Abstract

We introduce all-optical photoacoustic projection imaging. An array of fiber-optic interferometers is used to measure photoacoustic signals. The obtained images represent the projection of the three-dimensional spatial light absorbance within a sample onto a two-dimensional plane. We assess the performance of the system by phantom measurements and show that the fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. Furthermore, we demonstrate the ability to acquire high-resolution projection images of large volumes within a short period of time.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Line-scanning hyperspectral imaging based on structured illumination optical sectioning

Yu John Hsu, Chih-Chiang Chen, Chien-Hsiang Huang, Chia-Hua Yeh, Li-Ying Liu, and Szu-Yu Chen
Biomed. Opt. Express 8(6) 3005-3016 (2017)

qF-SSOP: real-time optical property corrected fluorescence imaging

Pablo A. Valdes, Joseph P. Angelo, Hak Soo Choi, and Sylvain Gioux
Biomed. Opt. Express 8(8) 3597-3605 (2017)

Adaptive optical versus spherical aberration corrections for in vivo brain imaging

Raphaël Turcotte, Yajie Liang, and Na Ji
Biomed. Opt. Express 8(8) 3891-3902 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [Crossref] [PubMed]
  2. H. Azhari, “Appendix A: Typical Acoustic Properties of Tissues,” in Basics of Biomedical Ultrasound for Engineers (John Wiley & Sons, Inc., 2010), pp. 313–314.
  3. X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Phys. Med. Biol. 56(18), 6129–6148 (2011).
    [Crossref] [PubMed]
  4. J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
    [Crossref] [PubMed]
  5. L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
    [Crossref] [PubMed]
  6. L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
    [Crossref] [PubMed]
  7. K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
    [Crossref] [PubMed]
  8. J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
    [Crossref] [PubMed]
  9. Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
    [Crossref] [PubMed]
  10. J. Zalev, B. Clingman, D. Herzog, T. Miller, M. Ulissey, A. T. Stavros, A. Oraevsky, P. Lavin, K. Kist, N. C. Dornbluth, and others, “Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study,” in SPIE Medical Imaging (International Society for Optics and Photonics, 2015), pp. 941909–941909.
  11. H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
    [Crossref] [PubMed]
  12. D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
    [Crossref] [PubMed]
  13. X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21(23), 28062–28071 (2013).
    [Crossref] [PubMed]
  14. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
    [Crossref] [PubMed]
  15. A. Buehler, X. L. Deán-Ben, J. Claussen, V. Ntziachristos, and D. Razansky, “Three-dimensional optoacoustic tomography at video rate,” Opt. Express 20(20), 22712–22719 (2012).
    [Crossref] [PubMed]
  16. L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
    [Crossref] [PubMed]
  17. M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
    [Crossref] [PubMed]
  18. D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
    [Crossref]
  19. E. Merčep, N. C. Burton, J. Claussen, and D. Razansky, “Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography,” Opt. Lett. 40(20), 4643–4646 (2015).
    [Crossref] [PubMed]
  20. L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).
  21. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
    [Crossref] [PubMed]
  22. B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
    [Crossref] [PubMed]
  23. P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
    [Crossref]
  24. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
    [Crossref] [PubMed]
  25. M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
    [Crossref]
  26. H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
    [Crossref] [PubMed]
  27. B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” IEEE Trans. Biomed. Eng. 64(1), 4–15 (2017).
    [Crossref] [PubMed]
  28. R. A. Barnes, S. Maswadi, R. Glickman, and M. Shadaram, “Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source,” Appl. Opt. 53(3), 511–519 (2014).
    [Crossref] [PubMed]
  29. J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
    [Crossref]
  30. J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, and T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” in SPIE BiOS (International Society for Optics and Photonics, 2013), p. 85812M–85812M–8.
  31. T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
    [Crossref] [PubMed]
  32. J. Bauer-Marschallinger, K. Felbermayer, K.-D. Bouchal, I. A. Veres, H. Grün, P. Burgholzer, and T. Berer, “Photoacoustic projection imaging using a 64-channel fiber optic detector array,” in SPIE BiOS (International Society for Optics and Photonics, 2015), p. 93233U–93233U.
  33. H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
    [Crossref] [PubMed]
  34. G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009).
    [Crossref] [PubMed]
  35. A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
    [Crossref] [PubMed]
  36. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt. 47(4), 561–577 (2008).
    [Crossref] [PubMed]
  37. J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of Fabry–Perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. Opt. 56(17), 5039–5046 (2017).
    [Crossref]
  38. S. D. Le, P. Rochard, J.-B. Briand, L. Quétel, S. Claudot, and M. Thual, “Coupling Efficiency and Reflectance Analysis of Graded Index Expanded Beam Connectors,” J. Lightwave Technol. 34(9), 2092–2099 (2016).
    [Crossref]
  39. Y. He and F. G. Shi, “A graded-index fiber taper design for laser diode to single-mode fiber coupling,” Opt. Commun. 260(1), 127–130 (2006).
    [Crossref]
  40. G. Paltauf and R. Nuster, “Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction,” J. Biomed. Opt. 19(2), 026014 (2014).
    [Crossref] [PubMed]
  41. J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5(5), 1363–1377 (2014).
    [Crossref] [PubMed]
  42. X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
    [Crossref] [PubMed]
  43. M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
    [Crossref] [PubMed]
  44. L. Ding, X. L. Deán-Ben, and D. Razansky, “Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 35(8), 1883–1891 (2016).
    [Crossref] [PubMed]
  45. G. Wurzinger, R. Nuster, and G. Paltauf, “Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection,” J. Biomed. Opt. 21(8), 086010 (2016).
    [Crossref] [PubMed]

