Abstract

Age-related macular degeneration (AMD) is a major cause of vision loss in the elderly. To better study the pathobiology of AMD, postmortem eyes offer an excellent opportunity to correlate optical coherence tomography (OCT) imaging characteristics with histopathology. However, postmortem eyes from autopsy present challenges to standard OCT imaging including opaque anterior segment structures and standard of care autopsy processing resulting in oblique views to the macula. To overcome these challenges, we report a custom periscope attached by a standard mount to an OCT sample arm and demonstrate high quality macular OCT acquisitions in autopsy-processed eyes.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of reflectivity maps and outer retinal topography in retinal disease by 3-D Fourier domain optical coherence tomography

Maciej Wojtkowski, Bartosz L. Sikorski, Iwona Gorczynska, Michalina Gora, Maciej Szkulmowski, Danuta Bukowska, Jakub Kałuzny, James G. Fujimoto, and Andrzej Kowalczyk
Opt. Express 17(5) 4189-4207 (2009)

Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration

Yueli Chen, Laurel N. Vuong, Jonathan Liu, Joseph Ho, Vivek J. Srinivasan, Iwona Gorczynska, Andre J. Witkin, Jay S. Duker, Joel Schuman, and James G. Fujimoto
Opt. Express 17(5) 4046-4060 (2009)

Photoacoustic ophthalmoscopy for in vivo retinal imaging

Shuliang Jiao, Minshan Jiang, Jianming Hu, Amani Fawzi, Qifa Zhou, K. Kirk Shung, Carmen A. Puliafito, and Hao F. Zhang
Opt. Express 18(4) 3967-3972 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
    [Crossref] [PubMed]
  2. P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
    [Crossref] [PubMed]
  3. S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
    [Crossref] [PubMed]
  4. “Age-Related Macular Degeneration, Preferred Practice Patern,” (American Academy of Ophthalmology, 2015).
  5. C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
    [Crossref] [PubMed]
  6. N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
    [Crossref] [PubMed]
  7. N. Bagheri, B. A. Bell, V. L. Bonilha, and J. G. Hollyfield, “Imaging Human Postmortem Eyes with SLO and OCT,” in Retinal Degenerative Diseases, M. M. LaVail, J. D. Ash, R. E. Anderson, J. G. Hollyfield, and C. Grimm, eds. (Springer US, Boston, MA, 2012), pp. 479–488.
  8. J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” in Optical Coherence Tomography, W. Drexler and J. Fujimoto, eds. (Springer Berlin Heidelberg, 2008), pp. 47–72.
  9. R. P. McNabb, “DMLS_Periscope.STL” (2017), retrieved https://doi.org/10.6084/m9.figshare.4826737 .
  10. R. P. McNabb, F. Larocca, S. Farsiu, A. N. Kuo, and J. A. Izatt, “Distributed scanning volumetric SDOCT for motion corrected corneal biometry,” Biomed. Opt. Express 3(9), 2050–2065 (2012).
    [Crossref] [PubMed]
  11. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [Crossref] [PubMed]
  12. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  13. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
    [Crossref] [PubMed]
  14. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
    [Crossref] [PubMed]
  15. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
    [Crossref] [PubMed]
  16. O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021–18033 (2013).
    [Crossref] [PubMed]
  17. R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
    [Crossref] [PubMed]

2016 (1)

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

2014 (2)

P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
[Crossref] [PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (1)

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

2005 (1)

2003 (1)

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

1994 (1)

Ahsen, O. O.

Brown, N. H.

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

Cable, A.

Chavez-Pirson, A.

Chiu, S. J.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

Comer, G. M.

Connolly, J. L.

Cousins, S. W.

Curcio, C. A.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

Drexler, W.

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Farsiu, S.

Fercher, A. F.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Findl, O.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Folgar, F. A.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Fujimoto, J. G.

O. O. Ahsen, Y. K. Tao, B. M. Potsaid, Y. Sheikine, J. Jiang, I. Grulkowski, T.-H. Tsai, V. Jayaraman, M. F. Kraus, J. L. Connolly, J. Hornegger, A. Cable, and J. G. Fujimoto, “Swept source optical coherence microscopy using a 1310 nm VCSEL light source,” Opt. Express 21(15), 18021–18033 (2013).
[Crossref] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Grewal, D. S.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Grulkowski, I.

Hee, M. R.

Hermann, B.

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Honeycutt, A. A.

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

Hornegger, J.

Izatt, J. A.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

P. P. Srinivasan, L. A. Kim, P. S. Mettu, S. W. Cousins, G. M. Comer, J. A. Izatt, and S. Farsiu, “Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images,” Biomed. Opt. Express 5(10), 3568–3577 (2014).
[Crossref] [PubMed]

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

R. P. McNabb, F. Larocca, S. Farsiu, A. N. Kuo, and J. A. Izatt, “Distributed scanning volumetric SDOCT for motion corrected corneal biometry,” Biomed. Opt. Express 3(9), 2050–2065 (2012).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[Crossref] [PubMed]

Jaffe, G. J.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Jayaraman, V.

Jiang, J.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kim, L. A.

Ko, T. H.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Koreishi, A. F.

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

Kraus, M. F.

