Abstract

Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Raman active components of skin cancer

Xu Feng, Austin J Moy, Hieu T. M. Nguyen, Jason Zhang, Matthew C. Fox, Katherine R. Sebastian, Jason S. Reichenberg, Mia K. Markey, and James W. Tunnell
Biomed. Opt. Express 8(6) 2835-2850 (2017)

Time-resolved optical tomography using short-pulse laser for tumor detection

Gopalendu Pal, Soumyadipta Basu, Kunal Mitra, and Tuan Vo-Dinh
Appl. Opt. 45(24) 6270-6282 (2006)

Analysis of skin lesions using laminar optical tomography

Timothy J. Muldoon, Sean A. Burgess, Brenda R. Chen, Désirée Ratner, and Elizabeth M. C. Hillman
Biomed. Opt. Express 3(7) 1701-1712 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Frank, Electron tomography (Springer, Dordrecht, 2008).
  2. J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances (SPIE Bellingham, Washington, USA, 2009).
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
    [Crossref]
  4. A. Gibson, J. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005).
    [Crossref] [PubMed]
  5. T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
    [Crossref] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
    [Crossref] [PubMed]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
    [Crossref]
  8. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
    [Crossref] [PubMed]
  9. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).
    [Crossref]
  10. T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
    [Crossref]
  11. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Op. 4, S283 (2002).
    [Crossref]
  12. S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393–417 (2012).
    [Crossref]
  13. S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Topics Quantum Electron. 20, 104–111 (2014).
    [Crossref]
  14. T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
    [Crossref]
  15. T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
    [Crossref]
  16. E. Gagnon and J.-F. Rivest, “Laser range imaging using the self-mixing effect in a laser diode,” IEEE Trans. Instrum. Meas. 48, 693–699 (1999).
    [Crossref]
  17. J. Keeley, P. Dean, A. Valavanis, K. Bertling, Y. Lim, R. Alhathlool, T. Taimre, L. Li, D. Indjin, A. Rakić, and et al., “Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser,” Opt. Lett. 40, 994–997 (2015).
    [Crossref] [PubMed]
  18. E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
    [Crossref]
  19. Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
    [Crossref] [PubMed]
  20. C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
    [Crossref]
  21. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
    [Crossref]
  22. H. P. Soyer, D. Rigel, and E. M. Wurm, Dermatology, 3rd ed. ( Elsevier, London2012), chap. Actinic Keratosis, Basal Cell Carcinoma and Squamous Cell Carcinoma, pp. 1773–1794.
  23. L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
    [Crossref]
  24. H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
    [Crossref] [PubMed]
  25. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, “Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode,” Appl. Opt. 25, 1417–1419 (1986).
    [Crossref] [PubMed]
  26. Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
    [Crossref] [PubMed]
  27. A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.
  28. A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.
  29. A. Bearden, M. P. O’Neill, L. C. Osborne, and T. L. Wong, “Imaging and vibrational analysis with laser-feedback interferometry,” Opt. Lett. 18, 238–240 (1993).
    [Crossref] [PubMed]
  30. R. Juškaitis, N. Rea, and T. Wilson, “Semiconductor laser confocal microscopy,” Appl. Opt. 33, 578–584 (1994).
    [Crossref]
  31. C.-H. Lu, J. Wang, and K.-L. Deng, “Imaging and profiling surface microstructures with noninterferometric confocal laser feedback,” Appl. Phys. Lett. 66, 2022–2024 (1995).
    [Crossref]
  32. M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
    [Crossref]
  33. O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
    [Crossref]
  34. O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
    [Crossref] [PubMed]
  35. J. White, W. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41–48 (1987).
    [Crossref] [PubMed]
  36. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
    [Crossref]
  37. J. White, “Reflecting on confocal microscopy: a personal perspective,” Confocal Microscopy: Methods and Protocols 10751–7 (2014).
  38. A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
    [Crossref]
  39. A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.
  40. A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
    [Crossref]
  41. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
    [Crossref]
  42. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144, 646–674 (2011).
    [Crossref] [PubMed]
  43. D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4, 677–687 (2004).
    [Crossref] [PubMed]
  44. P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
    [Crossref] [PubMed]
  45. R. K. Jain, “Taming vessels to treat cancer,” Scientific American 18, 64–71 (2008).
    [Crossref]
  46. I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13, 014015 (2008).
    [Crossref] [PubMed]
  47. R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
    [Crossref] [PubMed]
  48. F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.
  49. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
    [Crossref] [PubMed]
  50. V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE press, Bellingham, Washington USA, 2007).
    [Crossref]
  51. A. Tycho, T. M. Jørgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41, 6676–6691 (2002).
    [Crossref] [PubMed]
  52. R. S. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakić, “Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors,” Opt. Lett. 36, 3690–3692 (2011).
    [Crossref] [PubMed]
  53. K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
    [Crossref]
  54. G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions–a valuable tool for early,” Lancet Oncol. 2, 443–449 (2001).
    [Crossref]
  55. G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
    [Crossref] [PubMed]
  56. R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
    [Crossref] [PubMed]
  57. R. Hofmann-Wellenhof, G. Pellacani, J. Malvehy, and H. P. Soyer, Reflectance Confocal Microscopy for Skin Diseases (Springer Science & Business Media, 2012).
    [Crossref]
  58. C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
    [Crossref] [PubMed]
  59. A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
    [Crossref] [PubMed]
  60. A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
    [Crossref] [PubMed]
  61. S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
    [Crossref] [PubMed]

