Abstract

Worldwide, polypoidal choroidal vasculopathy (PCV) is a common vision-threatening exudative maculopathy, and pigment epithelium detachment (PED) is an important clinical characteristic. Thus, precise and efficient PED segmentation is necessary for PCV clinical diagnosis and treatment. We propose a dual-stage learning framework via deep neural networks (DNN) for automated PED segmentation in PCV patients to avoid issues associated with manual PED segmentation (subjectivity, manual segmentation errors, and high time consumption).The optical coherence tomography scans of fifty patients were quantitatively evaluated with different algorithms and clinicians. Dual-stage DNN outperformed existing PED segmentation methods for all segmentation accuracy parameters, including true positive volume fraction (85.74 ± 8.69%), dice similarity coefficient (85.69 ± 8.08%), positive predictive value (86.02 ± 8.99%) and false positive volume fraction (0.38 ± 0.18%). Dual-stage DNN achieves accurate PED quantitative information, works with multiple types of PEDs and agrees well with manual delineation, suggesting that it is a potential automated assistant for PCV management.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional continuous max flow optimization-based serous retinal detachment segmentation in SD-OCT for central serous chorioretinopathy

Menglin Wu, Wen Fan, Qiang Chen, Zhenlong Du, Xiaoli Li, Songtao Yuan, and Hyunjin Park
Biomed. Opt. Express 8(9) 4257-4274 (2017)

ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks

Abhijit Guha Roy, Sailesh Conjeti, Sri Phani Krishna Karri, Debdoot Sheet, Amin Katouzian, Christian Wachinger, and Nassir Navab
Biomed. Opt. Express 8(8) 3627-3642 (2017)

Automated red blood cells extraction from holographic images using fully convolutional neural networks

Faliu Yi, Inkyu Moon, and Bahram Javidi
Biomed. Opt. Express 8(10) 4466-4479 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).
  2. R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
    [Crossref] [PubMed]
  3. S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
    [Crossref] [PubMed]
  4. C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
    [Crossref] [PubMed]
  5. S. M. Cohen, G. T. Kokame, and J. D. Gass, “Paraproteinemias associated with serous detachments of the retinal pigment epithelium and neurosensory retina,” Retina 16(6), 467–473 (1996).
    [Crossref] [PubMed]
  6. J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
    [Crossref] [PubMed]
  7. U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
    [Crossref] [PubMed]
  8. N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
    [Crossref] [PubMed]
  9. A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
    [Crossref] [PubMed]
  10. M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
    [Crossref] [PubMed]
  11. T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
    [Crossref] [PubMed]
  12. S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
    [Crossref] [PubMed]
  13. Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
    [Crossref] [PubMed]
  14. I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
    [Crossref] [PubMed]
  15. F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
    [Crossref] [PubMed]
  16. K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Comput. Med. Imaging Graph. 31(4-5), 198–211 (2007).
    [Crossref] [PubMed]
  17. M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
    [Crossref] [PubMed]
  18. F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
    [Crossref] [PubMed]
  19. C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
    [Crossref] [PubMed]
  20. G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
    [PubMed]
  21. E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
    [Crossref] [PubMed]
  22. F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015).
    [Crossref]
  23. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
    [Crossref] [PubMed]
  24. K. Yan, C. Li, X. Wang, A. Li, Y. Yuan, D. Feng, M. Khadra, and J. Kim, “Automatic prostate segmentation on MR images with deep network and graph model,” in 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), (IEEE, 2016),pp. 635–638.
    [Crossref]
  25. Y. Guo, Y. Gao, and D. Shen, “Deformable MR prostate segmentation via deep feature learning and sparse patch matching,” IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016).
    [Crossref] [PubMed]
  26. P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
    [Crossref] [PubMed]
  27. Y. Yuan, M. Chao, and Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance,” IEEE Trans. Med. Imaging 99, 2695 (2017).
  28. C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).
  29. L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
    [Crossref] [PubMed]
  30. E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
    [Crossref] [PubMed]
  31. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Springer International Publishing, Cham, 2015), pp. 234–241.
  32. L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
    [Crossref] [PubMed]
  33. A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab, “ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks,” Biomed. Opt. Express 8(8), 3627–3642 (2017).
    [Crossref]
  34. F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 3D Vision (3DV), 2016 Fourth International Conference (IEEE, 2016), pp. 565–571.
    [Crossref]
  35. G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 478–487.
    [Crossref]
  36. H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Lett. 41(5), 994–997 (2016).
    [Crossref] [PubMed]
  37. A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), 60–65.
    [Crossref]
  38. A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for matlab,” in Proceedings of the 23rd ACM international conference on Multimedia, (ACM, 2015),pp. 689–692.
    [Crossref]
  39. H. Li, R. Zhao, and X. Wang, “Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification,” arXiv preprint arXiv:1412.4526 (2014).
  40. Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
    [Crossref] [PubMed]
  41. A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
    [Crossref] [PubMed]
  42. D. Giavarina, “Understanding Bland Altman analysis,” Biochem Med (Zagreb) 25(2), 141–151 (2015).
    [Crossref] [PubMed]
  43. G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
    [Crossref] [PubMed]
  44. M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
    [PubMed]
  45. L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
    [Crossref] [PubMed]
  46. L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
    [Crossref] [PubMed]
  47. C. W. Wong, T. Y. Wong, and C. M. Cheung, “Polypoidal Choroidal Vasculopathy in Asians,” J. Clin. Med. 4(5), 782–821 (2015).
    [Crossref] [PubMed]
  48. P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
    [Crossref] [PubMed]
  49. T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
    [Crossref] [PubMed]

