Abstract

Vibrationally sensitive sum-frequency generation (SFG) microscopy is a chemically selective imaging technique sensitive to non-centrosymmetric molecular arrangements in biological samples. The routine use of SFG microscopy has been hampered by the difficulty of integrating the required mid-infrared excitation light into a conventional, laser-scanning nonlinear optical (NLO) microscope. In this work, we describe minor modifications to a regular laser-scanning microscope to accommodate SFG microscopy as an imaging modality. We achieve vibrationally sensitive SFG imaging of biological samples with sub-μm resolution at image acquisition rates of 1 frame/s, almost two orders of magnitude faster than attained with previous point-scanning SFG microscopes. Using the fast scanning capability, we demonstrate hyperspectral SFG imaging in the CH-stretching vibrational range and point out its use in the study of molecular orientation and arrangement in biologically relevant samples. We also show multimodal imaging by combining SFG microscopy with second-harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) on the same imaging platfrom. This development underlines that SFG microscopy is a unique modality with a spatial resolution and image acquisition time comparable to that of other NLO imaging techniques, making point-scanning SFG microscopy a valuable member of the NLO imaging family.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A multimodal platform for nonlinear optical microscopy and microspectroscopy

Hongtao Chen, Haifeng Wang, Mikhail N. Slipchenko, YooKyung Jung, Yunzhou Shi, Jiabin Zhu, Kimberly K. Buhman, and Ji-Xin Cheng
Opt. Express 17(3) 1282-1290 (2009)

Multimodal CARS microscopy of structured carbohydrate biopolymers

Aaron D. Slepkov, Andrew Ridsdale, Adrian F. Pegoraro, Douglas J. Moffatt, and Albert Stolow
Biomed. Opt. Express 1(5) 1347-1357 (2010)

Rapid vibrational imaging with sum frequency generation microscopy

Varun Raghunathan, Yang Han, Olaf Korth, Nien-Hui Ge, and Eric Olaf Potma
Opt. Lett. 36(19) 3891-3893 (2011)

References

  • View by:
  • |
  • |
  • |

  1. B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, Oxford, 2008)
  2. F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, Boca Raton, 2013).
  3. J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, Boca Raton, 2013).
  4. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
    [Crossref]
  5. C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular imaging with coherent nonlinear vibrational microscopy,” Annu. Rev. Phys. Chem. 64, 77–99 (2013).
    [Crossref]
  6. H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
    [Crossref]
  7. M. Flörsheimer, C. Briller, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency microscopy,” Langmuir 15, 5437–5439 (1999).
    [Crossref]
  8. D. M. P. Hoffmann, K. Kuhnke, and K. Kern, “Sum-frequency generation microscope for opaque and reflecting samples,” Rev. Sci. Instrum. 73, 3221–3226 (2002).
    [Crossref]
  9. K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
    [Crossref]
  10. K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110, 1807–1813 (2006).
    [Crossref] [PubMed]
  11. K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C 113, 16575–16588 (2009).
    [Crossref]
  12. K. A. Smith and J. C. Conboy, “A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays,” Anal. Chem. 84, 8122–8126 (2012).
    [Crossref] [PubMed]
  13. K. Locharoenrat, H. Sano, and Goro Mizutani, “Demonstration of confocal sum frequency microscopy,” Phys. Status Solidi C 6, 304–306 (2009).
    [Crossref]
  14. H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc. 65, 1254–1259 (2011).
    [Crossref] [PubMed]
  15. H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
    [Crossref]
  16. K. Inoue, M. Fujii, and M. Sakai, “Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cell,” Appl. Spectrosc. 64, 275–281 (2010).
    [Crossref] [PubMed]
  17. S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
    [Crossref]
  18. V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
    [Crossref] [PubMed]
  19. E. S. Lee, S. W. Lee, J. Hsu, and E. O. Potma, “Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens,” Biomed. Opt. Express 5, 2125–2134 (2014).
    [Crossref] [PubMed]
  20. Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
    [Crossref] [PubMed]
  21. Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
    [Crossref] [PubMed]
  22. C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
    [Crossref] [PubMed]
  23. H. Wang, T. Gao, and W. Xiong, “Self phase-stabilized heterodyne vibrational sum frequency generation microscopy,” ACS Photonics 4, 1839–1845 (2017).
    [Crossref]
  24. T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).
  25. J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005).
    [Crossref]
  26. M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
    [Crossref]
  27. J. T. Tabarangao and A. D. Slepkov, “Mimicking multimodal contrast with vertex component analysis of hyperspectral CARS images,” J. Spectrosc. 2015, 575807 (2015).
  28. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
    [Crossref]
  29. P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
    [Crossref] [PubMed]
  30. A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
    [Crossref] [PubMed]
  31. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
    [Crossref] [PubMed]
  32. R. M. J. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28, 2207–2209 (2003).
    [Crossref] [PubMed]
  33. Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
    [Crossref]
  34. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
    [Crossref] [PubMed]
  35. C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
    [Crossref] [PubMed]
  36. C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
    [Crossref] [PubMed]
  37. L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
    [Crossref]
  38. D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
    [Crossref] [PubMed]
  39. P. J. N. Kett, M. T. L. Casford, and P. B. Davies, “Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes,” J. Phys. Chem. B 117, 6455–6465 (2013).
    [Crossref] [PubMed]
  40. L. Fu, S. L. Chen, and H. F. Wang, “Validation of spectra and phase in sub-cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement,” J. Phys. Chem. B 120, 1579–1589 (2016).
    [Crossref]
  41. C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
    [Crossref]
  42. S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2, 1296–1306 (2011).
    [Crossref] [PubMed]
  43. E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
    [Crossref]
  44. J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
    [Crossref] [PubMed]
  45. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
    [Crossref]
  46. D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
    [Crossref]
  47. X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
    [Crossref] [PubMed]
  48. C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups,” J. Chem. Phys. 96, 997–1004 (1992).
    [Crossref]
  49. C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
    [Crossref]
  50. K. Reiser, P. Stoller, and A. Knoesen, “Three-dimensional geometry of collagenous tissues by second harmonic polarimetry,” Sci. Rep. 7, 2642 (2017).
    [Crossref] [PubMed]