2016 (3)

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

2015 (2)

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

J. Keeley, P. Dean, A. Valavanis, K. Bertling, Y. Lim, R. Alhathlool, T. Taimre, L. Li, D. Indjin, A. Rakić, and et al., “Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser,” Opt. Lett. 40, 994–997 (2015).
[Crossref] [PubMed]

2014 (4)

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Topics Quantum Electron. 20, 104–111 (2014).
[Crossref]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

J. White, “Reflecting on confocal microscopy: a personal perspective,” Confocal Microscopy: Methods and Protocols 10751–7 (2014).

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref] [PubMed]

2013 (3)

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
[Crossref] [PubMed]

C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
[Crossref]

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

2012 (1)

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393–417 (2012).
[Crossref]

2011 (3)

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144, 646–674 (2011).
[Crossref] [PubMed]

R. S. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakić, “Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors,” Opt. Lett. 36, 3690–3692 (2011).
[Crossref] [PubMed]

2010 (2)

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

2009 (2)

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

2008 (4)

R. K. Jain, “Taming vessels to treat cancer,” Scientific American 18, 64–71 (2008).
[Crossref]

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13, 014015 (2008).
[Crossref] [PubMed]

R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
[Crossref] [PubMed]

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

2007 (1)

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

2006 (2)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

2005 (2)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

A. Gibson, J. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005).
[Crossref] [PubMed]

2004 (3)

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[Crossref]

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4, 677–687 (2004).
[Crossref] [PubMed]

2003 (2)

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

2002 (2)

2001 (4)

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions–a valuable tool for early,” Lancet Oncol. 2, 443–449 (2001).
[Crossref]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

2000 (1)

1999 (2)

E. Gagnon and J.-F. Rivest, “Laser range imaging using the self-mixing effect in a laser diode,” IEEE Trans. Instrum. Meas. 48, 693–699 (1999).
[Crossref]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
[Crossref]

1998 (1)

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
[Crossref]

1995 (1)

C.-H. Lu, J. Wang, and K.-L. Deng, “Imaging and profiling surface microstructures with noninterferometric confocal laser feedback,” Appl. Phys. Lett. 66, 2022–2024 (1995).
[Crossref]

1994 (1)

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

1988 (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

1987 (1)

J. White, W. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41–48 (1987).
[Crossref] [PubMed]

1986 (1)

Agnew, G.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

Alhathlool, R.

Amos, W.

J. White, W. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41–48 (1987).
[Crossref] [PubMed]

Andersen, P. E.

Argenziano, G.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions–a valuable tool for early,” Lancet Oncol. 2, 443–449 (2001).
[Crossref]

Arpey, C. J.

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

Arridge, S. R.

