Abstract

We describe a first-and-second-diffractive-order intraocular lens ((1st,2nd)DIOL) within the class of hybrid refractive-diffractive designs for intraocular lenses (IOLs) and analyse its properties of focus extension and compensation of longitudinal chromatic aberration (LCA), particularly for lenses with low addition. Power, energy efficiency and their wavelength dependence are extended from monofocal IOL and conventional bifocal zeroth-and-first-diffractive-order IOL ((0th,1st)DIOL) to (1st,2nd)DIOL of low addition. Compensation of LCA is experimentally assessed in optical bench through the through-focus energy efficiency of three Tecnis IOLs with red, green and blue illuminations: ZA9003 (monofocal), ZKB00 (bifocal (0th,1st)DIOL with + 2.75 D add) and Symfony ZXR00. We prove Tecnis Symfony ZXR00 IOL can be considered an example of (1st,2nd)DIOL design of low addition, with LCA compensation in both the distance and intermediate foci, whereas the bifocal (0th,1st)DIOL does not compensate in the distance focus. However, the energy efficiency of (1st,2nd)DIOL for wavelengths other than the design wavelength is markedly more asymmetric.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intra-ocular lens optical changes resulting from the loading of dexamethasone

José M. Artigas, M. Carmen García-Domene, Amparo Navea, Pablo Botella, and Eduardo Fernández
Biomed. Opt. Express 8(10) 4621-4628 (2017)

Optical evaluation of new-design multifocal IOLs with extended depth of focus

Eva Philippaki, Laure Gobin, Jaini Mandoda, Sébastien Lamy, and Fannie Castignoles
J. Opt. Soc. Am. A 36(5) 759-767 (2019)

Rapid adaptive remote focusing microscope for sensing of volumetric neural activity

Mantas Žurauskas, Oliver Barnstedt, Maria Frade-Rodriguez, Scott Waddell, and Martin J. Booth
Biomed. Opt. Express 8(10) 4369-4379 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. L. Cohen, “Practical design of a bifocal hologram contact lens or intraocular lens,” Appl. Opt. 31(19), 3750–3754 (1992).
    [Crossref] [PubMed]
  2. A. L. Cohen, “Diffractive bifocal lens designs,” Optom. Vis. Sci. 70(6), 461–468 (1993).
    [Crossref] [PubMed]
  3. J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
    [Crossref] [PubMed]
  4. F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
    [Crossref] [PubMed]
  5. S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
    [Crossref] [PubMed]
  6. J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
    [Crossref] [PubMed]
  7. A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
    [Crossref] [PubMed]
  8. G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur J Ophthalmol. Jun 26:0 [Epub ahead of print] (2017).
  9. N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
    [Crossref] [PubMed]
  10. H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
    [Crossref] [PubMed]
  11. M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
    [Crossref] [PubMed]
  12. M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
    [Crossref] [PubMed]
  13. D. Faklis and G. M. Morris, “Spectral properties of multiorder diffractive lenses,” Appl. Opt. 34(14), 2462–2468 (1995).
    [Crossref] [PubMed]
  14. D. W. Sweeney and G. E. Sommargren, “Harmonic diffractive lenses,” Appl. Opt. 34(14), 2469–2475 (1995).
    [Crossref] [PubMed]
  15. V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663–4666 (2013).
    [Crossref] [PubMed]
  16. J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
    [Crossref]
  17. H. A. Weeber, “Multi-ring lens, systems and methods for extended depth of focus,” US Patent No. 2014/0168602 A1. Pub. Date: Jun 19, 2014.
  18. D. Gatinel and J. Loicq, “Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses,” J. Refract. Surg. 32(4), 273–280 (2016).
    [Crossref] [PubMed]
  19. J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
    [Crossref] [PubMed]
  20. A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
    [Crossref] [PubMed]
  21. H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
    [Crossref] [PubMed]
  22. Abbott Medical Optics, https://www.vision.abbott .
  23. International Organization for Standardization, ISO 11979–2:2014 “Ophthalmic Implants - Intraocular Lenses - Part 2: Optical Properties and Test Methods.” Geneva; ISO; 2014.
  24. Thorlabs, Inc., https://www.thorlabs.com .
  25. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
    [Crossref] [PubMed]
  26. Z. Zalevsky, “Extended depth of focus imaging: a review,” J. of Photonics for Energy 018001 (2010).