2017 (7)

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Y. Yuan, M. Chao, and Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance,” IEEE Trans. Med. Imaging 99, 2695 (2017).

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref] [PubMed]

L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
[Crossref] [PubMed]

A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab, “ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks,” Biomed. Opt. Express 8(8), 3627–3642 (2017).
[Crossref]

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
[Crossref] [PubMed]

2016 (9)

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

H. Yu, J. Gao, and A. Li, “Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images,” Opt. Lett. 41(5), 994–997 (2016).
[Crossref] [PubMed]

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

Y. Guo, Y. Gao, and D. Shen, “Deformable MR prostate segmentation via deep feature learning and sparse patch matching,” IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016).
[Crossref] [PubMed]

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

2015 (8)

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015).
[Crossref]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

C. W. Wong, T. Y. Wong, and C. M. Cheung, “Polypoidal Choroidal Vasculopathy in Asians,” J. Clin. Med. 4(5), 782–821 (2015).
[Crossref] [PubMed]

D. Giavarina, “Understanding Bland Altman analysis,” Biochem Med (Zagreb) 25(2), 141–151 (2015).
[Crossref] [PubMed]

2014 (2)

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
[PubMed]

2013 (4)

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
[Crossref] [PubMed]

2012 (3)

S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
[Crossref] [PubMed]

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

2011 (2)

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

2009 (1)

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

2008 (1)

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

2007 (2)

K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Comput. Med. Imaging Graph. 31(4-5), 198–211 (2007).
[Crossref] [PubMed]

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

2005 (1)

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

1996 (1)

S. M. Cohen, G. T. Kokame, and J. D. Gass, “Paraproteinemias associated with serous detachments of the retinal pigment epithelium and neurosensory retina,” Retina 16(6), 467–473 (1996).
[Crossref] [PubMed]

Abràmoff, M. D.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Ahlers, C.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

Ahn, J.

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

Akduman, L.

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

Amoaku, W.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Azuara-Blanco, A.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Balaratnasingam, C.

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

Baumann, B.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Bengio, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Bhargava, M.

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Bressler, S. B.

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

Buades, A.

