M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo,” J. Biophotonics 9(1-2), 55–60 (2016).

[Crossref]
[PubMed]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).

[Crossref]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain,” Biomed. Opt. Express 6(11), 4567–4584 (2015).

[Crossref]
[PubMed]

M. Jia, S. Cui, X. Chen, M. Liu, X. Zhou, H. Zhao, and F. Gao, “Image reconstruction method for laminar optical tomography with only a single Monte-Carlo simulation,” Chin. Opt. Lett. 12(3), 031702 (2014).

[Crossref]

X. Yi, X. Wang, W. Chen, W. Wan, H. Zhao, and F. Gao, “Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization,” Appl. Opt. 53(13), 2754–2765 (2014).

[Crossref]
[PubMed]

Y. Yamada and S. Okawa, “Diffuse optical tomography: present status and its future,” Opt. Rev. 21(3), 185–205 (2014).

[Crossref]

H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi, “Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations,” J. Quant. Spectrosc. Radiat. Transf. 147, 145–154 (2014).

[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).

[Crossref]
[PubMed]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

L. Yao, Y. Sun, and H. Jiang, “Quantitative photoacoustic tomography based on the radiative transfer equation,” Opt. Lett. 34(12), 1765–1767 (2009).

[Crossref]
[PubMed]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

[Crossref]
[PubMed]

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).

[Crossref]
[PubMed]

E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).

[Crossref]
[PubMed]

A. Joshi, W. Bangerth, and E. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004).

[Crossref]
[PubMed]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30(5), 861–869 (2003).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo,” J. Biophotonics 9(1-2), 55–60 (2016).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

A. P. Gibson, J. C. Hebden, J. Riley, N. Everdell, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions,” Appl. Opt. 44(19), 3925–3936 (2005).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo,” J. Biophotonics 9(1-2), 55–60 (2016).

[Crossref]
[PubMed]

T. J. Muldoon, S. A. Burgess, B. R. Chen, D. Ratner, and E. M. Hillman, “Analysis of skin lesions using laminar optical tomography,” Biomed. Opt. Express 3(7), 1701–1712 (2012).

[Crossref]
[PubMed]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

M. Jia, S. Cui, X. Chen, M. Liu, X. Zhou, H. Zhao, and F. Gao, “Image reconstruction method for laminar optical tomography with only a single Monte-Carlo simulation,” Chin. Opt. Lett. 12(3), 031702 (2014).

[Crossref]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain,” Biomed. Opt. Express 6(11), 4567–4584 (2015).

[Crossref]
[PubMed]

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15(24), 15908–15919 (2007).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

A. P. Gibson, J. C. Hebden, J. Riley, N. Everdell, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions,” Appl. Opt. 44(19), 3925–3936 (2005).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).

[Crossref]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[Crossref]
[PubMed]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi, “Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations,” J. Quant. Spectrosc. Radiat. Transf. 147, 145–154 (2014).

[Crossref]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

X. Yi, X. Wang, W. Chen, W. Wan, H. Zhao, and F. Gao, “Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization,” Appl. Opt. 53(13), 2754–2765 (2014).

[Crossref]
[PubMed]

M. Jia, S. Cui, X. Chen, M. Liu, X. Zhou, H. Zhao, and F. Gao, “Image reconstruction method for laminar optical tomography with only a single Monte-Carlo simulation,” Chin. Opt. Lett. 12(3), 031702 (2014).

[Crossref]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30(5), 861–869 (2003).

[Crossref]
[PubMed]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).

[Crossref]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, J. Riley, N. Everdell, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions,” Appl. Opt. 44(19), 3925–3936 (2005).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

T. J. Muldoon, S. A. Burgess, B. R. Chen, D. Ratner, and E. M. Hillman, “Analysis of skin lesions using laminar optical tomography,” Biomed. Opt. Express 3(7), 1701–1712 (2012).

[Crossref]
[PubMed]

E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi, “Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations,” J. Quant. Spectrosc. Radiat. Transf. 147, 145–154 (2014).

[Crossref]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

M. Jia, S. Cui, X. Chen, M. Liu, X. Zhou, H. Zhao, and F. Gao, “Image reconstruction method for laminar optical tomography with only a single Monte-Carlo simulation,” Chin. Opt. Lett. 12(3), 031702 (2014).