2017 (4)

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” IEEE Trans. Biomed. Eng. 64(1), 4–15 (2017).
[Crossref] [PubMed]

J. Buchmann, J. Guggenheim, E. Zhang, C. Scharfenorth, B. Spannekrebs, C. Villringer, and J. Laufer, “Characterization and modeling of Fabry–Perot ultrasound sensors with hard dielectric mirrors for photoacoustic imaging,” Appl. Opt. 56(17), 5039–5046 (2017).
[Crossref]

2016 (5)

S. D. Le, P. Rochard, J.-B. Briand, L. Quétel, S. Claudot, and M. Thual, “Coupling Efficiency and Reflectance Analysis of Graded Index Expanded Beam Connectors,” J. Lightwave Technol. 34(9), 2092–2099 (2016).
[Crossref]

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

L. Ding, X. L. Deán-Ben, and D. Razansky, “Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 35(8), 1883–1891 (2016).
[Crossref] [PubMed]

G. Wurzinger, R. Nuster, and G. Paltauf, “Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection,” J. Biomed. Opt. 21(8), 086010 (2016).
[Crossref] [PubMed]

2015 (2)

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

E. Merčep, N. C. Burton, J. Claussen, and D. Razansky, “Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography,” Opt. Lett. 40(20), 4643–4646 (2015).
[Crossref] [PubMed]

2014 (7)

R. A. Barnes, S. Maswadi, R. Glickman, and M. Shadaram, “Probe beam deflection technique as acoustic emission directionality sensor with photoacoustic emission source,” Appl. Opt. 53(3), 511–519 (2014).
[Crossref] [PubMed]

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

G. Paltauf and R. Nuster, “Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction,” J. Biomed. Opt. 19(2), 026014 (2014).
[Crossref] [PubMed]

J. Prakash, A. S. Raju, C. B. Shaw, M. Pramanik, and P. K. Yalavarthy, “Basis pursuit deconvolution for improving model-based reconstructed images in photoacoustic tomography,” Biomed. Opt. Express 5(5), 1363–1377 (2014).
[Crossref] [PubMed]

M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (6)

