Abstract

In this paper, we present the first numerical study on full metrics of wavelength-dependent optical properties of melanosomes in retinal pigmented epithelial (RPE) cells. T-matrix method was used to simulate the spheroidal shapes of mature melanosomes, and the complex refractive index was calculated by a subtractive Kramers-Kronig relation for melanin. The validity of the method was first confirmed by Mie theory, and corroborated by a comparison between visible light and near infrared (NIR) optical coherence tomography (OCT) on human retinal imaging. We also studied the changes of melanosome optical properties due to melanin bleaching by numerically reducing the absorption of melanin. This study implies a unique approach to detect melanin changes specifically in RPE by a spectroscopic contrast of optical coherence tomography.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling optical properties of human skin using Mie theory for particles with different size distributions and refractive indices

A. Bhandari, B. Hamre, Ø. Frette, K. Stamnes, and J. J. Stamnes
Opt. Express 19(15) 14549-14567 (2011)

Melanin, a unique biological absorber

M. L. Wolbarsht, A. W. Walsh, and G. George
Appl. Opt. 20(13) 2184-2186 (1981)

Nanostructural basis of rainbow-like iridescence in common bronzewing Phaps chalcoptera feathers

Ming Xiao, Ali Dhinojwala, and Matthew Shawkey
Opt. Express 22(12) 14625-14636 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
    [Crossref] [PubMed]
  2. M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
    [PubMed]
  3. T. Sarna, I. A. Menon, and R. C. Sealy, “Photosensitization of Melanins: A Comparative Study,” Photochem. Photobiol. 42(5), 529–532 (1985).
    [Crossref] [PubMed]
  4. T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
    [Crossref] [PubMed]
  5. M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
    [Crossref] [PubMed]
  6. T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
    [PubMed]
  7. L. Goldman, “The skin,” Arch. Environ. Health 18(3), 434–436 (1969).
    [Crossref] [PubMed]
  8. S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681, 468–477 (1996).
    [Crossref]
  9. M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
    [Crossref] [PubMed]
  10. Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
    [Crossref] [PubMed]
  11. I. M. Mishchenko, D. L. Travis, and D. W. Mackowski, “T-Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles” (2015), retrieved http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html .
  12. M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
    [Crossref]
  13. C. F. Bohren and D. R. Huffman, “Absorption and Scattering by an Arbitrary Particle,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 57–81.
  14. S. L. Jacques, “Melanosome absorption coefficient” (1998), retrieved http://omlc.org/spectra/melanin/mua.html .
  15. D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
    [Crossref] [PubMed]
  16. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
    [Crossref]
  17. I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
    [Crossref] [PubMed]
  18. C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).
  19. S. Prahl, “Mie Scattering” (2012), retrieved http://omlc.org/software/mie/ .
  20. M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
    [Crossref]
  21. M. Giacomelli, Y. Zhu, J. Lee, and A. Wax, “Size and shape determination of spheroidal scatterers using two-dimensional angle resolved scattering,” Opt. Express 18(14), 14616–14626 (2010).
    [Crossref] [PubMed]
  22. M. G. Giacomelli, K. J. Chalut, J. H. Ostrander, and A. Wax, “Application of the T-matrix method to determine the structure of spheroidal cell nuclei with angle-resolved light scattering,” Opt. Lett. 33(21), 2452–2454 (2008).
    [Crossref] [PubMed]
  23. C. Amoozegar, M. G. Giacomelli, J. D. Keener, K. J. Chalut, and A. Wax, “Experimental verification of T-matrix-based inverse light scattering analysis for assessing structure of spheroids as models of cell nuclei,” Appl. Opt. 48(10), D20–D25 (2009).
    [Crossref] [PubMed]
  24. J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
    [Crossref] [PubMed]
  25. S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
    [Crossref] [PubMed]
  26. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
    [Crossref] [PubMed]
  27. D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
    [Crossref]
  28. A. A. R. Watt, J. P. Bothma, and P. Meredith, “The supramolecular structure of melanin,” Soft Matter 5(19), 3754–3760 (2009).
    [Crossref]
  29. K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
    [Crossref] [PubMed]