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), 60–65.
[Crossref]

Bühl, W.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Burns, T. L.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Burr, J. M.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Caskey, P. J.

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

Castillo, M. M.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Chan, E. W.

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Chao, M.

Y. Yuan, M. Chao, and Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance,” IEEE Trans. Med. Imaging 99, 2695 (2017).

Chee, C. K.

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Chen, H.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Chen, L. J.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Chen, M.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Chen, Q.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Chen, S. J.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Chen, X.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Chen, Y.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Cheung, C. M.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

C. W. Wong, T. Y. Wong, and C. M. Cheung, “Polypoidal Choroidal Vasculopathy in Asians,” J. Clin. Med. 4(5), 782–821 (2015).
[Crossref] [PubMed]

Cohen, S. M.

S. M. Cohen, G. T. Kokame, and J. D. Gass, “Paraproteinemias associated with serous detachments of the retinal pigment epithelium and neurosensory retina,” Retina 16(6), 467–473 (1996).
[Crossref] [PubMed]

Coll, B.

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), 60–65.
[Crossref]

Conjeti, S.

Cunefare, D.

Dansingani, K. K.

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

Darrell, T.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref] [PubMed]

Dastmalchi, S.

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

De Salvo, G.

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

de Sisternes, L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Deak, G. G.

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

Ding, X.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Doi, K.

K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Comput. Med. Imaging Graph. 31(4-5), 198–211 (2007).
[Crossref] [PubMed]

Du, B.

F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015).
[Crossref]

Eldeeb, M.

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Elders, A.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Engelbert, M.

S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
[Crossref] [PubMed]

Falcão, M.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

Fang, L.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
[Crossref] [PubMed]

L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Farsiu, S.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
[Crossref] [PubMed]

L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Feuer, W. J.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Fraser, C.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Freund, K. B.

S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
[Crossref] [PubMed]

S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
[Crossref] [PubMed]

Gao, E.

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Gao, J.

Gao, X.

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

Gao, Y.

Y. Guo, Y. Gao, and D. Shen, “Deformable MR prostate segmentation via deep feature learning and sparse patch matching,” IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016).
[Crossref] [PubMed]

Garvin, M. K.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Gass, J. D.

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

S. M. Cohen, G. T. Kokame, and J. D. Gass, “Paraproteinemias associated with serous detachments of the retinal pigment epithelium and neurosensory retina,” Retina 16(6), 467–473 (1996).
[Crossref] [PubMed]

Geitzenauer, W.

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

Gerendas, B.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Giavarina, D.

D. Giavarina, “Understanding Bland Altman analysis,” Biochem Med (Zagreb) 25(2), 141–151 (2015).
[Crossref] [PubMed]

Golbaz, I.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

Gregori, G.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Gregori, N. Z.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Guo, S.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Guo, Y.

Y. Guo, Y. Gao, and D. Shen, “Deformable MR prostate segmentation via deep feature learning and sparse patch matching,” IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016).
[Crossref] [PubMed]

Guymer, R. H.

Hasegawa, T.

M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
[PubMed]

Hashad, Y.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Hernández, R.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Hinton, G.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Hitzenberger, C. K.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Holz, F. G.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Hu, P.

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

Huang, L.

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

Imamura, Y.

S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
[Crossref] [PubMed]

Izatt, J. A.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Jin, L.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Kamoshita, M.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Kang, S. W.

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

Karri, S. P. K.

Katouzian, A.

Keane, P. A.

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

Khan, S.

S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
[Crossref] [PubMed]

Kim, H.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Kim, J. H.

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

Kim, S. J.

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

Kim, T. H.

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

Kishi, S.

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

Koh, A.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Kokame, G. T.

S. M. Cohen, G. T. Kokame, and J. D. Gass, “Paraproteinemias associated with serous detachments of the retinal pigment epithelium and neurosensory retina,” Retina 16(6), 467–473 (1996).
[Crossref] [PubMed]

Kong, D.