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

A. Buehler, X. L. Deán-Ben, J. Claussen, V. Ntziachristos, and D. Razansky, “Three-dimensional optoacoustic tomography at video rate,” Opt. Express 20(20), 22712–22719 (2012).
[Crossref] [PubMed]

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
[Crossref] [PubMed]

2011 (1)

X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Phys. Med. Biol. 56(18), 6129–6148 (2011).
[Crossref] [PubMed]

2010 (4)

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

2009 (3)

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (4)

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
[Crossref] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

2006 (1)

Y. He and F. G. Shi, “A graded-index fiber taper design for laser diode to single-mode fiber coupling,” Opt. Commun. 260(1), 127–130 (2006).
[Crossref]

2005 (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Araque Caballero, M. A.

M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
[Crossref] [PubMed]

Bachilo, S. M.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

Barnes, R. A.

Bauer-Marschallinger, J.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

Beard, P.

Berer, T.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

Brecht, H.-P.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

Briand, J.-B.

Brinkhuis, M.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

Buchmann, J.

Buehler, A.

X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
[Crossref] [PubMed]

A. Buehler, X. L. Deán-Ben, J. Claussen, V. Ntziachristos, and D. Razansky, “Three-dimensional optoacoustic tomography at video rate,” Opt. Express 20(20), 22712–22719 (2012).
[Crossref] [PubMed]

Burgholzer, P.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009).
[Crossref] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
[Crossref] [PubMed]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

Burton, N. C.

Caron, J. N.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Chen, W.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Chen, X.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Claudot, S.

Claussen, J.

Conjusteau, A.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

Cox, B. T.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Dean-Ben, X.-L.

M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
[Crossref] [PubMed]

Deán-Ben, X. L.

L. Ding, X. L. Deán-Ben, and D. Razansky, “Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 35(8), 1883–1891 (2016).
[Crossref] [PubMed]

X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21(23), 28062–28071 (2013).
[Crossref] [PubMed]

A. Buehler, X. L. Deán-Ben, J. Claussen, V. Ntziachristos, and D. Razansky, “Three-dimensional optoacoustic tomography at video rate,” Opt. Express 20(20), 22712–22719 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Phys. Med. Biol. 56(18), 6129–6148 (2011).
[Crossref] [PubMed]

Del Rio, S. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

Ding, L.

L. Ding, X. L. Deán-Ben, and D. Razansky, “Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 35(8), 1883–1891 (2016).
[Crossref] [PubMed]

Dong, B.

B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” IEEE Trans. Biomed. Eng. 64(1), 4–15 (2017).
[Crossref] [PubMed]

Doyle, R. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

Ermilov, S. A.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

Felbermayer, K.

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Fronheiser, M.

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

Garcia-Uribe, A.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

Gateau, J.

M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
[Crossref] [PubMed]

Glickman, R.

Grun, H.

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

Grün, H.

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

Guggenheim, J.

Haltmeier, M.

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
[Crossref] [PubMed]

He, Y.

Y. He and F. G. Shi, “A graded-index fiber taper design for laser diode to single-mode fiber coupling,” Opt. Commun. 260(1), 127–130 (2006).
[Crossref]

Heijblom, M.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

Höllinger, A.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Huang, P.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Jakoby, B.

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Johnson, J. L.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Klaase, J. M.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

Kruger, R. A.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

Lam, R. B.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

Laufer, J.

Le, S. D.

Li, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Lin, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Liopo, A. V.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

Liu, G.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Lu, G.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Ma, C.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Ma, Y.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Manohar, S.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Maslov, K.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

Maswadi, S.

Mercep, E.

Nie, L.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Ntziachristos, V.

M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
[Crossref] [PubMed]

A. Buehler, X. L. Deán-Ben, J. Claussen, V. Ntziachristos, and D. Razansky, “Three-dimensional optoacoustic tomography at video rate,” Opt. Express 20(20), 22712–22719 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Phys. Med. Biol. 56(18), 6129–6148 (2011).
[Crossref] [PubMed]

Nuster, R.