A. Gibson, J. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005).
[Crossref] [PubMed]

Ayers, F.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.

Baker, W.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Bashkatov, A.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Bearden, A.

Bertling, K.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

J. Keeley, P. Dean, A. Valavanis, K. Bertling, Y. Lim, R. Alhathlool, T. Taimre, L. Li, D. Indjin, A. Rakić, and et al., “Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser,” Opt. Lett. 40, 994–997 (2015).
[Crossref] [PubMed]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref] [PubMed]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Binder, M.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Blum, A.

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Bosch, T.

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Op. 4, S283 (2002).
[Crossref]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
[Crossref]

Braun, R. P.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Bridges, T.

R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
[Crossref] [PubMed]

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Butani, A.

R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
[Crossref] [PubMed]

Carrera, C.

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

Cerroni, L.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Cesinaro, A.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Chellali, R.

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
[Crossref]

Chen, Z.

Chimenti, S.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Ciardo, S.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Corona, R.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Cuccia, D. J.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.

Curiel-Lewandrowski, C.

L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
[Crossref]

Davies, A. G.

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

Day, R.

de Boer, J. F.

de Chatellus, H. G.

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

Dean, P.

Deng, K.-L.

C.-H. Lu, J. Wang, and K.-L. Deng, “Imaging and profiling surface microstructures with noninterferometric confocal laser feedback,” Appl. Phys. Lett. 66, 2022–2024 (1995).
[Crossref]

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Donati, S.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Topics Quantum Electron. 20, 104–111 (2014).
[Crossref]

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393–417 (2012).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Op. 4, S283 (2002).
[Crossref]

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Durduran, T.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Durkin, A. J.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.

Edgington, N. P.

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Ehrlich, A.

R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
[Crossref] [PubMed]

Farnetani, F.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Ferrara, G.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Fischer, A. H.

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4, 677–687 (2004).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Fordham, M.

J. White, W. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41–48 (1987).
[Crossref] [PubMed]

Fosko, S. W.

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

Fox, C. A.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Frank, J.

J. Frank, Electron tomography (Springer, Dordrecht, 2008).

Fredriksson, I.

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13, 014015 (2008).
[Crossref] [PubMed]

Fujimoto, J.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Futcher, B.

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Gagnon, E.

E. Gagnon and J.-F. Rivest, “Laser range imaging using the self-mixing effect in a laser diode,” IEEE Trans. Instrum. Meas. 48, 693–699 (1999).
[Crossref]

Garbe, C.

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

Gareau, D.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Gaudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Genina, E.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Geraminejad, P. A.

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

Gibson, A.

A. Gibson, J. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005).
[Crossref] [PubMed]

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Op. 4, S283 (2002).
[Crossref]

Grant, A.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Grier, A.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

Han, S.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

Hanahan, D.

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144, 646–674 (2011).
[Crossref] [PubMed]

Hebden, J.

A. Gibson, J. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005).
[Crossref] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Hoefling, S.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Hofmann-Wellenhof, R.

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

R. Hofmann-Wellenhof, G. Pellacani, J. Malvehy, and H. P. Soyer, Reflectance Confocal Microscopy for Skin Diseases (Springer Science & Business Media, 2012).
[Crossref]

Hsieh, J.

J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances (SPIE Bellingham, Washington, USA, 2009).

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Hugon, O.

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

Ikonic, Z.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

Indjin, D.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

J. Keeley, P. Dean, A. Valavanis, K. Bertling, Y. Lim, R. Alhathlool, T. Taimre, L. Li, D. Indjin, A. Rakić, and et al., “Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser,” Opt. Lett. 40, 994–997 (2015).
[Crossref] [PubMed]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref] [PubMed]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

Jacquin, O.

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

Jain, R. K.

R. K. Jain, “Taming vessels to treat cancer,” Scientific American 18, 64–71 (2008).
[Crossref]

Janda, M.

L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
[Crossref]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Jorgensen, P.

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Jørgensen, T. M.

Joud, F.

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

Juškaitis, R.

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Kamp, M.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Keeley, J.

Kenkre, M.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Kerl, H.

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

Khanna, S. P.