[Crossref]

L. Yao, Y. Sun, and H. Jiang, “Quantitative photoacoustic tomography based on the radiative transfer equation,” Opt. Lett. 34(12), 1765–1767 (2009).

[Crossref]
[PubMed]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30(5), 861–869 (2003).

[Crossref]
[PubMed]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo,” J. Biophotonics 9(1-2), 55–60 (2016).

[Crossref]
[PubMed]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).

[Crossref]

Y. Yamada and S. Okawa, “Diffuse optical tomography: present status and its future,” Opt. Rev. 21(3), 185–205 (2014).

[Crossref]

H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi, “Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations,” J. Quant. Spectrosc. Radiat. Transf. 147, 145–154 (2014).

[Crossref]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo,” J. Biophotonics 9(1-2), 55–60 (2016).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, J. Riley, N. Everdell, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions,” Appl. Opt. 44(19), 3925–3936 (2005).

[Crossref]
[PubMed]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

S. Arridge and M. Schweiger, “A gradient-based optimisation scheme foroptical tomography,” Opt. Express 2(6), 213–226 (1998).

[Crossref]
[PubMed]

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).

[Crossref]
[PubMed]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).

[Crossref]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).

[Crossref]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30(5), 861–869 (2003).

[Crossref]
[PubMed]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15(24), 15908–15919 (2007).

[Crossref]
[PubMed]

H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi, “Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations,” J. Quant. Spectrosc. Radiat. Transf. 147, 145–154 (2014).

[Crossref]

Y. Yamada and S. Okawa, “Diffuse optical tomography: present status and its future,” Opt. Rev. 21(3), 185–205 (2014).

[Crossref]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

M. Jia, S. Cui, X. Chen, M. Liu, X. Zhou, H. Zhao, and F. Gao, “Image reconstruction method for laminar optical tomography with only a single Monte-Carlo simulation,” Chin. Opt. Lett. 12(3), 031702 (2014).

[Crossref]

X. Yi, X. Wang, W. Chen, W. Wan, H. Zhao, and F. Gao, “Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization,” Appl. Opt. 53(13), 2754–2765 (2014).

[Crossref]
[PubMed]

A. P. Gibson, J. C. Hebden, J. Riley, N. Everdell, M. Schweiger, S. R. Arridge, and D. T. Delpy, “Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions,” Appl. Opt. 44(19), 3925–3936 (2005).

[Crossref]
[PubMed]

X. Yi, X. Wang, W. Chen, W. Wan, H. Zhao, and F. Gao, “Full domain-decomposition scheme for diffuse optical tomography of large-sized tissues with a combined CPU and GPU parallelization,” Appl. Opt. 53(13), 2754–2765 (2014).

[Crossref]
[PubMed]

X. Wu, A. T. Eggebrecht, S. L. Ferradal, J. P. Culver, and H. Dehghani, “Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain,” Biomed. Opt. Express 6(11), 4567–4584 (2015).

[Crossref]
[PubMed]

T. J. Muldoon, S. A. Burgess, B. R. Chen, D. Ratner, and E. M. Hillman, “Analysis of skin lesions using laminar optical tomography,” Biomed. Opt. Express 3(7), 1701–1712 (2012).

[Crossref]
[PubMed]

J. Kandel, E. Bossy-Wetzel, F. Radvanyi, M. Klagsbrun, J. Folkman, and D. Hanahan, “Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma,” Cell 66(6), 1095–1104 (1991).

[Crossref]
[PubMed]

A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging 18(3), 262–271 (1999).

[Crossref]
[PubMed]

S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009).

[Crossref]

M. Jia, H. Zhao, J. Li, L. Liu, L. Zhang, J. Jiang, and F. Gao, “Coupling between radiative transport and diffusion approximation for enhanced near-field photon-migration modeling based on transient photon kinetics,” J. Biomed. Opt. 21(5), 050501 (2016).

[Crossref]
[PubMed]

H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt. 15(4), 046005 (2010).

[Crossref]
[PubMed]

M. Schwarz, A. Buehler, J. Aguirre, and V. Ntziachristos, “Three-dimensional multispectral optoacoustic mesoscopy reveals melanin and blood oxygenation in human skin in vivo,” J. Biophotonics 9(1-2), 55–60 (2016).

[Crossref]
[PubMed]

C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, and Z. Gong, “GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method,” J. Comput. Phys. 230(15), 6010–6022 (2011).