G. Wurzinger, R. Nuster, and G. Paltauf, “Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection,” J. Biomed. Opt. 21(8), 086010 (2016).
[Crossref] [PubMed]

G. Paltauf and R. Nuster, “Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction,” J. Biomed. Opt. 19(2), 026014 (2014).
[Crossref] [PubMed]

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009).
[Crossref] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
[Crossref] [PubMed]

O’Leary, D. P.

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

Oraevsky, A. A.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

Paltauf, G.

G. Wurzinger, R. Nuster, and G. Paltauf, “Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection,” J. Biomed. Opt. 21(8), 086010 (2016).
[Crossref] [PubMed]

G. Paltauf and R. Nuster, “Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction,” J. Biomed. Opt. 19(2), 026014 (2014).
[Crossref] [PubMed]

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009).
[Crossref] [PubMed]

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46(16), 3352–3358 (2007).
[Crossref] [PubMed]

Piras, D.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Prakash, J.

Pramanik, M.

Quétel, L.

Raju, A. S.

Razansky, D.

L. Ding, X. L. Deán-Ben, and D. Razansky, “Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 35(8), 1883–1891 (2016).
[Crossref] [PubMed]

E. Merčep, N. C. Burton, J. Claussen, and D. Razansky, “Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography,” Opt. Lett. 40(20), 4643–4646 (2015).
[Crossref] [PubMed]

X. L. Deán-Ben and D. Razansky, “Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths,” Opt. Express 21(23), 28062–28071 (2013).
[Crossref] [PubMed]

A. Buehler, X. L. Deán-Ben, J. Claussen, V. Ntziachristos, and D. Razansky, “Three-dimensional optoacoustic tomography at video rate,” Opt. Express 20(20), 22712–22719 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
[Crossref] [PubMed]

X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Phys. Med. Biol. 56(18), 6129–6148 (2011).
[Crossref] [PubMed]

Reinecke, D. R.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

Reitinger, B.

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

Rochard, P.

Roitner, H.

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

Rong, P.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Scharfenorth, C.

Scherzer, O.

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

Shadaram, M.

Shaw, C. B.

Shi, F. G.

Y. He and F. G. Shi, “A graded-index fiber taper design for laser diode to single-mode fiber coupling,” Opt. Commun. 260(1), 127–130 (2006).
[Crossref]

Shi, J.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Song, K. H.

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

Spannekrebs, B.

Steenbergen, W.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Su, R.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

Sun, C.

B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” IEEE Trans. Biomed. Eng. 64(1), 4–15 (2017).
[Crossref] [PubMed]

Thual, M.

Timmerman, M.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Treeby, B. E.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

Tsyboulski, D. A.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

van den Engh, F. M.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

van der Schaaf, M.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

van Hespen, J. C. G.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

van Leeuwen, T. G.

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

van Wijk, K.

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Veres, I. A.

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

Villringer, C.

Wang, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

Wang, L. V.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Wang, S.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Wang, X.

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Weisman, R. B.

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

Winkler, A. M.

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

Wurzinger, G.

G. Wurzinger, R. Nuster, and G. Paltauf, “Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection,” J. Biomed. Opt. 21(8), 086010 (2016).
[Crossref] [PubMed]

Xia, W.

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

Xing, W.

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Yalavarthy, P. K.

Yao, J.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

Zhang, E.

Zhang, H. F.

B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” IEEE Trans. Biomed. Eng. 64(1), 4–15 (2017).
[Crossref] [PubMed]

Zhang, R.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Zhou, Y.

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

Zhu, L.