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

Kroisamer, J.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Kundi, M.

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

Kuo, A. N.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Kurihara, T.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Kutzscher, L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Lai, T. Y.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Lammer, J.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Lanzetta, P.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

LeCun, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Lee, W. K.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Lenc, K.

A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for matlab,” in Proceedings of the 23rd ACM international conference on Multimedia, (ACM, 2015),pp. 689–692.
[Crossref]

Leng, T.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Leveziel, N.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Li, A.

Li, G.

G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 478–487.
[Crossref]

Li, J.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Li, L.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

Li, S.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
[Crossref] [PubMed]

L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt. Express 8(5), 2732–2744 (2017).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Li, X.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Li, Z.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Liang, P.

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

Liew, G.

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

Lim, T. H.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Lingam, G.

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Liu, R.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Liu, X.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Lo, Y. C.

Y. Yuan, M. Chao, and Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance,” IEEE Trans. Med. Imaging 99, 2695 (2017).

Lois, N.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Long, J.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref] [PubMed]

Lotery, A.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Lujan, B. J.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Ma, J.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Ma, S.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Matsumoto, H.

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

McNabb, R. P.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Minami, S.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Morel, J.-M.

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), 60–65.
[Crossref]

Mowatt, G.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Mrejen, S.

S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
[Crossref] [PubMed]

Mukai, R.

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

Mukkamala, S. K.

S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
[Crossref] [PubMed]

Nagai, N.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Navab, N.

Nie, Q.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Nishi, T.

M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
[PubMed]

Ogata, N.

M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
[PubMed]

Ogura, Y.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

Ohno-Matsui, K.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Olk, J.

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

Ozawa, Y.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Peng, J.

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

Penha, F. M.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

Pilz, S.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Pircher, M.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Prünte, C.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

Puliafito, C. A.

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Qian, X.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Qiu, B.

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

Ramsay, C. R.

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Roberts, P.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Rosenfeld, P. J.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Roy, A. G.

Ruamviboonsuk, P.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Rubin, D. L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Russell, S. R.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Sacu, S.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

Sarraf, D.

S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
[Crossref] [PubMed]

Sato, T.

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

Schlanitz, F.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

Schmidt-Erfurth, U.

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

Schmidt-Erfurth, U. M.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

Schriefl, S.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

Schütze, C.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

Sheet, D.

Shelhamer, E.

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref] [PubMed]

Shen, D.

Y. Guo, Y. Gao, and D. Shen, “Deformable MR prostate segmentation via deep feature learning and sparse patch matching,” IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016).
[Crossref] [PubMed]

Shi, F.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Shinoda, H.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Simader, C.

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

Simhaee, D.

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

Sonka, M.

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Stetson, P.

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

Stock, G.

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

Sun, C.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Sun, Z.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

Suzuki, M.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Tan, A. C.

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

Tang, S.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Thomas, D.

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

Tokaji, E.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Toth, C. A.

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

Tsubota, K.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Tufail, A.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

Uchida, A.

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Vaz-Pereira, S.

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

Vedaldi, A.

A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for matlab,” in Proceedings of the 23rd ACM international conference on Multimedia, (ACM, 2015),pp. 689–692.
[Crossref]

Wachinger, C.

Waldstein, S. M.

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, F.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Wang, L.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

Watanabe, G.

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

Weisberger, A.

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Wong, C. W.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

C. W. Wong, T. Y. Wong, and C. M. Cheung, “Polypoidal Choroidal Vasculopathy in Asians,” J. Clin. Med. 4(5), 782–821 (2015).
[Crossref] [PubMed]

Wong, T. Y.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

C. W. Wong, T. Y. Wong, and C. M. Cheung, “Polypoidal Choroidal Vasculopathy in Asians,” J. Clin. Med. 4(5), 782–821 (2015).
[Crossref] [PubMed]

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Wu, F.

