Abstract

We present a technique for improving the spatial resolution of two-photon excitation microscopy; our technique combines annular illumination with an in situ estimation of the point spread function (PSF) used for deconvolution. For the in situ estimation of the PSF, we developed a technique called autocorrelation scanning, in which a sample is imaged by the scanning of two excitation foci that are overlapped over various distances. The image series obtained with the variation of the distance between the two foci provides the autocorrelation function of the PSF, which can be used to estimate the PSF at specific positions within a sample. We proved the principle and the effectiveness of this technique through observations of a fluorescent biological sample, and we confirmed that the improvement in the spatial resolution was ~1.7 times that of typical two-photon excitation microscopy by observing a mouse brain phantom at a depth of 200 µm.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy

Ziwei Li, Jia Hou, Jinli Suo, Chang Qiao, Lingjie Kong, and Qionghai Dai
Opt. Express 25(25) 32010-32020 (2017)

On-the-fly estimation of a microscopy point spread function

Jizhou Li, Feng Xue, Fuyang Qu, Yi-Ping Ho, and Thierry Blu
Opt. Express 26(20) 26120-26133 (2018)

Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thick scattering samples

Peter W. Winter, Andrew G. York, Damian Dalle Nogare, Maria Ingaramo, Ryan Christensen, Ajay Chitnis, George H. Patterson, and Hari Shroff
Optica 1(3) 181-191 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  3. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [Crossref] [PubMed]
  4. K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
    [Crossref] [PubMed]
  5. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
    [Crossref] [PubMed]
  6. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
    [Crossref] [PubMed]
  7. M. Yamanaka, N. I. Smith, and K. Fujita, “Introduction to super-resolution microscopy,” Microscopy (Oxf.) 63(3), 177–192 (2014).
    [Crossref] [PubMed]
  8. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  9. C. H. Yeh and S. Y. Chen, “Two-photon-based structured illumination microscopy applied for superresolution optical biopsy,” Proc. SPIE 8588, 858826 (2013).
    [Crossref]
  10. B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
    [Crossref] [PubMed]
  11. K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed. Opt. Express 4(11), 2396–2410 (2013).
    [Crossref] [PubMed]
  12. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  13. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
    [Crossref] [PubMed]
  14. K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J. 104(4), 770–777 (2013).
    [Crossref] [PubMed]
  15. P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
    [Crossref] [PubMed]
  16. T. Scheul, C. D’Amico, I. Wang, and J.-C. Vial, “Two-photon excitation and stimulated emission depletion by a single wavelength,” Opt. Express 19(19), 18036–18048 (2011).
    [Crossref] [PubMed]
  17. P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
    [Crossref] [PubMed]
  18. A. D. Nguyen, F. Duport, A. Bouwens, F. Vanholsbeeck, D. Egrise, G. Van Simaeys, P. Emplit, S. Goldman, and S.-P. Gorza, “3D super-resolved in vitro multiphoton microscopy by saturation of excitation,” Opt. Express 23(17), 22667–22675 (2015).
    [Crossref] [PubMed]
  19. R. Oketani, A. Doi, N. I. Smith, Y. Nawa, S. Kawata, and K. Fujita, “Saturated two-photon excitation fluorescence microscopy with core-ring illumination,” Opt. Lett. 42(3), 571–574 (2017).
    [Crossref] [PubMed]
  20. K. Isobe, H. Kawano, T. Takeda, A. Suda, A. Kumagai, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy,” Biomed. Opt. Express 3(7), 1594–1608 (2012).
    [Crossref] [PubMed]
  21. W.-C. Kuo, Y.-T. Shih, H.-C. Hsu, Y.-H. Cheng, Y.-H. Liao, and C.-K. Sun, “Virtual spatial overlap modulation microscopy for resolution improvement,” Opt. Express 21(24), 30007–30018 (2013).
    [Crossref] [PubMed]
  22. M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci 365(1861), 2829–2843 (2007).
    [Crossref] [PubMed]
  23. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
    [Crossref] [PubMed]
  24. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
    [Crossref] [PubMed]
  25. N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
    [Crossref] [PubMed]
  26. K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
    [Crossref] [PubMed]
  27. K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
    [Crossref] [PubMed]
  28. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
    [Crossref] [PubMed]
  29. S. A. Rahman and M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt. 52(22), 5523–5532 (2013).
    [Crossref] [PubMed]
  30. I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
    [Crossref]
  31. S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
    [Crossref]
  32. E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
    [Crossref]
  33. P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281(7), 1855–1859 (2008).
    [Crossref]
  34. M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84(8), 4033–4042 (1998).
    [Crossref]
  35. P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92(10), 103902 (2008).
    [Crossref]
  36. C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).
    [Crossref] [PubMed]
  37. H. Yoo, I. Song, and D.-G. Gweon, “Measurement and restoration of the point spread function of fluorescence confocal microscopy,” J. Microsc. 221(3), 172–176 (2006).
    [Crossref] [PubMed]
  38. J. W. Shaevitz and D. A. Fletcher, “Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function,” J. Opt. Soc. Am. A 24(9), 2622–2627 (2007).
    [Crossref] [PubMed]
  39. H. T. M. van der Voort and G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158(1), 43–54 (1990).
    [Crossref]
  40. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]