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Appl. Opt. (4)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives,” IEEE J. Sel. Top. Quantum Electron. 16(4), 730–739 (2010).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

B. Dong, C. Sun, and H. F. Zhang, “Optical Detection of Ultrasound in Photoacoustic Imaging,” IEEE Trans. Biomed. Eng. 64(1), 4–15 (2017).
[Crossref] [PubMed]

IEEE Trans. Med. Imaging (3)

X. L. Deán-Ben, A. Buehler, V. Ntziachristos, and D. Razansky, “Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 31(10), 1922–1928 (2012).
[Crossref] [PubMed]

M. A. Araque Caballero, J. Gateau, X.-L. Dean-Ben, and V. Ntziachristos, “Model-based optoacoustic image reconstruction of large three-dimensional tomographic datasets acquired with an array of directional detectors,” IEEE Trans. Med. Imaging 33(2), 433–443 (2014).
[Crossref] [PubMed]

L. Ding, X. L. Deán-Ben, and D. Razansky, “Real-Time Model-Based Inversion in Cross-Sectional Optoacoustic Tomography,” IEEE Trans. Med. Imaging 35(8), 1883–1891 (2016).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Bauer-Marschallinger, T. Berer, H. Grun, H. Roitner, B. Reitinger, and P. Burgholzer, “Broadband high-frequency measurement of ultrasonic attenuation of tissues and liquids,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(12), 2631–2645 (2012).
[Crossref] [PubMed]

Inverse Probl. (1)

P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl. 23(6), S65–S80 (2007).
[Crossref]

J. Biomed. Opt. (10)

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).
[Crossref] [PubMed]

H. Grün, T. Berer, P. Burgholzer, R. Nuster, and G. Paltauf, “Three-dimensional photoacoustic imaging using fiber-based line detectors,” J. Biomed. Opt. 15(2), 021306 (2010).
[Crossref] [PubMed]

L. Wang, K. Maslov, W. Xing, A. Garcia-Uribe, and L. V. Wang, “Video-rate functional photoacoustic microscopy at depths,” J. Biomed. Opt. 17(10), 1060071 (2012).
[Crossref] [PubMed]

K. H. Song and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” J. Biomed. Opt. 12(6), 060503 (2007).
[Crossref] [PubMed]

Y. Zhou, J. Yao, and L. V. Wang, “Tutorial on photoacoustic tomography,” J. Biomed. Opt. 21(6), 061007 (2016).
[Crossref] [PubMed]

H.-P. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, “Whole-body three-dimensional optoacoustic tomography system for small animals,” J. Biomed. Opt. 14(6), 064007 (2009).
[Crossref] [PubMed]

G. Wurzinger, R. Nuster, and G. Paltauf, “Combined photoacoustic, pulse-echo laser ultrasound, and speed-of-sound imaging using integrating optical detection,” J. Biomed. Opt. 21(8), 086010 (2016).
[Crossref] [PubMed]

H. Roitner, M. Haltmeier, R. Nuster, D. P. O’Leary, T. Berer, G. Paltauf, H. Grün, and P. Burgholzer, “Deblurring algorithms accounting for the finite detector size in photoacoustic tomography,” J. Biomed. Opt. 19(5), 056011 (2014).
[Crossref] [PubMed]

A. M. Winkler, K. Maslov, and L. V. Wang, “Noise-equivalent sensitivity of photoacoustics,” J. Biomed. Opt. 18(9), 097003 (2013).
[Crossref] [PubMed]

G. Paltauf and R. Nuster, “Artifact removal in photoacoustic section imaging by combining an integrating cylindrical detector with model-based reconstruction,” J. Biomed. Opt. 19(2), 026014 (2014).
[Crossref] [PubMed]

J. Biophotonics (2)

D. A. Tsyboulski, A. V. Liopo, R. Su, S. A. Ermilov, S. M. Bachilo, R. B. Weisman, and A. A. Oraevsky, “Enabling in vivo measurements of nanoparticle concentrations with three-dimensional optoacoustic tomography,” J. Biophotonics 7(8), 581–588 (2014).
[Crossref] [PubMed]

T. Berer, I. A. Veres, H. Grün, J. Bauer-Marschallinger, K. Felbermayer, and P. Burgholzer, “Characterization of broadband fiber optic line detectors for photoacoustic tomography,” J. Biophotonics 5(7), 518–528 (2012).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. (1)