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

Wu, X.

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

Xia, W.

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

Xiang, D.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Yamashita, M.

M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
[PubMed]

Yan, C.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

Yan, H.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Yanagi, Y.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

Yang, Y.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Yannuzzi, L. A.

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

Yehoshua, Z.

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Yeo, I.

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

Yu, H.

Yu, H. G.

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Yu, S.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Yu, Y.

G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 478–487.
[Crossref]

Yuan, Y.

Y. Yuan, M. Chao, and Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance,” IEEE Trans. Med. Imaging 99, 2695 (2017).

Zeng, J.

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

Zhang, B.

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

Zhang, F.

F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015).
[Crossref]

Zhang, H.

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

Zhang, L.

F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015).
[Crossref]

Zhao, H.

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Zheng, L.

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Zhu, W.

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

Zimmerman, L. E.

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

Am. J. Ophthalmol. (5)

J. H. Kim, S. W. Kang, T. H. Kim, S. J. Kim, and J. Ahn, “Structure of polypoidal choroidal vasculopathy studied by colocalization between tomographic and angiographic lesions,” Am. J. Ophthalmol. 156(5), 974–980 (2013).

A. C. Tan, D. Simhaee, C. Balaratnasingam, K. K. Dansingani, and L. A. Yannuzzi, “A perspective on the nature and frequency of pigment epithelial detachments,” Am. J. Ophthalmol. 172, 13–27 (2016).
[Crossref] [PubMed]

F. M. Penha, P. J. Rosenfeld, G. Gregori, M. Falcão, Z. Yehoshua, F. Wang, and W. J. Feuer, “Quantitative imaging of retinal pigment epithelial detachments using spectral-domain optical coherence tomography,” Am. J. Ophthalmol. 153(3), 515–523 (2012).
[Crossref] [PubMed]

E. W. Chan, M. Eldeeb, G. Lingam, D. Thomas, M. Bhargava, and C. K. Chee, “Quantitative changes in pigment epithelial detachment area and volume predict retreatment in polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 177, 195–205 (2017).
[Crossref] [PubMed]

G. De Salvo, S. Vaz-Pereira, P. A. Keane, A. Tufail, and G. Liew, “Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy,” Am. J. Ophthalmol. 158(6), 1228–1238 (2014).
[Crossref] [PubMed]

Biochem Med (Zagreb) (1)

D. Giavarina, “Understanding Bland Altman analysis,” Biochem Med (Zagreb) 25(2), 141–151 (2015).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Br. J. Ophthalmol. (2)

C. Ahlers, C. Simader, W. Geitzenauer, G. Stock, P. Stetson, S. Dastmalchi, and U. Schmidt-Erfurth, “Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203 (2008).
[Crossref] [PubMed]

T. Y. Wong, K. Ohno-Matsui, N. Leveziel, F. G. Holz, T. Y. Lai, H. G. Yu, P. Lanzetta, Y. Chen, and A. Tufail, “Myopic choroidal neovascularisation: current concepts and update on clinical management,” Br. J. Ophthalmol. 99(3), 289–296 (2015).
[Crossref] [PubMed]

Clin. Ophthalmol. (1)

M. Yamashita, T. Nishi, T. Hasegawa, and N. Ogata, “Response of serous retinal pigment epithelial detachments to intravitreal aflibercept in polypoidal choroidal vasculopathy refractory to ranibizumab,” Clin. Ophthalmol. 8, 343–346 (2014).
[PubMed]

Comput. Med. Imaging Graph. (1)

K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current status and future potential,” Comput. Med. Imaging Graph. 31(4-5), 198–211 (2007).
[Crossref] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Huang, W. Xia, B. Zhang, B. Qiu, and X. Gao, “MSFCN-multiple supervised fully convolutional networks for the osteosarcoma segmentation of CT images,” Comput. Methods Programs Biomed. 143, 67–74 (2017).
[Crossref] [PubMed]