2017 (2)

H. Wang, T. Gao, and W. Xiong, “Self phase-stabilized heterodyne vibrational sum frequency generation microscopy,” ACS Photonics 4, 1839–1845 (2017).
[Crossref]

K. Reiser, P. Stoller, and A. Knoesen, “Three-dimensional geometry of collagenous tissues by second harmonic polarimetry,” Sci. Rep. 7, 2642 (2017).
[Crossref] [PubMed]

2016 (4)

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

L. Fu, S. L. Chen, and H. F. Wang, “Validation of spectra and phase in sub-cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement,” J. Phys. Chem. B 120, 1579–1589 (2016).
[Crossref]

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
[Crossref] [PubMed]

2015 (4)

Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

J. T. Tabarangao and A. D. Slepkov, “Mimicking multimodal contrast with vertex component analysis of hyperspectral CARS images,” J. Spectrosc. 2015, 575807 (2015).

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
[Crossref]

2014 (2)

E. S. Lee, S. W. Lee, J. Hsu, and E. O. Potma, “Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens,” Biomed. Opt. Express 5, 2125–2134 (2014).
[Crossref] [PubMed]

C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
[Crossref] [PubMed]

2013 (5)

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular imaging with coherent nonlinear vibrational microscopy,” Annu. Rev. Phys. Chem. 64, 77–99 (2013).
[Crossref]

P. J. N. Kett, M. T. L. Casford, and P. B. Davies, “Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes,” J. Phys. Chem. B 117, 6455–6465 (2013).
[Crossref] [PubMed]

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

2012 (5)

E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
[Crossref]

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

K. A. Smith and J. C. Conboy, “A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays,” Anal. Chem. 84, 8122–8126 (2012).
[Crossref] [PubMed]

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

2011 (6)

H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc. 65, 1254–1259 (2011).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

S. Bégin, B. Burgoyne, V. Mercier, A. Villeneuve, R. Vallée, and D. Côté, “Coherent anti-Stokes Raman scattering hyperspectral tissue imaging with a wavelength-swept system,” Biomed. Opt. Express 2, 1296–1306 (2011).
[Crossref] [PubMed]

2010 (4)

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

K. Inoue, M. Fujii, and M. Sakai, “Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cell,” Appl. Spectrosc. 64, 275–281 (2010).
[Crossref] [PubMed]

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

2009 (3)