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Kim, N.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Kliese, R.

Kochubey, V.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Koeth, J.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Kuo, D.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.

Lachab, M.

Lacot, E.

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

E. Lacot, R. Day, and F. Stoeckel, “Laser optical feedback tomography,” Opt. Lett. 24, 744–746 (1999).
[Crossref]

Lai, G.

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[Crossref]

Larsson, M.

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13, 014015 (2008).
[Crossref] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Lescure, M.

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
[Crossref]

Li, L.

Lieb, J.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Lim, Y.

Lim, Y. L.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref] [PubMed]

R. S. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakić, “Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors,” Opt. Lett. 36, 3690–3692 (2011).
[Crossref] [PubMed]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Linfield, E. H.

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Loescher, L. J.

L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
[Crossref]

Longo, C.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Lu, C.-H.

C.-H. Lu, J. Wang, and K.-L. Deng, “Imaging and profiling surface microstructures with noninterferometric confocal laser feedback,” Appl. Phys. Lett. 66, 2022–2024 (1995).
[Crossref]

Mahmood, U.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Malvehy, J.

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

R. Hofmann-Wellenhof, G. Pellacani, J. Malvehy, and H. P. Soyer, Reflectance Confocal Microscopy for Skin Diseases (Springer Science & Business Media, 2012).
[Crossref]

Marghoob, A. A.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Matharu, R. S.

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

Mochizuki, A.

Moscarella, E.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Mowla, A.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Nehal, K.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Nelson, J. S.

Nickerson, J. A.

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4, 677–687 (2004).
[Crossref] [PubMed]

Nikolic, M.

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

Norgia, M.

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Topics Quantum Electron. 20, 104–111 (2014).
[Crossref]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Op. 4, S283 (2002).
[Crossref]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

O’Neill, M. P.

Oliviero, M. C.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Osborne, L. C.

Palou, J.

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

Paun, I.

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

Pellacani, G.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

R. Hofmann-Wellenhof, G. Pellacani, J. Malvehy, and H. P. Soyer, Reflectance Confocal Microscopy for Skin Diseases (Springer Science & Business Media, 2012).
[Crossref]

Perchoux, J.

Piccolo, D.

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

Ponti, G.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Porges, L.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Prow, T. W.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref] [PubMed]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Puig, S.

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Qi, X.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

Rabinovitz, H. S.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Rajadhyaksha, M.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Rakic, A.

Rakic, A. D.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

R. S. Matharu, J. Perchoux, R. Kliese, Y. L. Lim, and A. D. Rakić, “Maintaining maximum signal-to-noise ratio in uncooled vertical-cavity surface-emitting laser-based self-mixing sensors,” Opt. Lett. 36, 3690–3692 (2011).
[Crossref] [PubMed]

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Rea, N.

Ricard, C.

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

Rigel, D.

H. P. Soyer, D. Rigel, and E. M. Wurm, Dermatology, 3rd ed. ( Elsevier, London2012), chap. Actinic Keratosis, Basal Cell Carcinoma and Squamous Cell Carcinoma, pp. 1773–1794.

Rishpon, A.

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Rivest, J.-F.

E. Gagnon and J.-F. Rivest, “Laser range imaging using the self-mixing effect in a laser diode,” IEEE Trans. Instrum. Meas. 48, 693–699 (1999).
[Crossref]

Rosa, G. De

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Rupeš, I.

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Saxer, C.

Schaider, H.

Schneider, B. L.

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Schwartz, R.

R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
[Crossref] [PubMed]

Scope, A.

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Segura, S.

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

Sera, F.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Servagent, N.

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
[Crossref]

Shea, K.

L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
[Crossref]

Shinohara, S.

Soyer, H. P.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions–a valuable tool for early,” Lancet Oncol. 2, 443–449 (2001).
[Crossref]

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

R. Hofmann-Wellenhof, G. Pellacani, J. Malvehy, and H. P. Soyer, Reflectance Confocal Microscopy for Skin Diseases (Springer Science & Business Media, 2012).
[Crossref]

H. P. Soyer, D. Rigel, and E. M. Wurm, Dermatology, 3rd ed. ( Elsevier, London2012), chap. Actinic Keratosis, Basal Cell Carcinoma and Squamous Cell Carcinoma, pp. 1773–1794.