IEEE Trans. Geosci. Remote Sens. (1)

F. Zhang, B. Du, and L. Zhang, “Saliency-guided unsupervised feature learning for scene classification,” IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015).
[Crossref]

IEEE Trans. Med. Imaging (6)

Y. Guo, Y. Gao, and D. Shen, “Deformable MR prostate segmentation via deep feature learning and sparse patch matching,” IEEE Trans. Med. Imaging 35(4), 1077–1089 (2016).
[Crossref] [PubMed]

Y. Yuan, M. Chao, and Y. C. Lo, “Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance,” IEEE Trans. Med. Imaging 99, 2695 (2017).

M. K. Garvin, M. D. Abràmoff, X. Wu, S. R. Russell, T. L. Burns, and M. Sonka, “Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images,” IEEE Trans. Med. Imaging 28(9), 1436–1447 (2009).
[Crossref] [PubMed]

F. Shi, X. Chen, H. Zhao, W. Zhu, D. Xiang, E. Gao, M. Sonka, and H. Chen, “Automated 3-D retinal layer segmentation of macular optical coherence tomography images with serous pigment epithelial detachments,” IEEE Trans. Med. Imaging 34(2), 441–452 (2015).
[Crossref] [PubMed]

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).
[Crossref] [PubMed]

L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11), 2034–2049 (2013).
[Crossref] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks for Semantic Segmentation,” IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

P. Roberts, B. Baumann, J. Lammer, B. Gerendas, J. Kroisamer, W. Bühl, M. Pircher, C. K. Hitzenberger, U. Schmidt-Erfurth, and S. Sacu, “Retinal pigment epithelial features in central serous chorioretinopathy identified by polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57(4), 1595–1603 (2016).
[Crossref] [PubMed]

I. Golbaz, C. Ahlers, G. Stock, C. Schütze, S. Schriefl, F. Schlanitz, C. Simader, C. Prünte, and U. M. Schmidt-Erfurth, “Quantification of the therapeutic response of intraretinal, subretinal, and subpigment epithelial compartments in exudative AMD during anti-VEGF therapy,” Invest. Ophthalmol. Vis. Sci. 52(3), 1599–1605 (2011).
[Crossref] [PubMed]

J. Clin. Med. (1)

C. W. Wong, T. Y. Wong, and C. M. Cheung, “Polypoidal Choroidal Vasculopathy in Asians,” J. Clin. Med. 4(5), 782–821 (2015).
[Crossref] [PubMed]

Med. Image Anal. (1)

Q. Chen, T. Leng, L. Zheng, L. Kutzscher, J. Ma, L. de Sisternes, and D. L. Rubin, “Automated drusen segmentation and quantification in SD-OCT images,” Med. Image Anal. 17(8), 1058–1072 (2013).
[Crossref] [PubMed]

Nature (1)

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Ophthalmology (3)

U. Schmidt-Erfurth, S. M. Waldstein, G. G. Deak, M. Kundi, and C. Simader, “Pigment epithelial detachment followed by retinal cystoid degeneration leads to vision loss in treatment of neovascular age-related macular degeneration,” Ophthalmology 122(4), 822–832 (2015).
[Crossref] [PubMed]

G. Gregori, F. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

M. M. Castillo, G. Mowatt, A. Elders, N. Lois, C. Fraser, R. Hernández, W. Amoaku, J. M. Burr, A. Lotery, C. R. Ramsay, and A. Azuara-Blanco, “Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review,” Ophthalmology 122(2), 399–406 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

P. Hu, F. Wu, J. Peng, P. Liang, and D. Kong, “Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution,” Phys. Med. Biol. 61(24), 8676–8698 (2016).
[Crossref] [PubMed]

Prog. Retin. Eye Res. (1)

