Abstract

A research-grade OCT system was used to image in-vivo and without contact with the tissue, the cellular structure and microvasculature of the healthy human corneo-scleral limbus. The OCT system provided 0.95 µm axial and 4 µm (2 µm) lateral resolution in biological tissue depending on the magnification of the imaging objective. Cross-sectional OCT images acquired tangentially from the inferior limbus showed reflective, loop-like features that correspond to the fibrous folds of the palisades of Vogt (POV). The high OCT resolution allowed for visualization of individual cells inside the limbal crypts, capillaries extending from the inside of the POV’s fibrous folds and connecting to a lateral grid of micro-vessels located in the connective tissue directly below the POV, as well as reflections from individual red blood cells inside the capillaries. Difference in the reflective properties of the POV was observed among subjects of various pigmentation levels of the POV. Morphological features observed in the high resolution OCT images correlated well with histology. The ability to visualize the limbal morphology and microvasculature in-vivo at cellular level can aid the diagnostics and treatment of limbal stem cell dysfunction and dystrophies.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT

Kostadinka Bizheva, Natalie Hutchings, Luigina Sorbara, Alireza A. Moayed, and Trefford Simpson
Biomed. Opt. Express 2(7) 1794-1802 (2011)

Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging

Kai Shen, Hui Lu, Sarfaraz Baig, and Michael R. Wang
Biomed. Opt. Express 8(11) 4887-4918 (2017)

250 kHz, 1.5 µm resolution SD-OCT for in-vivo cellular imaging of the human cornea

Bingyao Tan, Zohreh Hosseinaee, Le Han, Olivera Kralj, Luigina Sorbara, and Kostadinka Bizheva
Biomed. Opt. Express 9(12) 6569-6583 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M.J. Hogan and J. A. Alvarado, Histology of the Human Eye: An Atlas and Textbook (1971).
  2. E. M. Van Buskirk, “The anatomy of the limbus,” Eye (Lond.) 3(2), 101–108 (1989).
    [Crossref] [PubMed]
  3. J. G. Lawrenson and G. L. Ruskell, “The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye,” J. Anat. 177, 75–84 (1991).
    [PubMed]
  4. P. A. Meyer, “The circulation of the human limbus,” Eye (Lond.) 3(Pt 2), 121–127 (1989).
    [Crossref] [PubMed]
  5. E. B. Papas, “The limbal vasculature,” Cont. Lens Anterior Eye 26(2), 71–76 (2003).
    [Crossref] [PubMed]
  6. H. S. Dua, A. Azuara-Blanco, and E. Fisher, “Limbal Stem Cells of the Corneal Epithelium,” Surv. Ophthalmol. 44(5), 415–425 (2000).
    [Crossref] [PubMed]
  7. H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
    [Crossref] [PubMed]
  8. M. F. Goldberg and A. J. Bron, “Limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 80, 155–171 (1982).
    [PubMed]
  9. W. M. Townsend, “The limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 89, 721–756 (1991).
    [PubMed]
  10. J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
    [Crossref] [PubMed]
  11. A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
    [Crossref] [PubMed]
  12. K. M. Hatch and R. Dana, “The Structure and Function of the Limbal Stem Cell and the Disease States Associated With Limbal Stem Cell Deficiency,” Int. Ophthalmol. Clin. 49(1), 43–52 (2009).
    [Crossref] [PubMed]
  13. T. Zheng and J. Xu, “Age-related Changes of Human Limbus on In Vivo Confocal Microscopy,” Cornea 27(7), 782–786 (2008).
    [Crossref] [PubMed]
  14. D. V. Patel, T. Sherwin, and C. N. J. McGhee, “Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus,” Invest. Ophthalmol. Vis. Sci. 47(7), 2823–2827 (2006).
    [Crossref] [PubMed]
  15. A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
    [Crossref] [PubMed]
  16. K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express 2(7), 1794–1802 (2011).
    [Crossref] [PubMed]
  17. K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
    [Crossref] [PubMed]
  18. K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
    [Crossref] [PubMed]
  19. N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).
  20. M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
    [PubMed]
  21. P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
    [Crossref] [PubMed]
  22. K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
    [Crossref] [PubMed]
  23. K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
    [Crossref] [PubMed]
  24. American National Standard for Safe Use of Lasers Z136.1-2007 (2007).
  25. A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
    [Crossref] [PubMed]
  26. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  27. S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
    [Crossref] [PubMed]
  28. N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
    [Crossref] [PubMed]
  29. L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
    [Crossref] [PubMed]
  30. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  31. A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
    [Crossref] [PubMed]
  32. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [Crossref] [PubMed]
  33. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  34. W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
    [Crossref] [PubMed]
  35. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [Crossref] [PubMed]
  36. B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
    [Crossref] [PubMed]
  37. B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
    [Crossref] [PubMed]
  38. D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
    [Crossref] [PubMed]
  39. R. Ansari, C. Myrtus, R. Aherrahrou, J. Erdmann, A. Schweikard, and G. Hüttmann, “Ultrahigh-resolution, high-speed spectral domain optical coherence phase microscopy,” Opt. Lett. 39(1), 45–47 (2014).
    [Crossref] [PubMed]
  40. H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
    [Crossref] [PubMed]

