Abstract

In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source

J. A. Palero, V. O. Boer, J. C. Vijverberg, H. C. Gerritsen, and H. J. C. M. Sterenborg
Opt. Express 13(14) 5363-5368 (2005)

Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence

Chunqiang Li, Riikka K. Pastila, Costas Pitsillides, Judith M. Runnels, Mehron Puoris’haag, Daniel Côté, and Charles P. Lin
Opt. Express 18(2) 988-999 (2010)

Two-photon autofluorescence microscopy of multicolor excitation

Dong Li, Wei Zheng, and Jianan Y. Qu
Opt. Lett. 34(2) 202-204 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
    [Crossref] [PubMed]
  2. P. So, H. Kim, and I. Kochevar, “Two-Photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3(9), 339–350 (1998).
    [Crossref] [PubMed]
  3. T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
    [Crossref] [PubMed]
  4. B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G.-O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
    [Crossref] [PubMed]
  5. R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
    [Crossref]
  6. W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1(3), 296–304 (1996).
    [Crossref] [PubMed]
  7. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
    [Crossref] [PubMed]
  8. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  9. M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
    [Crossref] [PubMed]
  10. J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
    [Crossref] [PubMed]
  11. B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
    [Crossref] [PubMed]
  12. C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
    [Crossref]
  13. C. Li, R. K. Pastila, and C. P. Lin, “Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy,” J. Innov. Opt. Health Sci. 09(01), 1640003 (2016).
    [Crossref]
  14. W. Tao, H. Bao, and M. Gu, “Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths,” J. Biomed. Opt. 16(5), 056010 (2011).
    [Crossref] [PubMed]
  15. H. Tu, Y. Zhao, Y. Liu, Y. Z. Liu, and S. Boppart, “Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy,” Opt. Express 22(17), 20138–20143 (2014).
    [Crossref] [PubMed]
  16. M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
    [Crossref] [PubMed]
  17. J. He, N. Wang, and T. Kobayashi, “Generation of stable two-color laser pulses in photonic crystal fiber for microscopy,” Jpn. J. Appl. Phys. 53(9), 092704 (2014).
    [Crossref]
  18. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
    [Crossref] [PubMed]
  19. B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
    [Crossref]
  20. X. Liang and L. Fu, “Enhanced Self-Phase Modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 42–49 (2014).
    [Crossref]
  21. J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, “Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,” Opt. Express 13(14), 5363–5368 (2005).
    [Crossref] [PubMed]
  22. X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
    [Crossref] [PubMed]
  23. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  24. W. Wang, H. Yang, P. Tang, and F. Han, “Soliton trapping of dispersive waves during supercontinuum generation in photonic crystal fiber,” Acta Phys. Sin-Ch. Ed. 62, 116–121 (2013).
  25. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  26. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
    [Crossref] [PubMed]
  27. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
    [Crossref]
  28. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress [Invited],” J. Opt. Soc. Am. B 28(12), A1–A10 (2011).
    [Crossref]
  29. T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008).
    [Crossref] [PubMed]
  30. N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10(21), 1151–1160 (2002).
    [Crossref] [PubMed]
  31. L. Abrardi, S. Martin-Lopez, A. Carrasco-Sanz, F. Rodriguez-Barrios, P. Corredera, M. L. Hernanz, and M. Gonzalez-Herraez, “Experimental Study on the Role of Chromatic Dispersion in Continuous-Wave Supercontinuum Generation,” J. Lightwave Technol. 27(4), 426–435 (2009).
    [Crossref]

2016 (3)

C. Li, R. K. Pastila, and C. P. Lin, “Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy,” J. Innov. Opt. Health Sci. 09(01), 1640003 (2016).
[Crossref]

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

2015 (4)

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

B. Kim, S. H. Lee, C. J. Yoon, Y. S. Gho, G.-O. Ahn, and K. H. Kim, “In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy,” Biomed. Opt. Express 6(7), 2512–2521 (2015).
[Crossref] [PubMed]

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

2014 (4)

X. Liang and L. Fu, “Enhanced Self-Phase Modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 42–49 (2014).
[Crossref]

H. Tu, Y. Zhao, Y. Liu, Y. Z. Liu, and S. Boppart, “Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy,” Opt. Express 22(17), 20138–20143 (2014).
[Crossref] [PubMed]