J. L. Johnson, K. van Wijk, J. N. Caron, and M. Timmerman, “Gas-coupled laser acoustic detection as a non-contact line detector for photoacoustic and ultrasound imaging,” J. Opt. 18(2), 024005 (2016).
[Crossref]

Math. Models Methods Appl. Sci. (1)

M. Haltmeier, O. Scherzer, P. Burgholzer, R. Nuster, and G. Paltauf, “Thermoacoustic tomography and the circular radon transform: exact inversion formula,” Math. Models Methods Appl. Sci. 17(04), 635–655 (2007).
[Crossref]

Med. Phys. (1)

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37(11), 6096–6100 (2010).
[Crossref] [PubMed]

Nat. Biomed. Eng. (1)

L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, and L. V. Wang, “Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution,” Nat. Biomed. Eng. 1, 0071 (2017).

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. He and F. G. Shi, “A graded-index fiber taper design for laser diode to single-mode fiber coupling,” Opt. Commun. 260(1), 127–130 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Photoacoustics (1)

J. Bauer-Marschallinger, A. Höllinger, B. Jakoby, P. Burgholzer, and T. Berer, “Fiber-optic annular detector array for large depth of field photoacoustic macroscopy,” Photoacoustics 5, 1–9 (2017).
[Crossref] [PubMed]

Phys. Med. Biol. (2)

X. L. Deán-Ben, D. Razansky, and V. Ntziachristos, “The effects of acoustic attenuation in optoacoustic signals,” Phys. Med. Biol. 56(18), 6129–6148 (2011).
[Crossref] [PubMed]

G. Paltauf, R. Nuster, and P. Burgholzer, “Weight factors for limited angle photoacoustic tomography,” Phys. Med. Biol. 54(11), 3303–3314 (2009).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(1), 016706 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology,” Sci. Rep. 5(1), 11778 (2015).
[Crossref] [PubMed]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs,” Science 335(6075), 1458–1462 (2012).
[Crossref] [PubMed]

Small (1)

L. Nie, S. Wang, X. Wang, P. Rong, Y. Ma, G. Liu, P. Huang, G. Lu, and X. Chen, “In vivo Volumetric Photoacoustic Molecular Angiography and Therapeutic Monitoring with Targeted Plasmonic Nanostars,” Small 10(8), 1585–1593 (2014).
[Crossref] [PubMed]

Other (4)

H. Azhari, “Appendix A: Typical Acoustic Properties of Tissues,” in Basics of Biomedical Ultrasound for Engineers (John Wiley & Sons, Inc., 2010), pp. 313–314.

J. Zalev, B. Clingman, D. Herzog, T. Miller, M. Ulissey, A. T. Stavros, A. Oraevsky, P. Lavin, K. Kist, N. C. Dornbluth, and others, “Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study,” in SPIE Medical Imaging (International Society for Optics and Photonics, 2015), pp. 941909–941909.

J. Bauer-Marschallinger, K. Felbermayer, A. Hochreiner, H. Grün, G. Paltauf, P. Burgholzer, and T. Berer, “Low-cost parallelization of optical fiber based detectors for photoacoustic imaging,” in SPIE BiOS (International Society for Optics and Photonics, 2013), p. 85812M–85812M–8.

J. Bauer-Marschallinger, K. Felbermayer, K.-D. Bouchal, I. A. Veres, H. Grün, P. Burgholzer, and T. Berer, “Photoacoustic projection imaging using a 64-channel fiber optic detector array,” in SPIE BiOS (International Society for Optics and Photonics, 2015), p. 93233U–93233U.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the detector array for photoacoustic projection imaging with 64 detector positions. Photoacoustic detection is based on 16 fiber-optic Mach-Zehnder interferometers (FOMZIs). Each FOMZI consists of a pressure-receiving measuring arm, a working-point stabilizing reference arm, a 50/50 fiber coupler, and a balanced photo detector. In the measuring arm, a 4x1 optical switch connects 4 graded-index polymer optical fibers (GIPOFs), e.g. the pressure-sensitive parts, to the 50/50 coupler. Hence, the 64 GIPOFs are multiplexed to 16 fiber couplers. In the reference arm, an electronic phase shifter (φ) establishes a working-point phase difference between both arms for best sensitivity. A photodetector transforms the outputs of the 50/50 coupler into high-frequency (HF) and low-frequency (LF) electric signals. The HF signals, i.e. the actual photoacoustic signals, are sampled by a 16 channel A/D converter. The LF signals are fed to 16 analog controllers which power the phase shifters (φ). A 1550 nm fiber laser supplies the FOMZIs via fiber couplers.