2017 (3)

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

2016 (3)

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

2015 (3)

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

2014 (2)

2013 (1)

2012 (3)

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (1)

2009 (2)

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[Crossref] [PubMed]

K. M. Hatch and R. Dana, “The Structure and Function of the Limbal Stem Cell and the Disease States Associated With Limbal Stem Cell Deficiency,” Int. Ophthalmol. Clin. 49(1), 43–52 (2009).
[Crossref] [PubMed]

2008 (3)

T. Zheng and J. Xu, “Age-related Changes of Human Limbus on In Vivo Confocal Microscopy,” Cornea 27(7), 782–786 (2008).
[Crossref] [PubMed]

A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

2007 (2)

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

2006 (1)

D. V. Patel, T. Sherwin, and C. N. J. McGhee, “Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus,” Invest. Ophthalmol. Vis. Sci. 47(7), 2823–2827 (2006).
[Crossref] [PubMed]

2005 (2)

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref] [PubMed]

2003 (2)

E. B. Papas, “The limbal vasculature,” Cont. Lens Anterior Eye 26(2), 71–76 (2003).
[Crossref] [PubMed]

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

2000 (1)

H. S. Dua, A. Azuara-Blanco, and E. Fisher, “Limbal Stem Cells of the Corneal Epithelium,” Surv. Ophthalmol. 44(5), 415–425 (2000).
[Crossref] [PubMed]

1991 (2)

J. G. Lawrenson and G. L. Ruskell, “The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye,” J. Anat. 177, 75–84 (1991).
[PubMed]

W. M. Townsend, “The limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 89, 721–756 (1991).
[PubMed]

1989 (2)

E. M. Van Buskirk, “The anatomy of the limbus,” Eye (Lond.) 3(2), 101–108 (1989).
[Crossref] [PubMed]

P. A. Meyer, “The circulation of the human limbus,” Eye (Lond.) 3(Pt 2), 121–127 (1989).
[Crossref] [PubMed]

1982 (1)

M. F. Goldberg and A. J. Bron, “Limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 80, 155–171 (1982).
[PubMed]

Adie, S. G.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Aherrahrou, R.

Ahmad, A.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Alvarado, J. A.

M.J. Hogan and J. A. Alvarado, Histology of the Human Eye: An Atlas and Textbook (1971).

An, L.

Ansari, R.

Azuara-Blanco, A.

H. S. Dua, A. Azuara-Blanco, and E. Fisher, “Limbal Stem Cells of the Corneal Epithelium,” Surv. Ophthalmol. 44(5), 415–425 (2000).
[Crossref] [PubMed]

Baumann, B.

Behaegel, J.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Birngruber, R.

Bizheva, K.

Boppart, S. A.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Borderie, V. M.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Bouheraoua, N.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Bron, A. J.

M. F. Goldberg and A. J. Bron, “Limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 80, 155–171 (1982).
[PubMed]

Budak, M. T.

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

Cable, A.

Carney, P. S.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Chen, L.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Chen, Y.

Chen, Z.

Choi, W.

Clermont, A. C.

Dana, R.

K. M. Hatch and R. Dana, “The Structure and Function of the Limbal Stem Cell and the Disease States Associated With Limbal Stem Cell Deficiency,” Int. Ophthalmol. Clin. 49(1), 43–52 (2009).
[Crossref] [PubMed]

Daniels, J. T.

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Deng, S. X.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Drexler, W.

Dua, H. S.