K. Locharoenrat, H. Sano, and Goro Mizutani, “Demonstration of confocal sum frequency microscopy,” Phys. Status Solidi C 6, 304–306 (2009).
[Crossref]

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C 113, 16575–16588 (2009).
[Crossref]

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

2007 (1)

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

2006 (1)

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110, 1807–1813 (2006).
[Crossref] [PubMed]

2005 (1)

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005).
[Crossref]

2004 (1)

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

2003 (2)

R. M. J. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28, 2207–2209 (2003).
[Crossref] [PubMed]

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

2002 (1)

D. M. P. Hoffmann, K. Kuhnke, and K. Kern, “Sum-frequency generation microscope for opaque and reflecting samples,” Rev. Sci. Instrum. 73, 3221–3226 (2002).
[Crossref]

1999 (1)

M. Flörsheimer, C. Briller, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency microscopy,” Langmuir 15, 5437–5439 (1999).
[Crossref]

1993 (1)

C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
[Crossref]

1992 (1)

C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups,” J. Chem. Phys. 96, 997–1004 (1992).
[Crossref]

1989 (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[Crossref]

Akamatsu, N.

C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
[Crossref]

C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups,” J. Chem. Phys. 96, 997–1004 (1992).
[Crossref]

Amat-Roldan, I.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Artigas, D.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Baldelli, S.

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C 113, 16575–16588 (2009).
[Crossref]

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110, 1807–1813 (2006).
[Crossref] [PubMed]

Barzda, V.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Bégin, S.

Ben-Amotz, D.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

Bird, B.

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Bittner, A. M.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

Boik, J.

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular imaging with coherent nonlinear vibrational microscopy,” Annu. Rev. Phys. Chem. 64, 77–99 (2013).
[Crossref]

Briller, C.

M. Flörsheimer, C. Briller, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency microscopy,” Langmuir 15, 5437–5439 (1999).
[Crossref]

Brown, R. M. J.

Burgoyne, B.

Campagnola, P. J.

Casford, M. T. L.

P. J. N. Kett, M. T. L. Casford, and P. B. Davies, “Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes,” J. Phys. Chem. B 117, 6455–6465 (2013).
[Crossref] [PubMed]

Chen, S. L.

L. Fu, S. L. Chen, and H. F. Wang, “Validation of spectra and phase in sub-cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement,” J. Phys. Chem. B 120, 1579–1589 (2016).
[Crossref]

Chen, W. L.

P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
[Crossref] [PubMed]

Chen, Y. F.

P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
[Crossref] [PubMed]

Cheng, J. X.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, Boca Raton, 2013).

Chernenko, T.

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Chung, C. Y.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular imaging with coherent nonlinear vibrational microscopy,” Annu. Rev. Phys. Chem. 64, 77–99 (2013).
[Crossref]

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

Cimatu, K.

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110, 1807–1813 (2006).
[Crossref] [PubMed]

Cimatu, K. A.

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C 113, 16575–16588 (2009).
[Crossref]

Cisek, R.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Conboy, J. C.

K. A. Smith and J. C. Conboy, “A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays,” Anal. Chem. 84, 8122–8126 (2012).
[Crossref] [PubMed]

Côté, D.

Davies, P. B.

P. J. N. Kett, M. T. L. Casford, and P. B. Davies, “Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes,” J. Phys. Chem. B 117, 6455–6465 (2013).
[Crossref] [PubMed]

Dettmar, C. M.

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

DeWalt, E. L.

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

Dias, J. M. B.

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005).
[Crossref]

Diem, M.

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Ding, S. Y.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

Domen, K.

C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
[Crossref]

C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups,” J. Chem. Phys. 96, 997–1004 (1992).
[Crossref]

Dong, C. F.

P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
[Crossref] [PubMed]

Dow, X. Y.

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

Erata, T.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Feng, R. R.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Feng, Y.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Flörsheimer, M.

M. Flörsheimer, C. Briller, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency microscopy,” Langmuir 15, 5437–5439 (1999).
[Crossref]

Frank, C. W.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Fu, L.

L. Fu, S. L. Chen, and H. F. Wang, “Validation of spectra and phase in sub-cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement,” J. Phys. Chem. B 120, 1579–1589 (2016).
[Crossref]

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
[Crossref]

Fuchs, H.