L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Stoeckel, F.

Strömberg, T.

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13, 014015 (2008).
[Crossref] [PubMed]

Sumi, M.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Taimre, T.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

J. Keeley, P. Dean, A. Valavanis, K. Bertling, Y. Lim, R. Alhathlool, T. Taimre, L. Li, D. Indjin, A. Rakić, and et al., “Three-dimensional terahertz imaging using swept-frequency feedback interferometry with a quantum cascade laser,” Opt. Lett. 40, 994–997 (2015).
[Crossref] [PubMed]

Y. L. Lim, T. Taimre, K. Bertling, P. Dean, D. Indjin, A. Valavanis, S. P. Khanna, M. Lachab, H. Schaider, T. W. Prow, and et al., “High-contrast coherent terahertz imaging of porcine tissue via swept-frequency feedback interferometry,” Biomed. Opt. Express 5, 3981–3989 (2014).
[Crossref] [PubMed]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

Talamini, R.

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

Tan, Y.

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
[Crossref] [PubMed]

C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
[Crossref]

Tuchin, V.

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE press, Bellingham, Washington USA, 2007).
[Crossref]

Tycho, A.

Tyers, M.

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

Valavanis, A.

Van der Sanden, B.

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

von Edlinger, M.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Walling, H. W.

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

Wang, J.

C.-H. Lu, J. Wang, and K.-L. Deng, “Imaging and profiling surface microstructures with noninterferometric confocal laser feedback,” Appl. Phys. Lett. 66, 2022–2024 (1995).
[Crossref]

Wang, M.

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[Crossref]

Wang, W.

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
[Crossref] [PubMed]

Weih, R.

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

Weinberg, R. A.

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144, 646–674 (2011).
[Crossref] [PubMed]

Whitaker, D. C.

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

White, J.

J. White, “Reflecting on confocal microscopy: a personal perspective,” Confocal Microscopy: Methods and Protocols 10751–7 (2014).

J. White, W. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41–48 (1987).
[Crossref] [PubMed]

Wilson, S. J.

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

Wilson, T.

Witomski, A.

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

Wolf, I. H.

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

Wong, T. L.

Wurm, E. M.

H. P. Soyer, D. Rigel, and E. M. Wurm, Dermatology, 3rd ed. ( Elsevier, London2012), chap. Actinic Keratosis, Basal Cell Carcinoma and Squamous Cell Carcinoma, pp. 1773–1794.

Xiang, S.

Xu, C.

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
[Crossref] [PubMed]

C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
[Crossref]

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

Yodh, A.

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

Yoshida, H.

Yura, H. T.

Zalaudek, I.

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

Zhang, S.

C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
[Crossref]

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
[Crossref] [PubMed]

Zhao, S.

C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
[Crossref]

Zhao, Y.

Zink, D.

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4, 677–687 (2004).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

T. Taimre, M. Nikolić, K. Bertling, Y. L. Lim, T. Bosch, and A. D. Rakić, “Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing,” Adv. Opt. Photonics 7, 570–631 (2015).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

C.-H. Lu, J. Wang, and K.-L. Deng, “Imaging and profiling surface microstructures with noninterferometric confocal laser feedback,” Appl. Phys. Lett. 66, 2022–2024 (1995).
[Crossref]

C. Xu, Y. Tan, S. Zhang, and S. Zhao, “The structure measurement of micro-electro-mechanical system devices by the optical feedback tomography technology,” Appl. Phys. Lett. 102, 221902 (2013).
[Crossref]

Arch. Dermatol. (2)

R. Hofmann-Wellenhof, A. Blum, I. H. Wolf, D. Piccolo, H. Kerl, C. Garbe, and H. P. Soyer, “Dermoscopic classification of atypical melanocytic nevi (clark nevi),” Arch. Dermatol. 137, 1575–1580 (2001).
[Crossref] [PubMed]