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

H. S. Dua, A. Azuara-Blanco, and E. Fisher, “Limbal Stem Cells of the Corneal Epithelium,” Surv. Ophthalmol. 44(5), 415–425 (2000).
[Crossref] [PubMed]

Duker, J. S.

Erdmann, J.

Espana, E. M.

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

Fatima, A.

A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
[Crossref] [PubMed]

Feener, E. P.

Fercher, A.

Fercher, A. F.

Fisher, E.

H. S. Dua, A. Azuara-Blanco, and E. Fisher, “Limbal Stem Cells of the Corneal Epithelium,” Surv. Ophthalmol. 44(5), 415–425 (2000).
[Crossref] [PubMed]

Franke, G.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

Fujimoto, J. G.

Gagloev, B. V.

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

Georgeon, C.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Ghoubay, D.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Goldberg, M. F.

M. F. Goldberg and A. J. Bron, “Limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 80, 155–171 (1982).
[PubMed]

Gorczynska, I.

Graf, B. W.

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Grajciar, B.

Grieve, K.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Guo, S.

Gupta, D.

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

Haagdorens, M.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Hain, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Haines, L.

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Hajialamdari, M.

Hatch, K. M.

K. M. Hatch and R. Dana, “The Structure and Function of the Limbal Stem Cell and the Disease States Associated With Limbal Stem Cell Deficiency,” Int. Ophthalmol. Clin. 49(1), 43–52 (2009).
[Crossref] [PubMed]

Hileeto, D.

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Hillmann, D.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

Hogan, M.J.

M.J. Hogan and J. A. Alvarado, Histology of the Human Eye: An Atlas and Textbook (1971).

Hong, J.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Hutchings, N.

Hüttmann, G.

Iftekhar, G.

A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
[Crossref] [PubMed]

Jiang, J.

Johnstone, M.

Joseph, A.

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

Kagemann, L.

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

Kamali, T.

Khaw, P. T.

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Koch, P.

Kolbitsch, C.

Kralj, O.

Kumar, A.

Lathrop, K. L.

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

Lawrenson, J. G.

J. G. Lawrenson and G. L. Ruskell, “The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye,” J. Anat. 177, 75–84 (1991).
[PubMed]

Le, Q.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Lehareinger, Y.

Leitgeb, R.

Leitgeb, R. A.

Li, P.

Li, Y.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Liu, J. J.

Liu, Y. Z.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

MacLelan, B.

MacLellan, B.

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Mason, E.

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

McGhee, C. N. J.

D. V. Patel, T. Sherwin, and C. N. J. McGhee, “Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus,” Invest. Ophthalmol. Vis. Sci. 47(7), 2823–2827 (2006).
[Crossref] [PubMed]

Meyer, P. A.

P. A. Meyer, “The circulation of the human limbus,” Eye (Lond.) 3(Pt 2), 121–127 (1989).
[Crossref] [PubMed]

Michiels, S.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Moayed, A. A.

Munro, P. M.

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Münst, M.

Myrtus, C.

Ní Dhubhghaill, S.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Papas, E. B.

E. B. Papas, “The limbal vasculature,” Cont. Lens Anterior Eye 26(2), 71–76 (2003).
[Crossref] [PubMed]

Paques, M.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Pashtaev, N. P.

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

Patel, D. V.

D. V. Patel, T. Sherwin, and C. N. J. McGhee, “Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus,” Invest. Ophthalmol. Vis. Sci. 47(7), 2823–2827 (2006).
[Crossref] [PubMed]

Pfäffle, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Pircher, M.

Platzer, R.

Potsaid, B.

Powell-Richards, A. O.

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

Pozdeyeva, N. A.

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

Rao, B.

Reif, R.

Reinholz, F.

Romano, A. C.

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

Rozema, J.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Ruskell, G. L.

J. G. Lawrenson and G. L. Ruskell, “The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye,” J. Anat. 177, 75–84 (1991).
[PubMed]

Sangwan, V. S.

A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
[Crossref] [PubMed]

Schmoll, T.

Schuman, J. S.

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

Schweikard, A.

Secker, G. A.

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Shanmuganathan, V. A.

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

Shemonski, N. D.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Shen, T. T.

Sherwin, T.

D. V. Patel, T. Sherwin, and C. N. J. McGhee, “Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus,” Invest. Ophthalmol. Vis. Sci. 47(7), 2823–2827 (2006).
[Crossref] [PubMed]

Shipunov, A. A.