M. Flörsheimer, C. Briller, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency microscopy,” Langmuir 15, 5437–5439 (1999).
[Crossref]

Fujii, M.

K. Inoue, M. Fujii, and M. Sakai, “Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cell,” Appl. Spectrosc. 64, 275–281 (2010).
[Crossref] [PubMed]

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Gan, W.

H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
[Crossref]

Gao, T.

H. Wang, T. Gao, and W. Xiong, “Self phase-stabilized heterodyne vibrational sum frequency generation microscopy,” ACS Photonics 4, 1839–1845 (2017).
[Crossref]

Garbacik, E. T.

E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
[Crossref]

Ge, N. H.

Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Han, Y.

Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Herek, J. L.

E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
[Crossref]

Hieu, H. C.

Higashi, T.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Hirakawa, S.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Hirose, C.

C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
[Crossref]

C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups,” J. Chem. Phys. 96, 997–1004 (1992).
[Crossref]

Hoffmann, D. M. P.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

D. M. P. Hoffmann, K. Kuhnke, and K. Kern, “Sum-frequency generation microscope for opaque and reflecting samples,” Rev. Sci. Instrum. 73, 3221–3226 (2002).
[Crossref]

Hsu, J.

Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

E. S. Lee, S. W. Lee, J. Hsu, and E. O. Potma, “Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens,” Biomed. Opt. Express 5, 2125–2134 (2014).
[Crossref] [PubMed]

Huang, S.

C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
[Crossref] [PubMed]

Inoue, K.

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

K. Inoue, M. Fujii, and M. Sakai, “Development of a non-scanning vibrational sum-frequency generation detected infrared super-resolution microscope and its application to biological cell,” Appl. Spectrosc. 64, 275–281 (2010).
[Crossref] [PubMed]

Ishihara, M.

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Jester, J.

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

Kafle, K.

C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
[Crossref] [PubMed]

C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
[Crossref] [PubMed]

Kawamata, J.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Kelly, K. F.

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

Kern, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

D. M. P. Hoffmann, K. Kuhnke, and K. Kern, “Sum-frequency generation microscope for opaque and reflecting samples,” Rev. Sci. Instrum. 73, 3221–3226 (2002).
[Crossref]

Kett, P. J. N.

P. J. N. Kett, M. T. L. Casford, and P. B. Davies, “Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes,” J. Phys. Chem. B 117, 6455–6465 (2013).
[Crossref] [PubMed]

Kikuchi, M.

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

Kim, S. H.

C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
[Crossref] [PubMed]

C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
[Crossref] [PubMed]

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

Knoesen, A.

K. Reiser, P. Stoller, and A. Knoesen, “Three-dimensional geometry of collagenous tissues by second harmonic polarimetry,” Sci. Rep. 7, 2642 (2017).
[Crossref] [PubMed]

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Kogure, S.

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

Korth, O.

Koyano, M.

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

Krouglov, S.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Kubicki, J. D.

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

Kuhnke, K.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

D. M. P. Hoffmann, K. Kuhnke, and K. Kern, “Sum-frequency generation microscope for opaque and reflecting samples,” Rev. Sci. Instrum. 73, 3221–3226 (2002).
[Crossref]

Lee, C. M.

C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
[Crossref] [PubMed]

C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
[Crossref] [PubMed]

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

Lee, E. S.

Lee, S. W.

Levi, M.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

Li, H.

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc. 65, 1254–1259 (2011).
[Crossref] [PubMed]

Li, Y.

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

Lilledahl, M. B.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

Lim, R. S.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

Lin, C. Y.

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

Locharoenrat, K.

K. Locharoenrat, H. Sano, and Goro Mizutani, “Demonstration of confocal sum frequency microscopy,” Phys. Status Solidi C 6, 304–306 (2009).
[Crossref]

Loza-Alvarez, P.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Lu, L.

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

Lu, Z.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

Maekawa, H.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Marubashi, Y.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Masters, B. R.

B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, Oxford, 2008)

Matthäus, C.

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Mercier, V.

Miljkovic, M.

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Miljkovic, M. D.

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

Millard, A. C.

Miyauchi, Y.

Miyauchi Y, Y.

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

Mizutani, G.

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc. 65, 1254–1259 (2011).
[Crossref] [PubMed]

Mizutani, Goro

K. Locharoenrat, H. Sano, and Goro Mizutani, “Demonstration of confocal sum frequency microscopy,” Phys. Status Solidi C 6, 304–306 (2009).
[Crossref]

Mohamed, N. M. A.