2016 (1)

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

2015 (3)

D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
[Crossref]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (1)

2006 (1)

B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
[Crossref] [PubMed]

2005 (1)

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

2004 (2)

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

2003 (2)

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
[Crossref] [PubMed]

2002 (2)

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

2000 (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

1999 (1)

M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
[PubMed]

1998 (1)

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

1996 (1)

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681, 468–477 (1996).
[Crossref]

1995 (2)

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

1994 (1)

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[Crossref] [PubMed]

1985 (1)

T. Sarna, I. A. Menon, and R. C. Sealy, “Photosensitization of Melanins: A Comparative Study,” Photochem. Photobiol. 42(5), 529–532 (1985).
[Crossref] [PubMed]

1969 (1)

L. Goldman, “The skin,” Arch. Environ. Health 18(3), 434–436 (1969).
[Crossref] [PubMed]

Aalders, M. C. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Adhyaru, B. B.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Amoozegar, C.

Anderson, R. R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[Crossref] [PubMed]

Babenko, V. A.

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Bashkatova, T. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Bastiaanse, M.

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

Berendschot, T. T. J. M.

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

Bober, A.

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

Bothma, J. P.

A. A. R. Watt, J. P. Bothma, and P. Meredith, “The supramolecular structure of melanin,” Soft Matter 5(19), 3754–3760 (2009).
[Crossref]

Bowers, C. R.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Burke, J. M.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

Chalut, K. J.

Chen, S.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

Cheng, C.-Y.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

de Jong, P. T. V. M.

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Faber, D. J.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Fawzi, A.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

Fawzi, A. A.

Gallas, J. M.

K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
[Crossref] [PubMed]

Gasyna, E. M.

B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
[Crossref] [PubMed]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Giacomelli, M.

Giacomelli, M. G.

Glickman, R. D.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681, 468–477 (1996).
[Crossref]

Goldman, L.

L. Goldman, “The skin,” Arch. Environ. Health 18(3), 434–436 (1969).
[Crossref] [PubMed]

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Hong, L.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Hooper, B. A.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Ito, S.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Jacques, S. L.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681, 468–477 (1996).
[Crossref]

Keener, J. D.

Kennedy, P. K.

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

Khlebtsov, N. G.

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Korytowski, W.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

Land, E. J.

M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
[PubMed]

Lee, J.

Leertouwer, H. L.

D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
[Crossref]

Littrell, K. C.

K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Mätzler, C.

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

Menon, I. A.

T. Sarna, I. A. Menon, and R. C. Sealy, “Photosensitization of Melanins: A Comparative Study,” Photochem. Photobiol. 42(5), 529–532 (1985).
[Crossref] [PubMed]

Meredith, P.

A. A. R. Watt, J. P. Bothma, and P. Meredith, “The supramolecular structure of melanin,” Soft Matter 5(19), 3754–3760 (2009).
[Crossref]

Mieler, W. F.

B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
[Crossref] [PubMed]

Mik, E. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Mishchenko, M. I.

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

Noojin, G. D.

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

Norris, J. R.

B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
[Crossref] [PubMed]

Novikova, O. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Osorio, D. C.

D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
[Crossref]

Ostrander, J. H.

Peshkova, A. Y.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Rockwell, B. A.

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

Rózanowska, M.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
[PubMed]

Sarna, T.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
[PubMed]

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

T. Sarna, I. A. Menon, and R. C. Sealy, “Photosensitization of Melanins: A Comparative Study,” Photochem. Photobiol. 42(5), 529–532 (1985).
[Crossref] [PubMed]

Schmidt, M. S.

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

Schwartz, J. A.

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681, 468–477 (1996).
[Crossref]

Seagle, B.-L. L.

B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
[Crossref] [PubMed]

Sealy, R. C.

T. Sarna, I. A. Menon, and R. C. Sealy, “Photosensitization of Melanins: A Comparative Study,” Photochem. Photobiol. 42(5), 529–532 (1985).
[Crossref] [PubMed]

Shu, X.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

Simon, J. D.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Skumatz, C. M. B.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

Stavenga, D. G.