2016 (4)

A. Alarcon, C. Canovas, R. Rosen, H. Weeber, L. Tsai, K. Hileman, and P. Piers, “Preclinical metrics to predict through-focus visual acuity for pseudophakic patients,” Biomed. Opt. Express 7(5), 1877–1888 (2016).
[Crossref] [PubMed]

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

D. Gatinel and J. Loicq, “Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses,” J. Refract. Surg. 32(4), 273–280 (2016).
[Crossref] [PubMed]

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

2015 (3)

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

M. Vinas, C. Dorronsoro, D. Cortes, D. Pascual, and S. Marcos, “Longitudinal chromatic aberration of the human eye in the visible and near infrared from wavefront sensing, double-pass and psychophysics,” Biomed. Opt. Express 6(3), 948–962 (2015).
[Crossref] [PubMed]

2014 (1)

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

2013 (2)

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663–4666 (2013).
[Crossref] [PubMed]

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
[Crossref]

2012 (1)

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

2011 (1)

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

2007 (2)

J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
[Crossref] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

2006 (1)

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

2004 (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

1995 (2)

1993 (1)

A. L. Cohen, “Diffractive bifocal lens designs,” Optom. Vis. Sci. 70(6), 461–468 (1993).
[Crossref] [PubMed]

1992 (1)

Alarcon, A.

Alba-Bueno, F.

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

Albero, J.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
[Crossref]

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663–4666 (2013).
[Crossref] [PubMed]

Alfonso, J. F.

J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
[Crossref] [PubMed]

Applegate, R. A.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Baamonde, M. B.

J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
[Crossref] [PubMed]

Bradley, A.

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Calero, V.

Canovas, C.

Cohen, A. L.

Cortes, D.

Davison, J. A.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

Del Águila-Carrasco, A. J.

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

Domínguez-Vicent, A.

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

Dorronsoro, C.

Esteve-Taboada, J. J.

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

Faklis, D.

Fernández-Vega, L.

J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
[Crossref] [PubMed]

Ferrer-Blasco, T.

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

García-Martínez, P.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
[Crossref]

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663–4666 (2013).
[Crossref] [PubMed]

Gatinel, D.

D. Gatinel and J. Loicq, “Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses,” J. Refract. Surg. 32(4), 273–280 (2016).
[Crossref] [PubMed]

Hileman, K.

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Loicq, J.

D. Gatinel and J. Loicq, “Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses,” J. Refract. Surg. 32(4), 273–280 (2016).
[Crossref] [PubMed]

López-Gil, N.

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

Marcos, S.

Martínez, J. L.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
[Crossref]

Meijer, S. T.

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

Millán, M. S.

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

Montés-Micó, R.

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
[Crossref] [PubMed]

Moreno, I.

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
[Crossref]

V. Calero, P. García-Martínez, J. Albero, M. M. Sánchez-López, and I. Moreno, “Liquid crystal spatial light modulator with very large phase modulation operating in high harmonic orders,” Opt. Lett. 38(22), 4663–4666 (2013).
[Crossref] [PubMed]

Morris, G. M.

Pascual, D.

Piers, P.

Piers, P. A.

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Ravikumar, S.

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

Ríos-López, I.

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

Rosen, R.

Sánchez-López, M. M.

Simpson, M. J.

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

Sommargren, G. E.

Sweeney, D. W.

Thibos, L. N.

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Tsai, L.

Vega, F.

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

Vinas, M.

Weeber, H.

Weeber, H. A.