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

Nascimento, J. M. P.

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005).
[Crossref]

Newman, J. A.

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

Nien, C.

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Oertel, D. C.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

Offerhaus, H. L.

E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
[Crossref]

Ohmori, T.

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Otto, C.

E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Park, Y. B.

C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
[Crossref] [PubMed]

Pavone, F. S.

F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, Boca Raton, 2013).

Potma, E. O.

Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

E. S. Lee, S. W. Lee, J. Hsu, and E. O. Potma, “Vibrationally resonant sum-frequency generation microscopy with a solid immersion lens,” Biomed. Opt. Express 5, 2125–2134 (2014).
[Crossref] [PubMed]

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular imaging with coherent nonlinear vibrational microscopy,” Annu. Rev. Phys. Chem. 64, 77–99 (2013).
[Crossref]

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

Prent, N.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Psilodimitrakopoulos, S.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Pu, Y.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

Ragauskas, A. J.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

Raghunathan, V.

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

V. Raghunathan, Y. Han, O. Korth, N. H. Ge, and E. O. Potma, “Rapid vibrational imaging with sum frequency generation microscopy,” Opt. Lett. 36, 3891–3893 (2011).
[Crossref] [PubMed]

Reiser, K.

K. Reiser, P. Stoller, and A. Knoesen, “Three-dimensional geometry of collagenous tissues by second harmonic polarimetry,” Sci. Rep. 7, 2642 (2017).
[Crossref] [PubMed]

Reiser, K. M.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Rocha-Mendoza, I.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Romeo, M. J.

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Sakai, M.

Sakai, Makoto

S. Kogure, K. Inoue, T. Ohmori, M. Ishihara, M. Kikuchi, M. Fujii, and Makoto Sakai, “Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super-resolution microscope”, Biomed. Opt. Express 13, 13402–13406 (2010).
[Crossref]

Sandkuijl, D.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Sano, H.

K. Locharoenrat, H. Sano, and Goro Mizutani, “Demonstration of confocal sum frequency microscopy,” Phys. Status Solidi C 6, 304–306 (2009).
[Crossref]

Santos, S. I. C. O.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[Crossref]

Sheppard, C.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).

Simpson, G. J.

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

Slepkov, A. D.

J. T. Tabarangao and A. D. Slepkov, “Mimicking multimodal contrast with vertex component analysis of hyperspectral CARS images,” J. Spectrosc. 2015, 575807 (2015).

Slipchenko, M. N.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

Smith, K. A.

K. A. Smith and J. C. Conboy, “A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays,” Anal. Chem. 84, 8122–8126 (2012).
[Crossref] [PubMed]

So, P. T. C.

B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, Oxford, 2008)

Stoller, P.

K. Reiser, P. Stoller, and A. Knoesen, “Three-dimensional geometry of collagenous tissues by second harmonic polarimetry,” Sci. Rep. 7, 2642 (2017).
[Crossref] [PubMed]

Su, P. J.

P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
[Crossref] [PubMed]

Suhalim, J. L.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Tabarangao, J. T.

J. T. Tabarangao and A. D. Slepkov, “Mimicking multimodal contrast with vertex component analysis of hyperspectral CARS images,” J. Spectrosc. 2015, 575807 (2015).

Takai, M.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Tani, S.

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Thayil, A. K. N.

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

Tromberg, B. J.

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

Tuan, N. A.

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

H. C. Hieu, N. A. Tuan, H. Li, Y. Miyauchi, and G. Mizutani, “Sum frequency generation microscopy study of cellulose fibers,” Appl. Spectrosc. 65, 1254–1259 (2011).
[Crossref] [PubMed]

Tuer, A. E.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Valenton, T.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

Vallée, R.

Velarde, L.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
[Crossref]

Villeneuve, A.

Wang, H.

H. Wang, T. Gao, and W. Xiong, “Self phase-stabilized heterodyne vibrational sum frequency generation microscopy,” ACS Photonics 4, 1839–1845 (2017).
[Crossref]

Wang, H. F.

L. Fu, S. L. Chen, and H. F. Wang, “Validation of spectra and phase in sub-cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement,” J. Phys. Chem. B 120, 1579–1589 (2016).
[Crossref]

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
[Crossref]

Wang, M.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Wang, P.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

Ward, J. L.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

Watts, H. D.