2017 (1)

2016 (1)

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
[Crossref]

2015 (3)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

A. D. Nguyen, F. Duport, A. Bouwens, F. Vanholsbeeck, D. Egrise, G. Van Simaeys, P. Emplit, S. Goldman, and S.-P. Gorza, “3D super-resolved in vitro multiphoton microscopy by saturation of excitation,” Opt. Express 23(17), 22667–22675 (2015).
[Crossref] [PubMed]

2014 (2)

M. Yamanaka, N. I. Smith, and K. Fujita, “Introduction to super-resolution microscopy,” Microscopy (Oxf.) 63(3), 177–192 (2014).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

2013 (7)

S. A. Rahman and M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt. 52(22), 5523–5532 (2013).
[Crossref] [PubMed]

W.-C. Kuo, Y.-T. Shih, H.-C. Hsu, Y.-H. Cheng, Y.-H. Liao, and C.-K. Sun, “Virtual spatial overlap modulation microscopy for resolution improvement,” Opt. Express 21(24), 30007–30018 (2013).
[Crossref] [PubMed]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J. 104(4), 770–777 (2013).
[Crossref] [PubMed]

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

K. Isobe, T. Takeda, K. Mochizuki, Q. Song, A. Suda, F. Kannari, H. Kawano, A. Kumagai, A. Miyawaki, and K. Midorikawa, “Enhancement of lateral resolution and optical sectioning capability of two-photon fluorescence microscopy by combining temporal-focusing with structured illumination,” Biomed. Opt. Express 4(11), 2396–2410 (2013).
[Crossref] [PubMed]

C. H. Yeh and S. Y. Chen, “Two-photon-based structured illumination microscopy applied for superresolution optical biopsy,” Proc. SPIE 8588, 858826 (2013).
[Crossref]

2012 (3)

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

K. Isobe, H. Kawano, T. Takeda, A. Suda, A. Kumagai, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy,” Biomed. Opt. Express 3(7), 1594–1608 (2012).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

2011 (2)

T. Scheul, C. D’Amico, I. Wang, and J.-C. Vial, “Two-photon excitation and stimulated emission depletion by a single wavelength,” Opt. Express 19(19), 18036–18048 (2011).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

2009 (1)

2008 (2)

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281(7), 1855–1859 (2008).
[Crossref]

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92(10), 103902 (2008).
[Crossref]

2007 (2)

2006 (4)

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

H. Yoo, I. Song, and D.-G. Gweon, “Measurement and restoration of the point spread function of fluorescence confocal microscopy,” J. Microsc. 221(3), 172–176 (2006).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

2005 (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

2003 (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).
[Crossref] [PubMed]

2002 (1)

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

2000 (2)

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1998 (1)

M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84(8), 4033–4042 (1998).
[Crossref]

1995 (1)

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

1994 (1)

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

H. T. M. van der Voort and G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158(1), 43–54 (1990).
[Crossref]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Albert, O.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Avignone, E.

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

Backman, V.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Bethge, P.

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

Betzig, E.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

Bianchini, P.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

Booth, M. J.

S. A. Rahman and M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt. 52(22), 5523–5532 (2013).
[Crossref] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci 365(1861), 2829–2843 (2007).
[Crossref] [PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Botcherby, E. J.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

Bouwens, A.

Brakenhoff, G. J.

H. T. M. van der Voort and G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158(1), 43–54 (1990).
[Crossref]

Bronner, M. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Chen, S.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Chen, S. Y.

C. H. Yeh and S. Y. Chen, “Two-photon-based structured illumination microscopy applied for superresolution optical biopsy,” Proc. SPIE 8588, 858826 (2013).
[Crossref]

Cheng, Y.-H.

Chéreau, R.