D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
[Crossref]

Stolnitz, M. M.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Thiyagarajan, P.

K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
[Crossref] [PubMed]

Thomas, R. J.

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

Travis, L. D.

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

Truscott, T. G.

M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
[PubMed]

Tuchin, V. V.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

van Gemert, M. J. C.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

van Leeuwen, T. G.

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

van Norren, D.

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

Videen, G.

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

Vincelette, R. L.

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

Vitkin, I. A.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[Crossref] [PubMed]

Wakamatsu, K.

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

Watt, A. A. R.

A. A. R. Watt, J. P. Bothma, and P. Meredith, “The supramolecular structure of melanin,” Soft Matter 5(19), 3754–3760 (2009).
[Crossref]

Wax, A.

Webb, R. H.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

Willemse-Assink, J. J. M.

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

Wilson, B. C.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[Crossref] [PubMed]

Wilts, B. D.

D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
[Crossref]

Woolsey, J.

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[Crossref] [PubMed]

Wriedt, T.

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

Yi, J.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

Zajac, G. W.

K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
[Crossref] [PubMed]

Zareba, A.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

Zareba, M.

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

Zecca, L.

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

Zhang, H. F.

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Yi, S. Chen, X. Shu, A. A. Fawzi, and H. F. Zhang, “Human retinal imaging using visible-light optical coherence tomography guided by scanning laser ophthalmoscopy,” Biomed. Opt. Express 6(10), 3701–3713 (2015).
[Crossref] [PubMed]

Zhu, Y.

Appl. Opt. (1)

Arch. Environ. Health (1)

L. Goldman, “The skin,” Arch. Environ. Health 18(3), 434–436 (1969).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

M. Zareba, A. Bober, W. Korytowski, L. Zecca, and T. Sarna, “The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems,” Biochim. Biophys. Acta 1271(2-3), 343–348 (1995).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Exp. Eye Res. (1)

T. Sarna, J. M. Burke, W. Korytowski, M. Rózanowska, C. M. B. Skumatz, A. Zaręba, and M. Zaręba, “Loss of melanin from human RPE with aging: possible role of melanin photooxidation,” Exp. Eye Res. 76(1), 89–98 (2003).
[Crossref] [PubMed]

Free Radic. Biol. Med. (1)

M. Rózanowska, T. Sarna, E. J. Land, and T. G. Truscott, “Free radical scavenging properties of melanin Interaction of eu- and pheo-melanin models with reducing and oxidising radicals,” Free Radic. Biol. Med. 26(5-6), 518–525 (1999).
[PubMed]

IAP Res. Rep (1)

C. Mätzler, “MATLAB functions for Mie scattering and absorption, version 2,” IAP Res. Rep 8, 1–24 (2002).

Invest. Ophthalmol. Vis. Sci. (1)

T. T. J. M. Berendschot, J. J. M. Willemse-Assink, M. Bastiaanse, P. T. V. M. de Jong, and D. van Norren, “Macular Pigment and Melanin in Age-Related Maculopathy in a General Population,” Invest. Ophthalmol. Vis. Sci. 43(6), 1928–1932 (2002).
[PubMed]

J. Biomed. Opt. (2)

M. S. Schmidt, P. K. Kennedy, G. D. Noojin, R. L. Vincelette, R. J. Thomas, and B. A. Rockwell, “Trends in nanosecond melanosome microcavitation up to 1540 nm,” J. Biomed. Opt. 20(9), 095011 (2015).
[Crossref] [PubMed]

S. Chen, X. Shu, J. Yi, A. Fawzi, and H. F. Zhang, “Dual-band optical coherence tomography using a single supercontinuum laser source,” J. Biomed. Opt. 21(6), 066013 (2016).
[Crossref] [PubMed]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, and R. R. Anderson, “In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast,” J. Invest. Dermatol. 104(6), 946–952 (1995).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (2)

M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, “T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database,” J. Quant. Spectrosc. Radiat. Transf. 88(1-3), 357–406 (2004).
[Crossref]