A. Rishpon, N. Kim, A. Scope, L. Porges, M. C. Oliviero, R. P. Braun, A. A. Marghoob, C. A. Fox, and H. S. Rabinovitz, “Reflectance confocal microscopy criteria for squamous cell carcinomas and actinic keratoses,” Arch. Dermatol. 145, 766–772 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Br. J. Dermatol. (2)

C. Longo, F. Farnetani, S. Ciardo, A. Cesinaro, E. Moscarella, G. Ponti, I. Zalaudek, G. Argenziano, and G. Pellacani, “Is confocal microscopy a valuable tool in diagnosing nodular lesions? a study of 140 cases,” Br. J. Dermatol. 169, 58–67 (2013).
[Crossref] [PubMed]

A. Scope, U. Mahmood, D. Gareau, M. Kenkre, J. Lieb, K. Nehal, and M. Rajadhyaksha, “In vivo reflectance confocal microscopy of shave biopsy wounds: feasibility of intraoperative mapping of cancer margins,” Br. J. Dermatol. 163, 1218–1228 (2010).
[Crossref] [PubMed]

Cancer Metastasis Rev. (1)

H. W. Walling, S. W. Fosko, P. A. Geraminejad, D. C. Whitaker, and C. J. Arpey, “Aggressive basal cell carcinoma: presentation, pathogenesis, and management,” Cancer Metastasis Rev. 23, 389–402 (2004).
[Crossref] [PubMed]

Cell (1)

D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell 144, 646–674 (2011).
[Crossref] [PubMed]

Confocal Microscopy: Methods and Protocols (1)

J. White, “Reflecting on confocal microscopy: a personal perspective,” Confocal Microscopy: Methods and Protocols 10751–7 (2014).

IEEE J. Sel. Topics Quantum Electron. (1)

S. Donati and M. Norgia, “Self-mixing interferometry for biomedical signals sensing,” IEEE J. Sel. Topics Quantum Electron. 20, 104–111 (2014).
[Crossref]

IEEE Photon. J. (1)

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, and A. D. Rakić, “A compact laser imaging system for concurrent reflectance confocal microscopy and laser Doppler flowmetry,” IEEE Photon. J. 8, 1–9 (2016).
[Crossref]

IEEE Sens. J. (1)

K. Bertling, T. Taimre, G. Agnew, Y. L. Lim, P. Dean, D. Indjin, S. Hoefling, R. Weih, M. Kamp, M. von Edlinger, J. Koeth, and A. D. Rakić, “Simple electrical modulation scheme for laser feedback imaging,” IEEE Sens. J. 16, 1937–1942 (2016).
[Crossref]

IEEE Signal Process. Mag. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18, 57–75 (2001).
[Crossref]

IEEE Trans. Instrum. Meas. (2)

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, “Three-dimensional object construction using a self-mixing type scanning laser range finder,” IEEE Trans. Instrum. Meas. 47, 1326–1329 (1998).
[Crossref]

E. Gagnon and J.-F. Rivest, “Laser range imaging using the self-mixing effect in a laser diode,” IEEE Trans. Instrum. Meas. 48, 693–699 (1999).
[Crossref]

J. Am. Acad. Dermatol. (2)

S. Segura, S. Puig, C. Carrera, J. Palou, and J. Malvehy, “Development of a two-step method for the diagnosis of melanoma by reflectance confocal microscopy,” J. Am. Acad. Dermatol. 61, 216–229 (2009).
[Crossref] [PubMed]

G. Argenziano, H. P. Soyer, S. Chimenti, R. Talamini, R. Corona, F. Sera, M. Binder, L. Cerroni, G. De Rosa, G. Ferrara, and et al., “Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,” J. Am. Acad. Dermatol. 48, 679–693 (2003).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

I. Fredriksson, M. Larsson, and T. Strömberg, “Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry,” J. Biomed. Opt. 13, 014015 (2008).
[Crossref] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11, 041102 (2006).
[Crossref] [PubMed]

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19, 071412 (2014).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 064026 (2006).
[Crossref]

J. Cell Biol. (1)

J. White, W. Amos, and M. Fordham, “An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,” J. Cell Biol. 105, 41–48 (1987).
[Crossref] [PubMed]