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

Shortt, A. J.

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Simpson, T.

Sorbara, L.

South, F. A.

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Spahr, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

Srinivasan, V. J.

Su, J.

Sudkamp, H.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

H. Sudkamp, P. Koch, H. Spahr, D. Hillmann, G. Franke, M. Münst, F. Reinholz, R. Birngruber, and G. Hüttmann, “In-vivo retinal imaging with off-axis full-field time-domain optical coherence tomography,” Opt. Lett. 41(21), 4987–4990 (2016).
[Crossref] [PubMed]

Sun, X.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Sundarraj, N.

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

Tan, B.

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Tassignon, M. J.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Thouvenin, O.

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Tighe, P. J.

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

Townsend, W. M.

W. M. Townsend, “The limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 89, 721–756 (1991).
[PubMed]

Tseng, S. C.

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

Tuft, S. J.

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Unterhuber, A.

Van Buskirk, E. M.

E. M. Van Buskirk, “The anatomy of the limbus,” Eye (Lond.) 3(2), 101–108 (1989).
[Crossref] [PubMed]

Van Gerwen, V.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Vemuganti, G. K.

A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
[Crossref] [PubMed]

Voskresenskaya, A. A.

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

Wang, Q.

Wang, R.

Wang, R. K.

Winter, C.

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Wolosin, J. M.

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

Xu, J.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

T. Zheng and J. Xu, “Age-related Changes of Human Limbus on In Vivo Confocal Microscopy,” Cornea 27(7), 782–786 (2008).
[Crossref] [PubMed]

Yoo, S. H.

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

Yu, L.

Zakaria, N.

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Zhang, J.

Zheng, T.

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

T. Zheng and J. Xu, “Age-related Changes of Human Limbus on In Vivo Confocal Microscopy,” Cornea 27(7), 782–786 (2008).
[Crossref] [PubMed]

Ann. Ophthalmol. (1)

N. P. Pashtaev, N. A. Pozdeyeva, A. A. Voskresenskaya, B. V. Gagloev, and A. A. Shipunov, “Comparative analysis of the value of information provided by anterior segment optical coherence tomography and in vivo confocal microscopy for identifying the palisades of Vogt in normal limbus,” Ann. Ophthalmol. 1, 60–68 (2017).

Biomed. Opt. Express (6)

P. Li, L. An, R. Reif, T. T. Shen, M. Johnstone, and R. K. Wang, “In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography,” Biomed. Opt. Express 2(11), 3109–3118 (2011).
[Crossref] [PubMed]

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

A. Kumar, T. Kamali, R. Platzer, A. Unterhuber, W. Drexler, and R. A. Leitgeb, “Anisotropic aberration correction using region of interest based digital adaptive optics in Fourier domain OCT,” Biomed. Opt. Express 6(4), 1124–1134 (2015).
[Crossref] [PubMed]

L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
[Crossref] [PubMed]

W. Choi, B. Baumann, J. J. Liu, A. C. Clermont, E. P. Feener, J. S. Duker, and J. G. Fujimoto, “Measurement of pulsatile total blood flow in the human and rat retina with ultrahigh speed spectral/Fourier domain OCT,” Biomed. Opt. Express 3(5), 1047–1061 (2012).
[Crossref] [PubMed]

K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express 2(7), 1794–1802 (2011).
[Crossref] [PubMed]

Br. J. Ophthalmol. (2)

H. S. Dua, V. A. Shanmuganathan, A. O. Powell-Richards, P. J. Tighe, and A. Joseph, “Limbal epithelial crypts: a novel anatomical structure and a putative limbal stem cell niche,” Br. J. Ophthalmol. 89(5), 529–532 (2005).
[Crossref] [PubMed]

M. Haagdorens, J. Behaegel, J. Rozema, V. Van Gerwen, S. Michiels, S. Ní Dhubhghaill, M. J. Tassignon, and N. Zakaria, “A method for quantifying limbal stem cell niches using OCT imaging,” Br. J. Ophthalmol. 0, 1–6 (2017).
[PubMed]

Cont. Lens Anterior Eye (1)

E. B. Papas, “The limbal vasculature,” Cont. Lens Anterior Eye 26(2), 71–76 (2003).
[Crossref] [PubMed]

Cornea (1)

T. Zheng and J. Xu, “Age-related Changes of Human Limbus on In Vivo Confocal Microscopy,” Cornea 27(7), 782–786 (2008).
[Crossref] [PubMed]