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

D’Amico, C.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

DeVries, S. H.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Diaspro, A.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281(7), 1855–1859 (2008).
[Crossref]

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92(10), 103902 (2008).
[Crossref]

Ding, J. B.

K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J. 104(4), 770–777 (2013).
[Crossref] [PubMed]

Doi, A.

Dong, B.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Dong, C.-Y.

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).
[Crossref] [PubMed]

Duport, F.

Egrise, D.

Emplit, P.

Engerer, P.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Fletcher, D. A.

Fujita, K.

Galiani, S.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

Goldman, S.

Gorza, S.-P.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Gweon, D.-G.

H. Yoo, I. Song, and D.-G. Gweon, “Measurement and restoration of the point spread function of fluorescence confocal microscopy,” J. Microsc. 221(3), 172–176 (2006).
[Crossref] [PubMed]

Hänninen, P. E.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

Harke, B.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

Harvey, B. K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Hell, S. W.

G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref] [PubMed]

M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84(8), 4033–4042 (1998).
[Crossref]

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[Crossref] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

Hoover, E. E.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Horton, N. G.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Hsu, H.-C.

Isobe, K.

Ji, N.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

Jouhanneau, J.-S.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
[Crossref]

Judkewitz, B.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
[Crossref]

Juškaitis, R.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Kannari, F.

Kawano, H.

Kawata, S.

R. Oketani, A. Doi, N. I. Smith, Y. Nawa, S. Kawata, and K. Fujita, “Saturated two-photon excitation fluorescence microscopy with core-ring illumination,” Opt. Lett. 42(3), 571–574 (2017).
[Crossref] [PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Kobat, D.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Koenig, K.

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).
[Crossref] [PubMed]

Kumagai, A.

Kuo, W.-C.

Kuusisto, A.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

Liao, Y.-H.

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Marsicano, G.

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

Midorikawa, K.

Milkie, D. E.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Misgeld, T.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Miyawaki, A.

Mizuno, H.

Mochizuki, K.

Mondal, P. P.

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92(10), 103902 (2008).
[Crossref]

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281(7), 1855–1859 (2008).
[Crossref]

Moneron, G.

Mumm, J.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Nägerl, U. V.

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

Nawa, Y.

Neil, M. A. A.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Nguyen, A. D.

Norris, T. B.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Oketani, R.

Papadopoulos, I. N.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
[Crossref]

Poulet, J. F. A.

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
[Crossref]

Rahman, S. A.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Richie, C. T.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

Sabatini, B. L.

K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J. 104(4), 770–777 (2013).
[Crossref] [PubMed]

Sato, T. R.

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

Saxena, A.

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Scheul, T.

Schrader, M.

M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84(8), 4033–4042 (1998).
[Crossref]

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

Shaevitz, J. W.

Sherman, L.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Shih, Y.-T.

Smith, N. I.

So, P.

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).
[Crossref] [PubMed]

Soini, E.

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

Song, I.

H. Yoo, I. Song, and D.-G. Gweon, “Measurement and restoration of the point spread function of fluorescence confocal microscopy,” J. Microsc. 221(3), 172–176 (2006).
[Crossref] [PubMed]

Song, Q.

Squier, J. A.

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Suda, A.

Sun, C.-K.

Sun, W.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Takasaki, K. T.

K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J. 104(4), 770–777 (2013).
[Crossref] [PubMed]

Takeda, T.

Tanaka, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Urban, B. E.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

van der Voort, H. T. M.

M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84(8), 4033–4042 (1998).
[Crossref]

H. T. M. van der Voort and G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158(1), 43–54 (1990).
[Crossref]

Van Simaeys, G.

Vanholsbeeck, F.

Vial, J.-C.

Vicidomini, G.

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92(10), 103902 (2008).
[Crossref]

Wang, I.

Wang, K.

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wichmann, J.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wilson, T.

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Xu, C.

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

Yamanaka, M.

M. Yamanaka, N. I. Smith, and K. Fujita, “Introduction to super-resolution microscopy,” Microscopy (Oxf.) 63(3), 177–192 (2014).
[Crossref] [PubMed]

Yasuda, R.

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Ye, J. Y.

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

Yeh, C. H.

C. H. Yeh and S. Y. Chen, “Two-photon-based structured illumination microscopy applied for superresolution optical biopsy,” Proc. SPIE 8588, 858826 (2013).
[Crossref]

Yi, J.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Yoo, H.

H. Yoo, I. Song, and D.-G. Gweon, “Measurement and restoration of the point spread function of fluorescence confocal microscopy,” J. Microsc. 221(3), 172–176 (2006).
[Crossref] [PubMed]

Zhang, H. F.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Zhu, Y.