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Biomed. Opt. Express (2)

Graefes Arch. Clin. Exp. Ophthalmol. (1)

A. Domínguez-Vicent, J. J. Esteve-Taboada, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “In vitro optical quality comparison between the Mini WELL Ready progressive multifocal and the TECNIS Symfony,” Graefes Arch. Clin. Exp. Ophthalmol. 254(7), 1387–1397 (2016).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

F. Vega, F. Alba-Bueno, and M. S. Millán, “Energy distribution between distance and near images in apodized diffractive multifocal intraocular lenses,” Invest. Ophthalmol. Vis. Sci. 52(8), 5695–5701 (2011).
[Crossref] [PubMed]

M. S. Millán, F. Vega, and I. Ríos-López, “Polychromatic image performance of diffractive bifocal intraocular lenses: longitudinal chromatic aberration and energy efficiency,” Invest. Ophthalmol. Vis. Sci. 57(4), 2021–2028 (2016).
[Crossref] [PubMed]

J. Cataract Refract. Surg. (5)

S. Ravikumar, A. Bradley, and L. N. Thibos, “Chromatic aberration and polychromatic image quality with diffractive multifocal intraocular lenses,” J. Cataract Refract. Surg. 40(7), 1192–1204 (2014).
[Crossref] [PubMed]

J. F. Alfonso, L. Fernández-Vega, M. B. Baamonde, and R. Montés-Micó, “Prospective visual evaluation of apodized diffractive intraocular lenses,” J. Cataract Refract. Surg. 33(7), 1235–1243 (2007).
[Crossref] [PubMed]

N. López-Gil and R. Montés-Micó, “New intraocular lens for achromatizing the human eye,” J. Cataract Refract. Surg. 33(7), 1296–1302 (2007).
[Crossref] [PubMed]

H. A. Weeber, S. T. Meijer, and P. A. Piers, “Extending the range of vision using diffractive intraocular lens technology,” J. Cataract Refract. Surg. 41(12), 2746–2754 (2015).
[Crossref] [PubMed]

J. A. Davison and M. J. Simpson, “History and development of the apodized diffractive intraocular lens,” J. Cataract Refract. Surg. 32(5), 849–858 (2006).
[Crossref] [PubMed]

J. Refract. Surg. (3)

D. Gatinel and J. Loicq, “Clinically Relevant Optical Properties of Bifocal, Trifocal, and Extended Depth of Focus Intraocular Lenses,” J. Refract. Surg. 32(4), 273–280 (2016).
[Crossref] [PubMed]

J. J. Esteve-Taboada, A. Domínguez-Vicent, A. J. Del Águila-Carrasco, T. Ferrer-Blasco, and R. Montés-Micó, “Effect of large apertures on the optical quality of three multifocal lenses,” J. Refract. Surg. 31(10), 666–676 (2015).
[Crossref] [PubMed]

H. A. Weeber and P. A. Piers, “Theoretical performance of intraocular lenses correcting both spherical and chromatic aberration,” J. Refract. Surg. 28(1), 48–52 (2012).
[Crossref] [PubMed]

J. Vis. (1)

L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 329–351 (2004).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

J. Albero, P. García-Martínez, J. L. Martínez, and I. Moreno, “Second order diffractive optical elements in a spatial light modulator with large phase dynamic range,” Opt. Lasers Eng. 51(2), 111–115 (2013).
[Crossref]

Opt. Lett. (1)

Optom. Vis. Sci. (1)

A. L. Cohen, “Diffractive bifocal lens designs,” Optom. Vis. Sci. 70(6), 461–468 (1993).
[Crossref] [PubMed]

Other (6)

Abbott Medical Optics, https://www.vision.abbott .

International Organization for Standardization, ISO 11979–2:2014 “Ophthalmic Implants - Intraocular Lenses - Part 2: Optical Properties and Test Methods.” Geneva; ISO; 2014.

Thorlabs, Inc., https://www.thorlabs.com .

H. A. Weeber, “Multi-ring lens, systems and methods for extended depth of focus,” US Patent No. 2014/0168602 A1. Pub. Date: Jun 19, 2014.