M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
[Crossref] [PubMed]

J. He, N. Wang, and T. Kobayashi, “Generation of stable two-color laser pulses in photonic crystal fiber for microscopy,” Jpn. J. Appl. Phys. 53(9), 092704 (2014).
[Crossref]

2013 (2)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref] [PubMed]

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

2011 (2)

W. Tao, H. Bao, and M. Gu, “Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths,” J. Biomed. Opt. 16(5), 056010 (2011).
[Crossref] [PubMed]

G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress [Invited],” J. Opt. Soc. Am. B 28(12), A1–A10 (2011).
[Crossref]

2010 (2)

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008).
[Crossref] [PubMed]

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2005 (1)

2002 (1)

1998 (1)

1996 (2)

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1(3), 296–304 (1996).
[Crossref] [PubMed]

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Abrardi, L.

Agrawal, G. P.

Ahn, G.-O.

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Amor, R.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Amos, W. B.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Arai, Y.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Balaji, J.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Bao, H.

W. Tao, H. Bao, and M. Gu, “Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths,” J. Biomed. Opt. 16(5), 056010 (2011).
[Crossref] [PubMed]

Boer, V.

Boppart, S.

Boppart, S. A.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref] [PubMed]

Carrasco-Sanz, A.

Chan, M.-C.

Chen, J. X.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Corredera, P.

Côté, D.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

Dempster, J.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Denk, W.

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1(3), 296–304 (1996).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dudley, J. M.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Ehren, J.

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

Fu, L.

X. Liang and L. Fu, “Enhanced Self-Phase Modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 42–49 (2014).
[Crossref]

Fujita, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Genty, G.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B 24(8), 1771–1785 (2007).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Gerritsen, H.

Gho, Y. S.

Gonzalez-Herraez, M.

Goto, T.

Gu, M.

W. Tao, H. Bao, and M. Gu, “Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths,” J. Biomed. Opt. 16(5), 056010 (2011).
[Crossref] [PubMed]

He, J.

J. He, N. Wang, and T. Kobayashi, “Generation of stable two-color laser pulses in photonic crystal fiber for microscopy,” Jpn. J. Appl. Phys. 53(9), 092704 (2014).
[Crossref]

He, N.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Hernanz, M. L.

Jiang, S. H.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Kaushalya, S. K.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Kawata, S.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Kim, B.

Kim, H.

Kim, K. H.

Kobayashi, T.

J. He, N. Wang, and T. Kobayashi, “Generation of stable two-color laser pulses in photonic crystal fiber for microscopy,” Jpn. J. Appl. Phys. 53(9), 092704 (2014).
[Crossref]

Kochevar, I.

Krasieva, T. B.

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

Lægsgaard, J.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Lee, S. H.

Li, C.

C. Li, R. K. Pastila, and C. P. Lin, “Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy,” J. Innov. Opt. Health Sci. 09(01), 1640003 (2016).
[Crossref]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

Li, H. S.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Liang, X.

X. Liang and L. Fu, “Enhanced Self-Phase Modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 42–49 (2014).
[Crossref]

Lien, C.-H.

Lin, C. P.

C. Li, R. K. Pastila, and C. P. Lin, “Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy,” J. Innov. Opt. Health Sci. 09(01), 1640003 (2016).
[Crossref]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

Liu, X.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Liu, Y.

Liu, Y. Z.

Lowans, B.

Lu, J.-Y.

Lyu, B.-H.

Maher, P.

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

Maiti, S.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Martin-Lopez, S.

McConnell, G.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

McEwan, K.

Michaille, L.

Mochizuki, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Nag, S.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Nagai, T.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Nishizawa, N.

O’Sullivan, T.

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

Palero, J.

Pastila, R. K.

C. Li, R. K. Pastila, and C. P. Lin, “Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy,” J. Innov. Opt. Health Sci. 09(01), 1640003 (2016).
[Crossref]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

Pitsillides, C.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

Puoris’haag, M.

Robb, G.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Rodriguez-Barrios, F.

Runnels, J. M.

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

Sahoo, B.

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

Saito, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Sang, X.

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Sloanes, T.

Smith, N. I.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

So, P.

Sterenborg, H. J. C. M.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Svane, A. S.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Tao, W.