M. I. Mishchenko and L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transf. 60(3), 309–324 (1998).
[Crossref]

Light Sci. Appl. (1)

D. G. Stavenga, H. L. Leertouwer, D. C. Osorio, and B. D. Wilts, “High refractive index of melanin in shiny occipital feathers of a bird of paradise,” Light Sci. Appl. 4(1), e243 (2015).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (4)

I. A. Vitkin, J. Woolsey, B. C. Wilson, and R. R. Anderson, “Optical and Thermal Characterization of Natural (Sepia officinalis) Melanin,” Photochem. Photobiol. 59(4), 455–462 (1994).
[Crossref] [PubMed]

K. C. Littrell, J. M. Gallas, G. W. Zajac, and P. Thiyagarajan, “Structural Studies of Bleached Melanin by Synchrotron Small-angle X-ray Scattering,” Photochem. Photobiol. 77(2), 115–120 (2003).
[Crossref] [PubMed]

Y. Liu, L. Hong, K. Wakamatsu, S. Ito, B. B. Adhyaru, C.-Y. Cheng, C. R. Bowers, and J. D. Simon, “Comparisons of the Structural and Chemical Properties of Melanosomes Isolated from Retinal Pigment Epithelium, Iris and Choroid of Newborn and Mature Bovine Eyes,” Photochem. Photobiol. 81(3), 510–516 (2005).
[Crossref] [PubMed]

T. Sarna, I. A. Menon, and R. C. Sealy, “Photosensitization of Melanins: A Comparative Study,” Photochem. Photobiol. 42(5), 529–532 (1985).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

D. J. Faber, M. C. G. Aalders, E. G. Mik, B. A. Hooper, M. J. C. van Gemert, and T. G. van Leeuwen, “Oxygen Saturation-Dependent Absorption and Scattering of Blood,” Phys. Rev. Lett. 93(2), 028102 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B.-L. L. Seagle, E. M. Gasyna, W. F. Mieler, and J. R. Norris., “Photoprotection of human retinal pigment epithelium cells against blue light-induced apoptosis by melanin free radicals from Sepia officinalis,” Proc. Natl. Acad. Sci. U.S.A. 103(45), 16644–16648 (2006).
[Crossref] [PubMed]

Proc. SPIE (1)

S. L. Jacques, R. D. Glickman, and J. A. Schwartz, “Internal absorption coefficient and threshold for pulsed laser disruption of melanosomes isolated from retinal pigment epithelium,” Proc. SPIE 2681, 468–477 (1996).
[Crossref]

Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study (1)

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, M. M. Stolnitz, T. A. Bashkatova, O. V. Novikova, A. Y. Peshkova, and V. V. Tuchin, “Optical properties of melanin in the skin and skinlike phantoms,” Proc. SPIE 4162, Controlling Tissue Optical Properties: Applications in Clinical Study 4162, 219–226 (2000).
[Crossref]

Soft Matter (1)

A. A. R. Watt, J. P. Bothma, and P. Meredith, “The supramolecular structure of melanin,” Soft Matter 5(19), 3754–3760 (2009).
[Crossref]

Other (4)

S. Prahl, “Mie Scattering” (2012), retrieved http://omlc.org/software/mie/ .

I. M. Mishchenko, D. L. Travis, and D. W. Mackowski, “T-Matrix Codes for Computing Electromagnetic Scattering by Nonspherical and Aggregated Particles” (2015), retrieved http://www.giss.nasa.gov/staff/mmishchenko/t_matrix.html .

C. F. Bohren and D. R. Huffman, “Absorption and Scattering by an Arbitrary Particle,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 57–81.

S. L. Jacques, “Melanosome absorption coefficient” (1998), retrieved http://omlc.org/spectra/melanin/mua.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a-b) The real and imaginary part of the wavelength-dependent complex refractive index of melanosomes. The gray area indicates the region where the calculation may introduce computational errors due to the finite integration range. (c) The probability density function (p.d.f.) of the long axis length of melanosomes in matured RPE based on Ref [10]. Two types of spheroidal shapes are shown: Sr and Se. The integration of the p.d.f. is equal to unity.