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. P. Mondal, G. Vicidomini, and A. Diaspro, “Image reconstruction for multiphoton fluorescence microscopy,” Appl. Phys. Lett. 92(10), 103902 (2008).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (2)

K. T. Takasaki, J. B. Ding, and B. L. Sabatini, “Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy,” Biophys. J. 104(4), 770–777 (2013).
[Crossref] [PubMed]

P. Bethge, R. Chéreau, E. Avignone, G. Marsicano, and U. V. Nägerl, “Two-photon excitation STED microscopy in two colors in acute brain slices,” Biophys. J. 104(4), 778–785 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Schrader, S. W. Hell, and H. T. M. van der Voort, “Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration,” J. Appl. Phys. 84(8), 4033–4042 (1998).
[Crossref]

J. Biomed. Opt. (2)

C.-Y. Dong, K. Koenig, and P. So, “Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium,” J. Biomed. Opt. 8(3), 450–459 (2003).
[Crossref] [PubMed]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt. 16(10), 106014 (2011).
[Crossref] [PubMed]

J. Microsc. (5)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200(2), 105–108 (2000).
[Crossref] [PubMed]

L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, “Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror,” J. Microsc. 206(1), 65–71 (2002).
[Crossref] [PubMed]

H. Yoo, I. Song, and D.-G. Gweon, “Measurement and restoration of the point spread function of fluorescence confocal microscopy,” J. Microsc. 221(3), 172–176 (2006).
[Crossref] [PubMed]

H. T. M. van der Voort and G. J. Brakenhoff, “3-D image formation in high-aperture fluorescence confocal microscopy: a numerical analysis,” J. Microsc. 158(1), 43–54 (1990).
[Crossref]

J. Opt. Soc. Am. A (1)

Microscopy (Oxf.) (1)

M. Yamanaka, N. I. Smith, and K. Fujita, “Introduction to super-resolution microscopy,” Microscopy (Oxf.) 63(3), 177–192 (2014).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wang, W. Sun, C. T. Richie, B. K. Harvey, E. Betzig, and N. Ji, “Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue,” Nat. Commun. 6, 7276 (2015).
[Crossref] [PubMed]

Nat. Methods (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[Crossref] [PubMed]

K. Wang, D. E. Milkie, A. Saxena, P. Engerer, T. Misgeld, M. E. Bronner, J. Mumm, and E. Betzig, “Rapid adaptive optical recovery of optimal resolution over large volumes,” Nat. Methods 11(6), 625–628 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

I. N. Papadopoulos, J.-S. Jouhanneau, J. F. A. Poulet, and B. Judkewitz, “Scattering compensation by focus scanning holographic aberration probing (F-SHARP),” Nat. Photonics 11(2), 116–123 (2016).
[Crossref]

E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7(2), 93–101 (2013).
[Crossref] [PubMed]

Neuron (1)

K. Svoboda and R. Yasuda, “Principles of two-photon excitation microscopy and its applications to neuroscience,” Neuron 50(6), 823–839 (2006).
[Crossref] [PubMed]

Opt. Commun. (3)

S. W. Hell, P. E. Hänninen, A. Kuusisto, M. Schrader, and E. Soini, “Annular aperture two-photon excitation microscopy,” Opt. Commun. 117(1–2), 20–24 (1995).
[Crossref]

E. J. Botcherby, R. Juškaitis, and T. Wilson, “Scanning two photon fluorescence microscopy with extended depth of field,” Opt. Commun. 268(2), 253–260 (2006).
[Crossref]

P. P. Mondal and A. Diaspro, “Lateral resolution improvement in two-photon excitation microscopy by aperture engineering,” Opt. Commun. 281(7), 1855–1859 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Philos Trans A Math Phys Eng Sci (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci 365(1861), 2829–2843 (2007).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

B. E. Urban, J. Yi, S. Chen, B. Dong, Y. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, “Super-resolution two-photon microscopy via scanning patterned illumination,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91(4), 042703 (2015).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (3)

P. Bianchini, B. Harke, S. Galiani, G. Vicidomini, and A. Diaspro, “Single-wavelength two-photon excitation-stimulated emission depletion (SW2PE-STED) superresolution imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(17), 6390–6393 (2012).
[Crossref] [PubMed]

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17137–17142 (2006).
[Crossref] [PubMed]

N. Ji, T. R. Sato, and E. Betzig, “Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex,” Proc. Natl. Acad. Sci. U.S.A. 109(1), 22–27 (2012).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Proc. SPIE (1)