Exp. Eye Res. (1)

K. Grieve, D. Ghoubay, C. Georgeon, O. Thouvenin, N. Bouheraoua, M. Paques, and V. M. Borderie, “Three-dimensional structure of the mammalian limbal stem cell niche,” Exp. Eye Res. 140, 75–84 (2015).
[Crossref] [PubMed]

Eye (Lond.) (3)

A. Fatima, G. Iftekhar, V. S. Sangwan, and G. K. Vemuganti, “Ocular surface changes in limbal stem cell deficiency caused by chemical injury: a histologic study of excised pannus from recipients of cultured corneal epithelium,” Eye (Lond.) 22(9), 1161–1167 (2008).
[Crossref] [PubMed]

E. M. Van Buskirk, “The anatomy of the limbus,” Eye (Lond.) 3(2), 101–108 (1989).
[Crossref] [PubMed]

P. A. Meyer, “The circulation of the human limbus,” Eye (Lond.) 3(Pt 2), 121–127 (1989).
[Crossref] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

J. Hong, T. Zheng, J. Xu, S. X. Deng, L. Chen, X. Sun, Q. Le, and Y. Li, “Assessment of limbus and central cornea in patients with keratolimbal allograft transplantation using in vivo laser scanning confocal microscopy: an observational study,” Graefes Arch. Clin. Exp. Ophthalmol. 249(5), 701–708 (2011).
[Crossref] [PubMed]

Int. Ophthalmol. Clin. (1)

K. M. Hatch and R. Dana, “The Structure and Function of the Limbal Stem Cell and the Disease States Associated With Limbal Stem Cell Deficiency,” Int. Ophthalmol. Clin. 49(1), 43–52 (2009).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

D. V. Patel, T. Sherwin, and C. N. J. McGhee, “Laser Scanning In Vivo Confocal Microscopy of the Normal Human Corneoscleral Limbus,” Invest. Ophthalmol. Vis. Sci. 47(7), 2823–2827 (2006).
[Crossref] [PubMed]

K. L. Lathrop, D. Gupta, L. Kagemann, J. S. Schuman, and N. Sundarraj, “Optical coherence tomography as a Rapid, Accurate, noncontact method of visualizing the palisades of vogt,” Invest. Ophthalmol. Vis. Sci. 53(3), 1381–1387 (2012).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In vivo imaging and morphometry of the human pre-Descemet’s layer and endothelium with ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

A. C. Romano, E. M. Espana, S. H. Yoo, M. T. Budak, J. M. Wolosin, and S. C. Tseng, “Different cell sizes in human limbal and central corneal basal epithelia measured by confocal microscopy and flow cytometry,” Invest. Ophthalmol. Vis. Sci. 44(12), 5125–5129 (2003).
[Crossref] [PubMed]

J. Anat. (1)

J. G. Lawrenson and G. L. Ruskell, “The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye,” J. Anat. 177, 75–84 (1991).
[PubMed]

Nat. Photonics (1)

N. D. Shemonski, F. A. South, Y. Z. Liu, S. G. Adie, P. S. Carney, and S. A. Boppart, “Computational high-resolution optical imaging of the living human retina,” Nat. Photonics 9(7), 440–443 (2015).
[Crossref] [PubMed]

Opt. Express (7)

L. Yu, B. Rao, J. Zhang, J. Su, Q. Wang, S. Guo, and Z. Chen, “Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method,” Opt. Express 15(12), 7634–7641 (2007).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed Spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
[Crossref] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[Crossref] [PubMed]

B. Grajciar, M. Pircher, A. Fercher, and R. Leitgeb, “Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye,” Opt. Express 13(4), 1131–1137 (2005).
[Crossref] [PubMed]

B. Grajciar, Y. Lehareinger, A. F. Fercher, and R. A. Leitgeb, “High sensitivity phase mapping with parallel Fourier domain optical coherence tomography at 512 000 A-scan/s,” Opt. Express 18(21), 21841–21850 (2010).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

S. G. Adie, B. W. Graf, A. Ahmad, P. S. Carney, and S. A. Boppart, “Computational adaptive optics for broadband optical interferometric tomography of biological tissue,” Proc. Natl. Acad. Sci. U.S.A. 109(19), 7175–7180 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