Fig. 2
Fig. 2

Schematic of the performed experiments. In relation to Fig. 1, the schematic shows the cross-section of the GIPOFs. This view is identical to the imaging plane whereupon the photoacoustic signals are projected. The circular GIPOF array covers an angle of 289 degree. The samples are embedded in agarose and held by a sample holder. A pulsed laser beam coming from a frequency doubled Nd:YAG laser is split to illuminate the samples from two sides. To determine the sensitivity of the fiber, a calibrated needle hydrophone is used to quantitatively measure the pressure.

Fig. 3
Fig. 3

Signal traces and envelopes of a photoacoustic wave stemming from a black polyethylene microsphere with a diameter of 200 µm embedded in agarose/Intralipid. The acoustic pressure of the wave is shown by the blue curves (left axis) and was measured with a calibrated needle hydrophone. The green curves (right axis) present the signal voltage acquired by the fiber-optic line detector. The curves were averaged 128-times.

Fig. 4
Fig. 4

(a) Photograph of an ink-stained leaf skeleton before embedding in agarose. The strong branches at the lower boarder of the skeleton measure approximately 160–190 µm in diameter. (b) Photoacoustic projection image of leaf skeleton based on signals with a bandwidth of 300 kHz to 10 MHz. Imaging artifacts around the leaf are clearly visible. Within the leaf, the occurrence of artifacts seems to be lower. The resulting image with a signal-bandwidth of 4 MHz is shown in (c). The leaf stands out more clearly from the artifact background. However, finer details are lost. In (d)-(f) different reconstructions based on forward simulated data using the k-Wave toolbox [21] are shown. For reconstruction (d) 253 sensor positions were used. In (e) only sensor positions available in the measurement were considered and the forward simulated data was frequency filtered to achieve a bandwidth of 300 kHz-10MHz. Also, noise comparable to the actual measurement noise was added. The same forward data, however at 127 positions, were used to calculate image (f). From (d)-(f) it can be concluded that the artifact background in the measurement (b) around the leaf originates from the limited number of sensor positions.

Fig. 5
Fig. 5

(a) Photoacoustic projection image of two crossed porcine bristles. The bristles have a diameter in the range of 120-145 µm and are embedded in agarose/Intralipid. The red lines indicate where the profiles for the averaged profile in (b) are taken from. The 10% to 90% edge responses of the average profile are 85 µm and 102 µm respectively. The full-width-at-half-maximum is 257 µm.

Fig. 6
Fig. 6

(a) shows a single polyethylene microsphere with a diameter of 200 µm embedded in agarose/Intralipid, measured at different locations within an area of 40x40 mm. The image values are normalized to 1. At each position, a measurement of the sphere was performed. The image is a result of a single reconstruction based on summation of the acquired signals. (b) presents zoom-ins at each positon of the sphere. Except for position 6, the images of the sphere deviate slightly from a round shape. However, the point-like shape of the sphere is maintained at every position. In addition, there is no apparent trend indicating an area where the image-quality is significantly reduced.

Fig. 7
Fig. 7

Blood vessel phantom consisting of an ink-filled polymer tube in chicken breast. An overview is presented in (a) and an enlargement of the central region is shown in (b).

Tables (1)

Tables Icon

Table 1 Characteristics of performed experiments