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

Weiner, A. M.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

Wilson, B. C.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Wilson, T.

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).

Wu, X. C.

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

Xie, X. S.

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, Boca Raton, 2013).

Xiong, W.

H. Wang, T. Gao, and W. Xiong, “Self phase-stabilized heterodyne vibrational sum frequency generation microscopy,” ACS Photonics 4, 1839–1845 (2017).
[Crossref]

Yamamoto, H.

C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
[Crossref]

Yang, B.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

Yankelevich, D. R.

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Yasufuku, K.

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

Younger, R.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

Zhang, D.

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

Zhang, L.

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

Zheng, D.

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

Zimmerley, M.

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

ACS Photonics (1)

H. Wang, T. Gao, and W. Xiong, “Self phase-stabilized heterodyne vibrational sum frequency generation microscopy,” ACS Photonics 4, 1839–1845 (2017).
[Crossref]

Anal. Chem. (2)

K. A. Smith and J. C. Conboy, “A simplified sum-frequency vibrational imaging setup used for imaging lipid bilayer arrays,” Anal. Chem. 84, 8122–8126 (2012).
[Crossref] [PubMed]

D. Zhang, P. Wang, M. N. Slipchenko, D. Ben-Amotz, A. M. Weiner, and J. X. Cheng, “Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis,” Anal. Chem. 85, 98–106 (2013).
[Crossref]

Analyst (1)

M. Miljković, T. Chernenko, M. J. Romeo, B. Bird, C. Matthäus, and M. Diem, “Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets,” Analyst 135, 2002–2013 (2010).
[Crossref]

Annu. Rev. Phys. Chem. (2)

C. Y. Chung, J. Boik, and E. O. Potma, “Biomolecular imaging with coherent nonlinear vibrational microscopy,” Annu. Rev. Phys. Chem. 64, 77–99 (2013).
[Crossref]

H. F. Wang, L. Velarde, W. Gan, and L. Fu, “Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation,” Annu. Rev. Phys. Chem. 66, 189–216 (2015).
[Crossref]

Appl. Phys. Lett. (1)

K. Kuhnke, D. M. P. Hoffmann, X. C. Wu, A. M. Bittner, and K. Kern, “Chemical imaging of interfaces by sum-frequency generation microscopy: application to patterned self-assembled monolayers,” Appl. Phys. Lett. 83, 3830–3832 (2003).
[Crossref]

Appl. Spectrosc. (2)

Biomed. Opt. Express (3)

Biophys. J. (4)

J. L. Suhalim, C. Y. Chung, M. B. Lilledahl, R. S. Lim, M. Levi, B. J. Tromberg, and E. O. Potma, “Characterization of cholesterol crystals in atherosclerotic plaques using stimulated Raman scattering and second-harmonic generation microscopy,” Biophys. J. 102, 1988–1995 (2012).
[Crossref] [PubMed]

X. Y. Dow, E. L. DeWalt, J. A. Newman, C. M. Dettmar, and G. J. Simpson, “Unified theory for polarization analysis in second harmonic and sum frequency microscopy,” Biophys. J. 111, 1553–1568 (2016).
[Crossref] [PubMed]

P. J. Su, W. L. Chen, Y. F. Chen, and C. F. Dong, “Determination of collagen nanostructure from second-order susceptibility tensor analysis,” Biophys. J. 100, 2053–2062 (2011).
[Crossref] [PubMed]

I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 934433–4444 (2007).
[Crossref] [PubMed]

Cellulose (1)

L. Zhang, Z. Lu, L. Velarde, L. Fu, Y. Pu, S. Y. Ding, A. J. Ragauskas, H. F. Wang, and B. Yang, “Vibrational spectral signatures of crystalline cellulose using high resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS),” Cellulose 22, 1469–1484 (2015).
[Crossref]

IEEE Trans. Geosci. Remote Sens. (1)

J. M. P. Nascimento and J. M. B. Dias, “Vertex component analysis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci. Remote Sens. 43, 898–910 (2005).
[Crossref]

J. Biomat. Nanobiotechnol. (1)

H. Li, Y. Miyauchi Y, N. A. Tuan, G. Mizutani, and M. Koyano, “Optical sum frequency generation image of rice grains,” J. Biomat. Nanobiotechnol. 3, 286–291 (2012).
[Crossref]