D. Hillmann, H. Spahr, C. Hain, H. Sudkamp, G. Franke, C. Pfäffle, C. Winter, and G. Hüttmann, “Aberration-free volumetric high-speed imaging of in vivo retina,” Sci. Rep. 6(1), 35209 (2016).
[Crossref] [PubMed]

Stem Cells (1)

A. J. Shortt, G. A. Secker, P. M. Munro, P. T. Khaw, S. J. Tuft, and J. T. Daniels, “Characterization of the Limbal Epithelial Stem Cell Niche: Novel Imaging Techniques Permit In Vivo Observation and Targeted Biopsy of limbal Epithelial Stem Cells,” Stem Cells 25(6), 1402–1409 (2007).
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

H. S. Dua, A. Azuara-Blanco, and E. Fisher, “Limbal Stem Cells of the Corneal Epithelium,” Surv. Ophthalmol. 44(5), 415–425 (2000).
[Crossref] [PubMed]

Trans. Am. Ophthalmol. Soc. (2)

M. F. Goldberg and A. J. Bron, “Limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 80, 155–171 (1982).
[PubMed]

W. M. Townsend, “The limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc. 89, 721–756 (1991).
[PubMed]

Other (2)

M.J. Hogan and J. A. Alvarado, Histology of the Human Eye: An Atlas and Textbook (1971).

American National Standard for Safe Use of Lasers Z136.1-2007 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Cross-sectional OCT images of the healthy human inferior limbus acquired in-vivo, in a tangential direction with the 5x microscope objective, closer to the corneal end of the limbus (A) and closer to the scleral end of the limbus (B). The POV appear as highly reflective, narrow, loop-like structures in Fig. 1(A). Blood and lymph vessels (V) appear as dark shadows on the highly scattering background of the collagen matrix. Capillaries extend from the inside of the fibrous sacks of the POV in vertical direction and connect with a lateral vessels network located ~20 µm to 50 µm below the base of the POV. Volumetric images of the inferior limbus (C, D).
Fig. 2
Fig. 2 Cross-sectional OCT images of the healthy human inferior limbus acquired in-vivo in a tangential direction with the 10x microscope objective from subjects with highly pigmented (A, B), moderately pigmented (C, D) and mildly pigmented (E, F) palisades of Vogt. The POV appear as loop-like structures with reflective envelope (red arrows). The cellular structure of the crypts, located between the POV is clearly visible. Yellow arrows mark hyper-reflective dots inside the vasculature that most likely correspond to individual red blood cells in the capillaries extending from the inside of the POV to a lateral vascular grid in the connective tissue underneath. A magnified view of a single POV acquired with the OCT system (G) and compared to histology from cadaver limbal tissue (H). Red arrows in both G and H mark red blood cells.
Fig. 3
Fig. 3 Enface images of the POV (A and B) generated by maximum intensity projection from a volumetric image stack acquired in tangential direction from the inferior limbus with the 10x objective. The image in 3B corresponds to a depth location of ~20 µm underneath the image shown in 3A. The white arrows in 3A mark “channel-like” morphological features with distinct cellular structure that extend from the limbal epithelial crypts toward the peripheral cornea. The green arrows in 3B mark blood microvasculature in the peripheral cornea that appears as this reflective (yellow) lines extending in radial direction. Figures 3(C)-3(E) show magnified views of the regions in 3A and 3B marked with the colored rectangles. The cellular structure of the limbal crypts is visible in the magnified images.
Fig. 4
Fig. 4 Cross-sectional OCT image of the healthy nasal human limbus acquired in radial direction with the 5x microscope objective (A) and a corresponding H&E stained histological cross-section (B). BCL – basal cell layer of the corneal epithelium, BM – Bowman’s membrane, POV – palisades of Vogt. The red arrow marks the termination of the BM at the limbus.
Fig. 5
Fig. 5 Cross-sectional OCT images of the healthy human nasal limbus acquired in-vivo, in a radial direction with the 10x microscope objective (A and C). 2x magnified versions of the regions in Fig. 5(A) and Fig. 5(C) marked with the yellow dashed lines (Fig. 5(B), 5(D)-5(F)). Green arrows mark reflections from pigmented epithelial cells, red arrows mark reflections from nuclei in the limbal epithelial cells, yellow arrows mark reflection from red blood cells in the limbal vasculature, blue arrows mark the tear film and the white arrow marks the boundary between the conjunctiva and the limbal epithelium.

Metrics