Fig. 2
Fig. 2

Comparison of F-matrix between T-matrix and Mie theory from monodisperse and normally distributed 1μm polystyrene spheres in water. The curves are from Mie theory and the symbols are from T-matrix.

Fig. 3
Fig. 3

Comparisons of wavelength-dependent optical properties between T-matrix and Mie theory from monodisperse and normally distributed 1μm polystyrene spheres in water. Three panels are for (a) backscattering cross section Cb; (b) extinction cross section Cext and (c) anisotropy factor g. The curves are from Mie theory and the symbols are from T-matrix.

Fig. 4
Fig. 4

T-matrix simulation of (a) Wavelength-dependent absorption coefficient μa and (b) scattering coefficient μs from melanosomes in RPE. In (a), the μa from the reference [14] (red solid curve) and T-matrix calculation (blue dash curve) were plotted together for comparison.

Fig. 5
Fig. 5

Wavelength-dependent optical properties of melanosomes and their changes with melanin bleaching. Four panels are for (a) backscattering cross section Cb; (b) extinction cross section Cext , (c) scattering cross section Csca, and (d) anisotropy factor g.

Fig. 6
Fig. 6

Comparison of A-line signal from vis-OCT and NIR OCT taken from the same human eye in vivo. (a-b) The cross sectional images from vis-OCT and NIR OCT, respectively. The images are reanalyzed and reprinted from Ref [24]. IS/OS, inner/outer segment of photoreceptors; RPE-retinal pigmented epithelium. The layer of RPE in the images was manually segmented by ImageJ and flattened for A-line averaging. (c) The A-line comparisons between vis-OCT and NIR OCT at three sites labeled in panel (a-b). The A-lines are normalized at IS/OS peaks. The two dash lines define the depth range of RPE layer.

Tables (5)

Tables Icon

Table 1 Summary of the length distributions of melanosomes.

Tables Icon

Table 2 Averaged deviation (%) comparing T-matrix to Mie theory for spherical scatters.

Tables Icon

Table 3 Wavelength-dependent optical properties of melanosomes in RPE.

Tables Icon

Table 4 Wavelength-dependent optical properties of Sr spheroidal shapes of melanosomes in RPE.

Tables Icon

Table 5 Wavelength-dependent optical properties of Se spheroidal shapes of melanosomes in RPE.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

F(Θ)=[ a 1 (Θ) b 1 (Θ) 0 0 b 1 (Θ) a 2 (Θ) 0 0 0 0 a 3 (Θ) b 2 (Θ) 0 0 b 2 (Θ) a 4 (Θ) ],
I sca = C sca 4π R 2 F(Θ) I inc ,
I= E 2 + E 2 , Q= E 2 + E 2 , U= E E * + E E * , V=i E E * E E * ,
C b = F 11 (180°) C sca .
μ a,s = f v C a,s V ,
p(r)= γ r c Γ( α+1 γ ) ( α γ ) (α+1)/γ ( r r c ) α exp[ α γ ( r r c ) γ ],
α= 1 γ r 0 2 σ 2 ,
p(r)=exp( (r r 0 ) 2 2 σ 2 ).
C total = 0 p(r)C(r)dr 0 p(r)dr .
k(ω)= c μ a (ω) 2ω ,
n(ω)=n( ω 0 ) + 2 π ( ω 2 ω 0 2 )P 0 ω'k(ω') ( ω 2 ω ' 2 )( ω 0 2 ω ' 2 ) dω' ,
( E s E s )= e i(krkz) ikr ( S 2 S 3 S 4 S 1 )( E i E i ),
( I s Q s U s V s )= 1 k 2 R 2 ( S 11 S 12 0 0 S 12 S 11 0 0 0 0 S 33 S 34 0 0 S 34 S 33 )( I i Q i U i V i ), S 11 = 1 2 ( | S 2 | 2 + | S 1 | 2 ), S 12 = 1 2 ( | S 2 | 2 | S 1 | 2 ), S 33 =Re( S 2 * S 1 ), S 34 =Im( S 2 * S 1 ),
F ij = C sca 2πk S ij .
C=Qπ r 2 ,

Metrics