C. W. Wong, Y. Yanagi, W. K. Lee, Y. Ogura, I. Yeo, T. Y. Wong, and C. M. Cheung, “Age-related macular degeneration and polypoidal choroidal vasculopathy in Asians,” Prog. Retin. Eye Res. 53, 107–139 (2016).
[Crossref] [PubMed]

Retina (7)

S. M. Cohen, G. T. Kokame, and J. D. Gass, “Paraproteinemias associated with serous detachments of the retinal pigment epithelium and neurosensory retina,” Retina 16(6), 467–473 (1996).
[Crossref] [PubMed]

J. D. Gass, S. B. Bressler, L. Akduman, J. Olk, P. J. Caskey, and L. E. Zimmerman, “Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study,” Retina 25(3), 304–310 (2005).
[Crossref] [PubMed]

R. Liu, J. Li, Z. Li, S. Yu, Y. Yang, H. Yan, J. Zeng, S. Tang, and X. Ding, “Distinguishing polypoidal choroidal vasculopathy from typical neovascular age-related macular degeneration based on spectral domain optical coherence tomography,” Retina 36(4), 778–786 (2016).
[Crossref] [PubMed]

S. Mrejen, D. Sarraf, S. K. Mukkamala, and K. B. Freund, “Multimodal imaging of pigment epithelial detachment: a guide to evaluation,” Retina 33(9), 1735–1762 (2013).
[Crossref] [PubMed]

T. Sato, S. Kishi, G. Watanabe, H. Matsumoto, and R. Mukai, “Tomographic features of branching vascular networks in polypoidal choroidal vasculopathy,” Retina 27(5), 589–594 (2007).
[Crossref] [PubMed]

S. Khan, M. Engelbert, Y. Imamura, and K. B. Freund, “Polypoidal choroidal vasculopathy: simultaneous indocyanine green angiography and eye-tracked spectral domain optical coherence tomography findings,” Retina 32(6), 1057–1068 (2012).
[Crossref] [PubMed]

A. Koh, W. K. Lee, L. J. Chen, S. J. Chen, Y. Hashad, H. Kim, T. Y. Lai, S. Pilz, P. Ruamviboonsuk, E. Tokaji, A. Weisberger, and T. H. Lim, “EVEREST study: efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy,” Retina 32(8), 1453–1464 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

Z. Sun, H. Chen, F. Shi, L. Wang, W. Zhu, D. Xiang, C. Yan, L. Li, and X. Chen, “An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images,” Sci. Rep. 6(1), 21739 (2016).
[Crossref] [PubMed]

N. Nagai, M. Suzuki, A. Uchida, T. Kurihara, M. Kamoshita, S. Minami, H. Shinoda, K. Tsubota, and Y. Ozawa, “Non-responsiveness to intravitreal aflibercept treatment in neovascular age-related macular degeneration: implications of serous pigment epithelial detachment,” Sci. Rep. 6(1), 29619 (2016).
[Crossref] [PubMed]

Other (8)

C. Sun, S. Guo, H. Zhang, J. Li, M. Chen, S. Ma, L. Jin, X. Liu, X. Li, and X. Qian, “Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,” Artif. Intell. Med. in press (2017).

K. Yan, C. Li, X. Wang, A. Li, Y. Yuan, D. Feng, M. Khadra, and J. Kim, “Automatic prostate segmentation on MR images with deep network and graph model,” in 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), (IEEE, 2016),pp. 635–638.
[Crossref]

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 2005), 60–65.
[Crossref]

A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks for matlab,” in Proceedings of the 23rd ACM international conference on Multimedia, (ACM, 2015),pp. 689–692.
[Crossref]

H. Li, R. Zhao, and X. Wang, “Highly efficient forward and backward propagation of convolutional neural networks for pixelwise classification,” arXiv preprint arXiv:1412.4526 (2014).