J. Biomed. Opt. (2)

S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, and P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14, 014001 (2009).
[Crossref]

C. Y. Lin, J. L. Suhalim, C. Nien, M. D. Miljkovic, M. Diem, J. Jester, and E. O. Potma, “Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian gland”, J. Biomed. Opt. 16, 021104 (2011).
[Crossref]

J. Chem. Phys. (1)

C. Hirose, N. Akamatsu, and K. Domen, “Formulas for the analysis of surface sum-frequency generation spectrum by CH stretching modes of methyl and methylene groups,” J. Chem. Phys. 96, 997–1004 (1992).
[Crossref]

J. Phys. Chem. (1)

C. Hirose, H. Yamamoto, N. Akamatsu, and K. Domen, “Orientation analysis by simulation of vibrational sum frequency generation spectrum: CH stretching bands of the methyl group,” J. Phys. Chem. 97, 10064–10069 (1993).
[Crossref]

J. Phys. Chem. B (9)

P. J. N. Kett, M. T. L. Casford, and P. B. Davies, “Sum frequency generation vibrational spectroscopy of cholesterol in hybrid bilayer membranes,” J. Phys. Chem. B 117, 6455–6465 (2013).
[Crossref] [PubMed]

L. Fu, S. L. Chen, and H. F. Wang, “Validation of spectra and phase in sub-cm−1 resolution sum-frequency generation vibrational spectroscopy through internal heterodyne phase-resolved measurement,” J. Phys. Chem. B 120, 1579–1589 (2016).
[Crossref]

Y. Han, V. Raghunathan, R. R. Feng, H. Maekawa, C. Y. Chung, Y. Feng, E. O. Potma, and N. H. Ge, “Mapping molecular orientation with phase sensitive vibrationally resonant sum-frequency generation microscopy,” J. Phys. Chem. B 117, 6149–6156 (2013).
[Crossref] [PubMed]

Y. Han, J. Hsu, N. H. Ge, and E. O. Potma, “Polarization-sensitive sum-frequency generation microscopy of collagen fibers,” J. Phys. Chem. B 119, 3356–3365 (2015).
[Crossref] [PubMed]

C. M. Lee, K. Kafle, S. Huang, and S. H. Kim, “Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope,” J. Phys. Chem. B 120, 102–116 (2016).
[Crossref] [PubMed]

K. Cimatu and S. Baldelli, “Sum frequency generation microscopy of microcontact-printed mixed self-assembled monolayers,” J. Phys. Chem. B 110, 1807–1813 (2006).
[Crossref] [PubMed]

M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114, 10200–10208 (2010).
[Crossref] [PubMed]

C. M. Lee, N. M. A. Mohamed, H. D. Watts, J. D. Kubicki, and S. H. Kim, “Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ,” J. Phys. Chem. B 117, 6681–6692 (2013).
[Crossref] [PubMed]

A. E. Tuer, S. Krouglov, N. Prent, R. Cisek, D. Sandkuijl, K. Yasufuku, B. C. Wilson, and V. Barzda, “Nonlinear optical properties of type I collagen fibers studied by polarization dependent second harmonic generation microscopy,” J. Phys. Chem. B 115, 12759–12769 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

K. A. Cimatu and S. Baldelli, “Chemical microscopy of surfaces by sum frequency generation imaging,” J. Phys. Chem. C 113, 16575–16588 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

D. Zheng, L. Lu, Y. Li, K. F. Kelly, and S. Baldelli, “Compressive broad-band hyperspectral sum frequency generation microscopy to study functionalized surfaces,” J. Phys. Chem. Lett. 7, 1781–1787 (2016).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

E. T. Garbacik, J. L. Herek, C. Otto, and H. L. Offerhaus, “Rapid identification of heterogeneous mixture components with hyperspectral coherent anti-Stokes Raman scattering imaging,” J. Raman Spectrosc. 43, 651–655 (2012).
[Crossref]

J. Spectrosc. (1)

J. T. Tabarangao and A. D. Slepkov, “Mimicking multimodal contrast with vertex component analysis of hyperspectral CARS images,” J. Spectrosc. 2015, 575807 (2015).