J. Eur. Acad. Dermatol. Venereol. (1)

R. Schwartz, T. Bridges, A. Butani, and A. Ehrlich, “Actinic keratosis: an occupational and environmental disorder,” J. Eur. Acad. Dermatol. Venereol. 22, 606–615 (2008).
[Crossref] [PubMed]

J. Opt. A: Pure Appl. Op. (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Op. 4, S283 (2002).
[Crossref]

J. Phys. D: Appl. Phys. (1)

A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D: Appl. Phys. 38, 2543 (2005).
[Crossref]

Lancet Oncol. (1)

G. Argenziano and H. P. Soyer, “Dermoscopy of pigmented skin lesions–a valuable tool for early,” Lancet Oncol. 2, 443–449 (2001).
[Crossref]

Laser Photon. Rev. (1)

S. Donati, “Developing self-mixing interferometry for instrumentation and measurements,” Laser Photon. Rev. 6, 393–417 (2012).
[Crossref]

Mol. Biol. Cell (1)

P. Jorgensen, N. P. Edgington, B. L. Schneider, I. Rupeš, M. Tyers, and B. Futcher, “The size of the nucleus increases as yeast cells grow,” Mol. Biol. Cell 18, 3523–3532 (2007).
[Crossref] [PubMed]

Nat. Rev. Cancer (1)

D. Zink, A. H. Fischer, and J. A. Nickerson, “Nuclear structure in cancer cells,” Nat. Rev. Cancer 4, 677–687 (2004).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Wang and G. Lai, “Self-mixing microscopic interferometer for the measurement of microprofile,” Opt. Commun. 238, 237–244 (2004).
[Crossref]

Opt. Eng. (1)

T. Bosch, N. Servagent, and S. Donati, “Optical feedback interferometry for sensing application,” Opt. Eng. 40, 20–27 (2001).
[Crossref]

Opt. Lett. (5)

Phys. Med. Biol. (1)

A. Gibson, J. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1 (2005).
[Crossref] [PubMed]

Rep. Prog. Phys. (2)

T. Durduran, R. Choe, W. Baker, and A. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73, 076701 (2010).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66, 239 (2003).
[Crossref]

Scanning (1)

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[Crossref]

Sci. Rep. (1)

Y. Tan, W. Wang, C. Xu, and S. Zhang, “Laser confocal feedback tomography and nano-step height measurement,” Sci. Rep. 3, 2971 (2013).
[Crossref] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).
[Crossref] [PubMed]

Scientific American (1)

R. K. Jain, “Taming vessels to treat cancer,” Scientific American 18, 64–71 (2008).
[Crossref]

Sensors (1)

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: A Monte Carlo model and experimental validation,” Sensors 16, 1411 (2016).
[Crossref]

Ultramicroscopy (2)

O. Hugon, I. Paun, C. Ricard, B. Van der Sanden, E. Lacot, O. Jacquin, and A. Witomski, “Cell imaging by coherent backscattering microscopy using frequency-shifted optical feedback in a microchip laser,” Ultramicroscopy 108, 523–528 (2008).
[Crossref]

O. Hugon, F. Joud, E. Lacot, O. Jacquin, and H. G. de Chatellus, “Coherent microscopy by laser optical feedback imaging (lofi) technique,” Ultramicroscopy 111, 1557–1563 (2011).
[Crossref] [PubMed]

Other (10)

H. P. Soyer, D. Rigel, and E. M. Wurm, Dermatology, 3rd ed. ( Elsevier, London2012), chap. Actinic Keratosis, Basal Cell Carcinoma and Squamous Cell Carcinoma, pp. 1773–1794.

L. J. Loescher, M. Janda, H. P. Soyer, K. Shea, and C. Curiel-Lewandrowski, “Advances in skin cancer early detection and diagnosis,” in “Seminars in oncology nursing,”, vol. 29 (Elsevier, 2013), vol. 29, pp. 170–181.
[Crossref]

A. D. Rakić, T. Taimre, K. Bertling, Y. L. Lim, S. J. Wilson, M. Nikolić, A. Valavanis, D. Indjin, E. H. Linfield, A. G. Davies, and et al., “Thz qcl self-mixing interferometry for biomedical applications,” in “SPIE Optical Engineering+ Applications,” (International Society for Optics and Photonics, 2014), pp. 91990M.