C. H. Yeh and S. Y. Chen, “Two-photon-based structured illumination microscopy applied for superresolution optical biopsy,” Proc. SPIE 8588, 858826 (2013).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a, c) Autocorrelation curves for the circular and annular illuminations; in these images, the coherent and incoherent conditions are compared. (b, d) Comparison of the estimated PSFs for two-photon excitation and original PSFs with circular polarization for circular and annular illuminations. The estimated PSFs in (b) and (d) were calculated from the autocorrelation curves shown in (a) and (c).
Fig. 2
Fig. 2 (a) Schematic of the experimental setup. In it, HWP means half-wave plate, PBS means polarized beam splitter, QWP means quarter-wave plate, TL means tube lens, DM means dichromic mirror, OL means objective lens, PMT means photo multiplier tube, and FLUOVIEW FV1200 represents the laser scanning microscope system (Olympus corp.). The mask is placed very close to PBS2. The dashed line implies that the relay lens makes an image of PBS2 (and mask) on the two-axis galvanometer mirror in FLUOVIEW FV1200. The red and green lines indicate excitation and fluorescent light, respectively. (b) The mask used for the annular illumination. The excitation beam inner below 62.5% in diameter is blocked at the pupil of the objective lens. (c) A schematic diagram of the excitation beam focused by the objective lens. The intensity of the two spots I corresponds to that given in Eq. (5). Spot2 can be scanned against spot1 by tilting PBS2 in (a), and both spots can be scanned together by the two-axis galvanometer mirror in FLUOVIEW FV1200.
Fig. 3
Fig. 3 PSF estimation process with experimental data from HeLa cells. (a) Image of HeLa cells (512 × 512 pixels, 0.05 µm/pixel) taken using annular illumination. Autocorrelation scanning was performed in the boxed area (128 × 48 pixels, 150 µm/pixel). The laser power was 0.7 mW. (b) Autocorrelation curve. Insets are images taken by two spots with corresponding spot distances, where the sum of the signal is plotted in the curve. The curve was averaged five times to improve the signal-to-noise ratio. (c) Profile of the PSF estimated from the autocorrelation curve. A PSF measured with a fluorescence bead (called Measured PSF) is compared against.
Fig. 4
Fig. 4 Imaging results of HeLa cells (300 × 300 pixels, 0.05 µm/pixel) (a)–(d) Images observed using circular illumination, annular illumination, a deconvolution image of circular illumination, and a deconvolution image of annular illumination, respectively. (e)–(h) Expanded images (91 × 91 pixels) of the area indicated by the small box in (a). (i, j) Normalized line profiles of the position shown by the dashed line A and B in (e), respectively.
Fig. 5
Fig. 5 PSF estimation process with experimental data of mouse brain phantom. (a) Image of a bead in the phantom (151 × 51 pixels, 0.05 µm/pixel) taken by annular illumination at depth of 200 µm for autocorrelation scanning. The laser power was 22 mW. (b) Autocorrelation curve. Insets are images taken by two spots with correspondent distance. The curve was 10 times averaged. (c) Line profile and 2D image of estimated PSF. Line profile of the measured PSF at same depth is compared.
Fig. 6
Fig. 6 Imaging results (512 × 192 pixels, 0.05 µm/pixel) of mouse brain phantom at depth of 200 µm by (a) circular illumination, (b) annular illumination, and (c) a deconvolution image of annular illumination. (d, e) XZ images of one bead taken by circular and annular illuminations. (f) Normalized line profiles at a dashed position in (a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I fl_2PE (u) { I 2 (x,y,z)+ I 2 (x+u,y,z)+2I(x,y,z)I(x+u,y,z) }dxdydz .
G(u)= I(x,y,z)I(x+u,y,z)dxdydz .
F[ G(u) ]= ( F[ I(u) ] ) 2 .
I(u)= F -1 { ( F[ G(u) ] ) 1/2 }.
I fl_2PE (u) { I 2 (x,y,z)+ I 2 (x+u,y,z)+2I(x,y,z)I(x+u,y,z) +2( I(x,y,z)+I(x+u,y,z) )( E * (x,y,z)E(x+u,y,z)+E(x,y,z) E * (x+u,y,z) ) + ( E * (x,y,z)E(x+u,y,z)+E(x,y,z) E * (x+u,y,z) ) 2 }dxdydz.
G(u)= ρ(x,y,z)dxdy I(x,y,z)I(x+u,y,z)dxdydz .

Metrics