[Crossref]

H. Fujii, S. Okawa, Y. Yamada, and Y. Hoshi, “Hybrid model of light propagation in random media based on the time-dependent radiative transfer and diffusion equations,” J. Quant. Spectrosc. Radiat. Transf. 147, 145–154 (2014).

[Crossref]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30(5), 861–869 (2003).

[Crossref]
[PubMed]

S. Gupta, P. K. Yalavarthy, D. Roy, D. Piao, and R. M. Vasu, “Singular value decomposition based computationally efficient algorithm for rapid dynamic near-infrared diffuse optical tomography,” Med. Phys. 36(12), 5559–5567 (2009).

[Crossref]
[PubMed]

I. Seo, C. K. Hayakawa, and V. Venugopalan, “Radiative transport in the delta-P1 approximation for semi-infinite turbid media,” Med. Phys. 35(2), 681–693 (2008).

[Crossref]
[PubMed]

A. Taruttis and V. Ntziachristos, “Advances in real-time multispectral optoacoustic imaging and its applications,” Nat. Photonics 9(4), 219–227 (2015).

[Crossref]

Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009).

[Crossref]
[PubMed]

A. Joshi, W. Bangerth, and E. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express 12(22), 5402–5417 (2004).

[Crossref]
[PubMed]

M. E. Eames, B. W. Pogue, P. K. Yalavarthy, and H. Dehghani, “An efficient Jacobian reduction method for diffuse optical image reconstruction,” Opt. Express 15(24), 15908–15919 (2007).

[Crossref]
[PubMed]

S. Arridge and M. Schweiger, “A gradient-based optimisation scheme foroptical tomography,” Opt. Express 2(6), 213–226 (1998).

[Crossref]
[PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).

[Crossref]
[PubMed]

E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).

[Crossref]
[PubMed]

L. Yao, Y. Sun, and H. Jiang, “Quantitative photoacoustic tomography based on the radiative transfer equation,” Opt. Lett. 34(12), 1765–1767 (2009).

[Crossref]
[PubMed]

A. Dunn and D. Boas, “Transport-based image reconstruction in turbid media with small source-detector separations,” Opt. Lett. 25(24), 1777–1779 (2000).

[Crossref]
[PubMed]

Y. Yamada and S. Okawa, “Diffuse optical tomography: present status and its future,” Opt. Rev. 21(3), 185–205 (2014).

[Crossref]

S. L. Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol. 58(11), R37–R61 (2013).

[Crossref]
[PubMed]

H. Zhao, S. Wang, M. Jia, X. Chen, J. Qi, J. Tian, W. Ma, J. Li, and F. Gao, “A modified laminar optical tomography system with small dip-angle and the initial validation,” Proc. SPIE 9700, 97001B (2016).

[Crossref]

E. M. Hillman, H. Dehghani, J. C. Hebden, S. R. Arridge, M. Schweiger, and D. T. Delpy, “Differential imaging in heterogeneous media: limitations of linearization assumptions in optical tomography,” Proc. SPIE 4250, 327–338 (2001).

[Crossref]

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).

[Crossref]
[PubMed]

A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations (Oxford Science, 1999).

G. H. Golub and C. F. Van Loan, Matrix Computation (Johns Hopkins Press, Baltimore, 1983).

L. Trefethen and D. Bau, Numerical Linear Algebra (Siam, 1997).

T. Papadopoulo and M.I. A. Lourakis, “Estimating the Jacobian of the Singular Value Decomposition: Theory and Applications,” Research Report 3961, INRIA Sophia-Antipolis, June 2000.

G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory (Academic, 1990).

M. E. Wall, A. Rechtsteinner, and L. M. Rocha, “Singular value decomposition and principal component analysis,” in A Practical Approach to Microarray Data Analysis, D. P. Berrar, W. Dubitzky, and M. Granzow ed. (Kluwer, Norwell, 2003).

C. Musco and C. Musco, “Randomized block krylov methods for stronger and faster approximate singular value decomposition,” in Proceedings of Neural Information Processing Systems 28 (NIPS, 2015), pp. 1396–1404.

A. Liutkus, “Randomized SVD,” MATLAB Central File Exchange, 2014.

V. Vijayan, “Fast SVD and PCA,” MATLAB Central File Exchange.

D. A. Boas, C. Pitris, and N. Ramanujam, Handbook of Biomedical Optics (Taylor and Francis, 2010).