F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric medical image segmentation,” in 3D Vision (3DV), 2016 Fourth International Conference (IEEE, 2016), pp. 565–571.
[Crossref]

G. Li and Y. Yu, “Deep contrast learning for salient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 478–487.
[Crossref]

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI) (Springer International Publishing, Cham, 2015), pp. 234–241.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

An example of serous and vascularized pigment epithelium detachments (PED). (a) is a cross-sectional OCT image of serous PED, and (b) is a cross-sectional OCT image of vascularized PED. (c) and (d) are the 3D visualizations of the segmentation results with the red region representing the PED regions and the green surface representing Bruch’s membrane (BM).

Fig. 2
Fig. 2

The flowchart of the proposed framework (dual-stage DNN). The segmentation framework mainly consists of two major processing steps in the workflow. First, the location of Bruch’s membrane (BM) is determined based on the first deep neural network (DNN) (named S1-Net). Then, the pigment epithelium detachment (PED) regions are segmented based on the second DNN (named S2-Net) using the BM layer constraint.

Fig. 3
Fig. 3

Illustration of experimental results by different methods. (a) to (f) represent our dual-stage DNN framework at different steps. (a) original image; (b) result of the denoising process; (c) result using the line-based ground truth in the layer recognition learning step; (d) result using padded ground truth; (e) input of the pigment epithelium detachment (PED) delineation learning step; (f) final result of the automatic PED segmentation; (g) result of the ground truth; and (h) result using single-stage DNN. (i) Layer segmentation result of GS + ML. From top to bottom, the internal limiting membrane (ILM), the roof of the ellipsoid zone, retinal pigment epithelium (RPE) floor and Bruch’s membrane are displayed. (j) PED segmentation result of GS + ML.

Fig. 4
Fig. 4

Final automatic pigment epithelium detachment segmentation result of our framework compared with the result of the ground truth on different types of PED. The green line represents the result of our dual-stage DNN, and the red line represents the ground truth. Column (a) and (b) show the serous PEDs and their results. From top to bottom, a small serous PED, a large serous PED, two separate serous PEDs and one merged serous PED are displayed. Columns (c) and (d) show the vascularized PEDs and their results. Vascularized PED regions are more challenging as they may have different intensities and hyperreflective exudates above them. The segmentation performance on vascularized PED shows more segmentation error than that on serous PED.

Fig. 5
Fig. 5

Evaluation of the volume agreement of pigment epithelium detachment (PED) between different methods and different experts represented by separate Bland-Altman plots in the whole database. The red dotted line represent the 95% limits of agreement (LoA) (mm3).The blue line represent the mean difference (mm3). The agreements of our dual-stage DNN framework with Expert I (ground truth) and Expert IIare illustrated in the top row as (a) and (b). The agreement between the different experts is illustrated in (c). The two bottom rows show the agreements of the comparison methods with Expert I, Expert II and the dual-stage DNN: the GS + ML method (illustrated in (d), (e) and (f)) and single-stage DNN (illustrated in (g), (h) and (i)). The lowest volume deviation between methods and experts occurred for dual-stage DNN.

Tables (4)

Tables Icon

Table 1 Structures of Fully Convolutional Networks a

Tables Icon

Table 2 Detailed Constraints and Parameter Selection in Layer Detection of a Method Based on Graph Theory

Tables Icon

Table 3 Pigment Epithelium Detachment Segmentation Accuracy Results by Different Methods and Experts a

Tables Icon

Table 4 Agreement between the Different Methods and Experts for Pigment Epithelium Detachment Segmentation a

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Y i j d = d =1 D i =1 φ( H ,r ) j =1 φ( W ,r ) F 1+r i +ϕ( i +z,r ),1+r j +ϕ( j +z,r ), d , d × X 1 i φ( i +z,r ),1 j φ( j +z,r ), d
L= xS ( x c +log t=1 2 e x t )+λ | | W | | 2
TPVF= | V R V G | | V G |
DSC=2× | V R V G | | V R V G |
PPV= | V R V G | | V R | 
FPVF= | V R || V R V G | | V ε V G |

Metrics