W. Tao, H. Bao, and M. Gu, “Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths,” J. Biomed. Opt. 16(5), 056010 (2011).
[Crossref] [PubMed]

Trägårdh, J.

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

Tromberg, B. J.

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

Tu, H.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

H. Tu, Y. Zhao, Y. Liu, Y. Z. Liu, and S. Boppart, “Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy,” Opt. Express 22(17), 20138–20143 (2014).
[Crossref] [PubMed]

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref] [PubMed]

Turchinovich, D.

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Uegaki, K.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Vijverberg, J.

Wang, K.

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

Wang, N.

J. He, N. Wang, and T. Kobayashi, “Generation of stable two-color laser pulses in photonic crystal fiber for microscopy,” Jpn. J. Appl. Phys. 53(9), 092704 (2014).
[Crossref]

Webb, W. W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Williams, R. M.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Xu, C.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Xu, J.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Xu, R. A.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Yamanaka, M.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Yan, B.

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

Yonemaru, Y.

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

Yoon, C. J.

Yu, C.

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

Yuan, J.

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

Zhao, Y.

Zhu, X. Q.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Zhuo, S. M.

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (2)

C. Li, C. Pitsillides, J. M. Runnels, D. Côté, and C. P. Lin, “Multiphoton Microscopy of Live Tissues With Ultraviolet Autofluorescence,” IEEE J. Sel. Top. Quantum Electron. 16(3), 516–523 (2010).
[Crossref]

X. Liang and L. Fu, “Enhanced Self-Phase Modulation Enables a 700–900 nm Linear Compressible Continuum for Multicolor Two-Photon Microscopy,” IEEE J. Sel. Top. Quantum Electron. 20(2), 42–49 (2014).
[Crossref]

J. Biomed. Opt. (3)

W. Tao, H. Bao, and M. Gu, “Enhanced two-channel nonlinear imaging by a highly polarized supercontinuum light source generated from a nonlinear photonic crystal fiber with two zero-dispersion wavelengths,” J. Biomed. Opt. 16(5), 056010 (2011).
[Crossref] [PubMed]

W. Denk, “Two-photon excitation in functional biological imaging,” J. Biomed. Opt. 1(3), 296–304 (1996).
[Crossref] [PubMed]

M. Yamanaka, K. Saito, N. I. Smith, Y. Arai, K. Uegaki, Y. Yonemaru, K. Mochizuki, S. Kawata, T. Nagai, and K. Fujita, “Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging,” J. Biomed. Opt. 20(10), 101202 (2015).
[Crossref] [PubMed]

J. Chem. Phys. (1)

B. Sahoo, J. Balaji, S. Nag, S. K. Kaushalya, and S. Maiti, “Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan,” J. Chem. Phys. 129(7), 075103 (2008).
[Crossref] [PubMed]

J. Innov. Opt. Health Sci. (2)

C. Li, R. K. Pastila, and C. P. Lin, “Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy,” J. Innov. Opt. Health Sci. 09(01), 1640003 (2016).
[Crossref]

R. A. Xu, X. Q. Zhu, N. He, S. M. Zhuo, J. Xu, S. H. Jiang, H. S. Li, and J. X. Chen, “Multiphoton microscopic imaging of mouse intestinal mucosa based on two-photon excited fluorescence and second harmonic generation,” J. Innov. Opt. Health Sci. 6(01), 1350004 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Microsc. (1)

J. Trägårdh, G. Robb, R. Amor, W. B. Amos, J. Dempster, and G. McConnell, “Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti:Sapphire laser,” J. Microsc. 259(3), 210–218 (2015).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

X. Liu, A. S. Svane, J. Lægsgaard, H. Tu, S. A. Boppart, and D. Turchinovich, “Progress in Cherenkov femtosecond fiber lasers,” J. Phys. D Appl. Phys. 49(2), 023001 (2016).
[Crossref] [PubMed]

Jpn. J. Appl. Phys. (1)

J. He, N. Wang, and T. Kobayashi, “Generation of stable two-color laser pulses in photonic crystal fiber for microscopy,” Jpn. J. Appl. Phys. 53(9), 092704 (2014).
[Crossref]

Laser Photonics Rev. (1)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref] [PubMed]

Neurochem. Int. (1)