A. D. Rakić, Y. L. Lim, T. Taimre, G. Agnew, X. Qi, K. Bertling, S. Han, S. J. Wilson, A. Grier, Z. Ikonić, and et al., “Optical feedback effects on terahertz quantum cascade lasers: modelling and applications,” in “SPIE/COS Photonics Asia,” (International Society for Optics and Photonics, 2016), pp. 1003016.

J. Frank, Electron tomography (Springer, Dordrecht, 2008).

J. Hsieh, Computed tomography: principles, design, artifacts, and recent advances (SPIE Bellingham, Washington, USA, 2009).

A. Mowla, T. Taimre, Y. L. Lim, K. Bertling, S. J. Wilson, T. W. Prow, H. P. Soyer, and A. D. Rakić, “Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry,” in “SPIE Photonics Europe,” (International Society for Optics and Photonics, 2016), pp. 98870T.

F. Ayers, A. Grant, D. Kuo, D. J. Cuccia, and A. J. Durkin, “Fabrication and characterization of silicone-based tissue phantoms with tunable optical properties in the visible and near infrared domain,” in “Biomedical Optics (BiOS),” (International Society for Optics and Photonics, 2008), Proc. of SPIE Vol. 6870, 687007.

V. Tuchin, Tissue optics: light scattering methods and instruments for medical diagnosis (SPIE press, Bellingham, Washington USA, 2007).
[Crossref]

R. Hofmann-Wellenhof, G. Pellacani, J. Malvehy, and H. P. Soyer, Reflectance Confocal Microscopy for Skin Diseases (Springer Science & Business Media, 2012).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Isosurfaces of SCC made at different CSLs from 0 to 0.3 in 0.01 increments.
» Visualization 2       Slice view of SCC phantom from the depth of 400 µm to the surface of the epidermis model in 20 µm increments.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Confocal laser feedback tomography apparatus where the VCSEL’s aperture acts as a confocal pinhole to eliminate out of focus beam. VCSEL current is modulated at a low level around the operating average current to create two levels of LFI signal. Beam is focused on a silicone-based three-layer KC tissue phantom with a cylindrical cancerous region enclosed in the dermis layer.

Fig. 2
Fig. 2

Numerical isosurfaces for (a) infBCC, (b) nodBCC, and (c) SCC, representing the boundaries of affected regions with relative changes in optical properties, when (i), (ii), and (iii) represent the oblique, top, and side views, respectively.

Fig. 3
Fig. 3

Average signal (red dotted line), maximum range of the signal at optical sections (green dashed line), and depth compensated maximum range (blue solid line) versus the scan depth from the top of the cover slip (all normalized to the maximum signal value across the depth of scan), for three types of KC tissue phantoms of (a) infBCC, (b) nodBCC, and (c) SCC. Shaded areas show the approximate situated depths of the KC models.

Fig. 4
Fig. 4

Images provided at different depths of SCC phantom, starting at just above the top surface of the epidermis layer and ending at the depth of 400 μm in subcutaneous tissue. Stronger contrast can be seen at depths where cancerous model is incorporated, enclosed in the dermis layer.

Fig. 5
Fig. 5

Isosurfaces for (a) infBCC at CSL of about 0.7, (b) nodBCC at CSL of about 0.5, and (c) SCC at CSL of about 0.3. (i), (ii), and (iii) represent the oblique, top, and side views, respectively.

Fig. 6
Fig. 6

(a) Increasing constant signal level (CSL) (red plane) from 0 to 0.3, where it cuts a typical optical section from the squamous cell carcinoma (SCC) phantom (regions below the CSL will be enclosed in the isosurface view), (b) isosurfaces of SCC made at different CSLs from 0 to 0.3 in 0.01 increments (see Visualization 1), and (c) slice view of SCC phantom from the depth of 400 μm to the surface of the epidermis model in 20 μm increments (see Visualization 2).