Langmuir (1)

M. Flörsheimer, C. Briller, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency microscopy,” Langmuir 15, 5437–5439 (1999).
[Crossref]

Nat. Photon. (1)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photon. 6, 845–851 (2012).
[Crossref]

Nature (1)

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[Crossref]

Opt. Lett. (2)

Opt. Rev. (1)

Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second harmonic generation measurements for biomacromolecules: celluloses,” Opt. Rev. 11, 385–387 (2004).
[Crossref]

Phys. Chem. Chem. Phys. (1)

C. M. Lee, K. Kafle, Y. B. Park, and S. H. Kim,“Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy,” Phys. Chem. Chem. Phys. 16, 10844–10853 (2014).
[Crossref] [PubMed]

Phys. Status Solidi C (1)

K. Locharoenrat, H. Sano, and Goro Mizutani, “Demonstration of confocal sum frequency microscopy,” Phys. Status Solidi C 6, 304–306 (2009).
[Crossref]

Rev. Sci. Instrum. (1)

D. M. P. Hoffmann, K. Kuhnke, and K. Kern, “Sum-frequency generation microscope for opaque and reflecting samples,” Rev. Sci. Instrum. 73, 3221–3226 (2002).
[Crossref]

Sci. Rep. (1)

K. Reiser, P. Stoller, and A. Knoesen, “Three-dimensional geometry of collagenous tissues by second harmonic polarimetry,” Sci. Rep. 7, 2642 (2017).
[Crossref] [PubMed]

Other (4)

B. R. Masters and P. T. C. So, Handbook of Biomedical Nonlinear Optical Microscopy (Oxford University Press, Oxford, 2008)

F. S. Pavone and P. J. Campagnola, Second Harmonic Generation Imaging (CRC Press, Boca Raton, 2013).

J. X. Cheng and X. S. Xie, Coherent Raman Scattering Microscopy (CRC Press, Boca Raton, 2013).

T. Wilson and C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, London, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the SFG microscope. Galvanometric mirrors are part of an Olympus Fluoview 300 laser scanner, and excitation and collection optics are part of an Olympus IX71 frame. PMT: photomultiplier, BF: bandpass filter, Obj: microscope objective, DM: dichroic mirror.
Fig. 2
Fig. 2 SHG and SFG imaging of rat tail tendon, a collagen I rich tissue. a) SHG image obtained with the polarization orientation of the incident beam parallel to the long axis of the collagen fibers. b) SHG image similar to a), but with the polarization orientation rotated by 90°. c) SHG polarization plot taken in the red region of interest shown in a). Direction refers to the polarization orientation of the incident beam. d) SFG image at 2945 cm−1 of the same sample and with the polarization orientation of both beams aligned with the main axis of the collagen tissue. e) SFG image similar to e), but with the polarization orientation rotated by 90°. f) SFG spectra extracted from the hyperspectral data stack. Red spectrum refers to the region of interest in d) and blue spectrum refers to the region of interest indicated in e). Scale bar is 15 μm.
Fig. 3
Fig. 3 Multivariate analysis of collagen rich tissue. a) Vertex component analysis (VCA) image showing three end-members in red, green and blue, based on a hyperspectral SFG data stack. The arrow indicates the polarization direction of the incident beams. b) Corresponding end-member SFG spectra extracted from the VCA.
Fig. 4
Fig. 4 Hyperspectral SFG imaging of a cellulose fiber. a) SFG image taken at 2945 cm−1. b) Corresponding SHG image. c) VCA image of the SFG hyperspectral data stack, showing three end-members in red, green and blue. d) SFG end-member spectra obtained from the VCA. Scale bar is 10 μm.
Fig. 5
Fig. 5 SFG imaging of cholesterol microcrystals. a) SFG image at 2845 cm−1. Scale bar is 10 μm. b) SHG polar plots obtained in the red and blue boxed regions of interest of the image in a). c) SFG spectra extracted from the regions of interest in image a). The red spectrum is obtained from the red box, whereas the blue spectrum is obtained from the blue box. d) Composite SFG image formed by overlaying images taken at 2955 cm−1 (blue), 2925 cm−1 (green), and 2845 cm−1 (red).
Fig. 6
Fig. 6 Cholesterol microcrystals visualized with a) SFG and b) CARS. Vibrational driving frequency in both images is set at 2845 cm−1. Scale bar is 10 μm.

Metrics