Kuo, A. N.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

R. P. McNabb, F. Larocca, S. Farsiu, A. N. Kuo, and J. A. Izatt, “Distributed scanning volumetric SDOCT for motion corrected corneal biometry,” Biomed. Opt. Express 3(9), 2050–2065 (2012).
[Crossref] [PubMed]

Larocca, F.

Lesesne, S. B.

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

Li, X. T.

Mahmoud, T. H.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

McCall, M.

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

McGwin, G.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

McNabb, R. P.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

R. P. McNabb, F. Larocca, S. Farsiu, A. N. Kuo, and J. A. Izatt, “Distributed scanning volumetric SDOCT for motion corrected corneal biometry,” Biomed. Opt. Express 3(9), 2050–2065 (2012).
[Crossref] [PubMed]

Mehta, R.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Messinger, J. D.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

Mettu, P. S.

Mitra, A.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Mruthyunjaya, P.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Nicholas, P.

O’Connell, R. V.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Owen, G. M.

Potsaid, B. M.

Považay, B.

Rein, D. B.

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

Rickman, C. B.

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

Saaddine, J.

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

Sattmann, H.

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Scholda, C.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Schuman, S. G.

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Sheikine, Y.

Sloan, K. R.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

Spaide, R. F.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

Srinivasan, P. P.

Stur, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Swanson, E. A.

Tao, Y. K.

Toth, C. A.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
[Crossref] [PubMed]

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

Tsai, T.-H.

Unterhuber, A.

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express 13(9), 3252–3258 (2005).
[Crossref] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Wirtitsch, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Wittenborn, J. S.

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

Yuan, E.

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Zhang, X.

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

Arch. Ophthalmol. (2)

D. B. Rein, J. S. Wittenborn, X. Zhang, A. A. Honeycutt, S. B. Lesesne, J. Saaddine, and Vision Health Cost-Effectiveness Study Group, “Forecasting age-related macular degeneration through the year 2050: The potential impact of new treatments,” Arch. Ophthalmol. 127(4), 533–540 (2009).
[Crossref] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (1)

R. P. McNabb, D. S. Grewal, R. Mehta, S. G. Schuman, J. A. Izatt, T. H. Mahmoud, G. J. Jaffe, P. Mruthyunjaya, and A. N. Kuo, “Wide field of view swept-source optical coherence tomography for peripheral retinal disease,” Br. J. Ophthalmol. 100(10), 1377–1382 (2016).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

N. H. Brown, A. F. Koreishi, M. McCall, J. A. Izatt, C. B. Rickman, and C. A. Toth, “Developing SDOCT to assess donor human eyes prior to tissue sectioning for research,” Graefes Arch. Clin. Exp. Ophthalmol. 247(8), 1069–1080 (2009).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, and R. F. Spaide, “Human Chorioretinal Layer Thicknesses Measured in Macula-wide, High-Resolution Histologic Sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[Crossref] [PubMed]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Ophthalmology (1)

S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, “Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography,” Ophthalmology 121(1), 162–172 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Other (4)

“Age-Related Macular Degeneration, Preferred Practice Patern,” (American Academy of Ophthalmology, 2015).

N. Bagheri, B. A. Bell, V. L. Bonilha, and J. G. Hollyfield, “Imaging Human Postmortem Eyes with SLO and OCT,” in Retinal Degenerative Diseases, M. M. LaVail, J. D. Ash, R. E. Anderson, J. G. Hollyfield, and C. Grimm, eds. (Springer US, Boston, MA, 2012), pp. 479–488.

J. A. Izatt and M. A. Choma, “Theory of Optical Coherence Tomography,” in Optical Coherence Tomography, W. Drexler and J. Fujimoto, eds. (Springer Berlin Heidelberg, 2008), pp. 47–72.

R. P. McNabb, “DMLS_Periscope.STL” (2017), retrieved https://doi.org/10.6084/m9.figshare.4826737 .

Supplementary Material (1)

NameDescription
» Visualization 1       OCT Volume Flythrough

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A) Spectral domain OCT system schematic with custom periscope bore B) Cut away view of Solidworks rendering of custom periscope bore C) System rolloff performance.

Fig. 2
Fig. 2

A) In vivo retinal image with above described OCT engine and retinal imaging bore; ILM/NFL – Inner limiting membrane and nerve fiber layer; GCL/IPL – Ganglion cell layer and inner plexiform layer; INL – Inner nuclear layer; OPL – Outer plexiform layer; ONL – Outer nuclear layer; ELM – External limiting membrane; EZ (PR) – Ellipsoidal Zone (Photoreceptor layer) B) Separate autopsy prepared eye imaged with periscope bore and same engine as A. Following fixation of the postmortem eye, there was a degradation of retinal layer differentiation. Both A and B exhibit local detachment of the vitreous from the retina.

Fig. 3
Fig. 3

A) OCT image utilizing custom periscope on normal autopsy retina B) Montage of corresponding histology images where retina had artifactually detached from the RPE during sectioning. Scale bars are 250µm for all images.

Fig. 4
Fig. 4

A&B) Correlated OCT and histology images from eye with peripheral cystoid degeneration C&D) Correlated images from eye with age-related macular degeneration and calcified drusen (arrows) E&F) Correlated images from eye with sub-retinal fluid. See Visualization 1 for OCT volume. Scale bars are 250µm for all images.

Metrics