint and CH vibrational domains at two different points of acquisition ((a) and (b)). The spectra acquisition position in μm is given in the insets. The pump and Stokes average power at the sample is 66 mW and 4 mW, respectively.
Fig. 4
Fig. 4 Evolution of the difference Δω between the positions of a Raman peak and a CARS peak maximum (blue curve) and between a Raman peak and the derivative of a CARS peak maximum (red curve) according to Γ, the spectral half-width of the Raman peak.
Fig. 5
Fig. 5 Normalized and baseline corrected imaginary part of χ(3) extracted with MEM algorithm (black curve) and normalized derivative of the typical raw CARS spectra (red curve) for fingerprint and CH vibrational domains at two different points of acquisition ((a) and (b)).
Fig. 6
Fig. 6 Intensity maps of a mouse parietal bone fragment obtained from CARS spectra derivatives for (a) PO 4 3 , (b) CO 3 2 , (c) CH2, (d) CH3 stretching modes (integrated over a bandwidth of 20 cm−1 around 961 cm−1, 1070 cm−1, 2878 cm−1 and 2950 cm−1 respectively) and (e) corresponding SHG image. Scale bar: 50 μm. The arrows in (a–b) and (c–d) indicate the acquisition position of the spectra displayed Figs. 3(a)5(a) and 3(b)5(b) respectively.
Fig. 7
Fig. 7 Intensity maps of a mouse parietal bone fragment obtained from (a) CARS spectra derivatives of PO 4 3 symmetric stretching (red) and CH3 stretching (blue) modes, two-photon fluorescence of (b) GFP labeled cells (red), (c) counterstained cells with Rhodamine B (red) and (d) GFP labeled osteogenic cells (red). In (a) and (b) the SHG signal is shown in green. Scale bar: 50 μm. (e) Population density of the cells in the different maps.

Tables (1)

Tables Icon

Table 1 Band assignment for CARS spectra of mouse cranial bone

Metrics