G. Cardona, F. Vega, M. A. Gil, C. Varón, J. A. Buil, and M. S. Millán, “Visual acuity and image quality in 5 diffractive intraocular lenses,” Eur J Ophthalmol. Jun 26:0 [Epub ahead of print] (2017).

Z. Zalevsky, “Extended depth of focus imaging: a review,” J. of Photonics for Energy 018001 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Symfony IOL tested in the work. Measured values for ring diameter and step height are listed in Table 2.
Fig. 2
Fig. 2 Experimental TF-EE curves of 30D Tecnis monofocal ZA9003 and bifocal ZKB00 ( + 2.75D) IOLs obtained in-vitro under R (solid red line), G (solid green line) and B (solid blue line) LED lights. Small squares represent experimental measurements.
Fig. 3
Fig. 3 Experimental TF-EE curves of 30D Tecnis Symfony ZXR00 IOL obtained in-vitro with (a) 2.2 mm pupil and (b) 3.5 mm pupil, under R (solid red line), G (solid green line) and B (solid blue line) LED lights. Small squares represent experimental measurements.
Fig. 4
Fig. 4 Decomposition of (a) B, (b) G, and (c) R experimental TF-EE curves of Tecnis Symfony ZXR00 IOL (Fig. 3a) in terms of addition of Gaussian functions centered at the distance and intermediate foci: Experimental curve (thick solid line), fit function (black solid line) resulting from the addition of Gaussian functions centered at distance focus (dark dashed line) and intermediate focus (dotted line) that minimizes the cumulative square error over the range.

Tables (6)

Tables Icon

Table 1 Optical data of Tecnis (Abbott Medical Optics) intraocular lensesa

Tables Icon

Table 2 Data of the Tecnis Symfony ZXR00 IOL (30D)

Tables Icon

Table 3 Spectral data of LEDsa

Tables Icon

Table 4 Power, energy efficiency and LCA measured for Tecnis ZA9003 and ZKB00 ( + 2.75 D) IOLsa

Tables Icon

Table 5 Theoretical estimations for (1st,2nd)DIOL

Tables Icon

Table 6 Tecnis Symfony ZXR00 IOL (30 D)a

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

P( λ 0 )= P r ( λ 0 )+ P d ( λ 0 ).
P r (λ)=( n L (λ) n A (λ))[1/ R 1 1/ R 2 ].
ϕ 0 = 2π λ 0 ( n L ( λ 0 ) n A ( λ 0 ))h.
P d ( λ 0 ,m)=m P d ( λ 0 ,1)
η m = sinc 2 (αpm),
α= λ 0 λ [ n L (λ) n A (λ) n L ( λ 0 ) n A ( λ 0 ) ].
P d (λ,m)= mλ λ 0 P d ( λ 0 ,1),
LCA(m)=Δ P r +Δ P d (m),
Δ P r {FdC}= P r ( λ F ) P r ( λ C )=[ ( n L ( λ d )1 V L )( n A ( λ d )1 V A ) ] P r ( λ d ) n L ( λ d ) n A ( λ d ) ,
Δ P d ( λ 0 ,m)=m Δλ λ 0 P d ( λ 0 ,1),
LC A distance {( 0 th , 1 st )DIOL}=Δ P r ( λ 0 ),
LC A near {( 0 th , 1 st )DIOL}=Δ P r ( λ 0 )+Δ P d ( λ 0 ,1),
P distance {( 1 st , 2 nd )DIOL, λ 0 }= P r ( λ 0 )+ P d ( λ 0 ,1),
P near {( 1 st , 2 nd )DIOL, λ 0 }= P r ( λ 0 )+2 P d ( λ 0 ,1),
LC A distance {( 1 st , 2 nd )DIOL}=Δ P r ( λ 0 ) Δλ λ 0 P d ( λ 0 ,1),
LC A near {( 1 st , 2 nd )DIOL}=Δ P r ( λ 0 )2 Δλ λ 0 P d ( λ 0 ,1),

Metrics