T. B. Krasieva, J. Ehren, T. O’Sullivan, B. J. Tromberg, and P. Maher, “Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy,” Neurochem. Int. 89, 243–248 (2015).
[Crossref] [PubMed]

Opt. Eng. (1)

B. Yan, J. Yuan, X. Sang, K. Wang, and C. Yu, “Visible blue-shifted dispersive wave generation in the second-order mode of photonic crystal fiber,” Opt. Eng. 55(4), 046111 (2016).
[Crossref]

Opt. Express (7)

H. Tu, Y. Zhao, Y. Liu, Y. Z. Liu, and S. Boppart, “Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy,” Opt. Express 22(17), 20138–20143 (2014).
[Crossref] [PubMed]

M.-C. Chan, C.-H. Lien, J.-Y. Lu, and B.-H. Lyu, “High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy,” Opt. Express 22(8), 9498–9507 (2014).
[Crossref] [PubMed]

C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puoris’haag, D. Côté, and C. P. Lin, “Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence,” Opt. Express 18(2), 988–999 (2010).
[Crossref] [PubMed]

P. So, H. Kim, and I. Kochevar, “Two-Photon deep tissue ex vivo imaging of mouse dermal and subcutaneous structures,” Opt. Express 3(9), 339–350 (1998).
[Crossref] [PubMed]

T. Sloanes, K. McEwan, B. Lowans, and L. Michaille, “Optimisation of high average power optical parametric generation using a photonic crystal fiber,” Opt. Express 16(24), 19724–19733 (2008).
[Crossref] [PubMed]

N. Nishizawa and T. Goto, “Characteristics of pulse trapping by ultrashort soliton pulse in optical fibers across zerodispersion wavelength,” Opt. Express 10(21), 1151–1160 (2002).
[Crossref] [PubMed]

J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, “Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,” Opt. Express 13(14), 5363–5368 (2005).
[Crossref] [PubMed]

Phys. Rev. A (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (2)

W. Wang, H. Yang, P. Tang, and F. Han, “Soliton trapping of dispersive waves during supercontinuum generation in photonic crystal fiber,” Acta Phys. Sin-Ch. Ed. 62, 116–121 (2013).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for visible-wavelength two-photon microscopy using a fiber continuum based on enhanced dispersive wave generation. FI: Faraday isolator; I G: grating; OB: objective; GM: galvomirror; BF: block filter; BP: band-pass filter; DM: dichroic mirror; and PMT: photomultiplier tube. The inset illustrates the dispersion properties of NL-830 PCF.

Fig. 2
Fig. 2

Simulated phase-matching conditions between DW and pump wavelengths with different pump powers according to Eq. (1).

Fig. 3
Fig. 3

Continuum generation using a 6 cm PCF, having a pump wavelength of 890 nm, in the high anomalous dispersion region. The output power of the visible continuum pulses increases as the pump power increases from 100 mW to 500 mW.

Fig. 4
Fig. 4

Continuum generation using a 6 cm PCF with a pump wavelength of 810 nm, located at the low normal dispersion region near the ZDW. The output power of the visible continuum pulses increases as the pump power increases from 300 mW to 500 mW.

Fig. 5
Fig. 5

Continuum generation using a 6 cm PCF with a pump wavelength of 850 nm, located at a low anomalous dispersion region near the ZDW. The output power of the visible continuum pulses increased as the pump power increased from 100 mW to 500 mW.

Fig. 6
Fig. 6

Continuum spectra at the ends of the 2 cm, 4 cm, 6 cm, 15 cm, and 30 cm PCFs and the corresponding two-photon fluorescence images of tryptophan powder. All two-photon fluorescence images were acquired using visible continuum pulses with the same power and spectra. Decreasing fluorescence signals result from broadened pulse widths. Scale bar: 20 μm.

Fig. 7
Fig. 7

Two-photon imaging of mice tissues using visible continuum pulses. NADH fluorescence image (a) and tryptophan fluorescence image (b) of ear skin at a depth of about 30 μm. (c) Overlay of (a) and (b). NADH fluorescence image (d) and tryptophan fluorescence image (e) of kidney tissue. (f) Overlay of (d) and (e). Scale bar: 20 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n2 ( ω DW ω p ) n n! β n ( ω p )= γ P p 2 ,

Metrics