Abstract

Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or vice versa. Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Open-top selective plane illumination microscope for conventionally mounted specimens

Ryan McGorty, Harrison Liu, Daichi Kamiyama, Zhiqiang Dong, Su Guo, and Bo Huang
Opt. Express 23(12) 16142-16153 (2015)

Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope

Zeyi Guan, Juhyun Lee, Hao Jiang, Siyan Dong, Nelson Jen, Tzung Hsiai, Chih-Ming Ho, and Peng Fei
Biomed. Opt. Express 7(1) 194-208 (2016)

High-NA open-top selective-plane illumination microscopy for biological imaging

Ryan Mcgorty, Dan Xie, and Bo Huang
Opt. Express 25(15) 17798-17810 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
    [Crossref] [PubMed]
  2. Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
    [Crossref] [PubMed]
  3. P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
    [Crossref] [PubMed]
  4. P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(1), 7048 (2015).
    [Crossref] [PubMed]
  5. J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
    [Crossref] [PubMed]
  6. Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
    [Crossref] [PubMed]
  7. R. McGorty, H. Liu, D. Kamiyama, Z. Dong, S. Guo, and B. Huang, “Open-top selective plane illumination microscope for conventionally mounted specimens,” Opt. Express 23(12), 16142–16153 (2015).
    [Crossref] [PubMed]
  8. Z. Guan, J. Lee, H. Jiang, S. Dong, N. Jen, T. Hsiai, C. M. Ho, and P. Fei, “Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope,” Biomed. Opt. Express 7(1), 194–208 (2016).
    [Crossref] [PubMed]
  9. T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
    [Crossref] [PubMed]
  10. T. Bruns, S. Schickinger, and H. Schneckenburger, “Single plane illumination module and micro-capillary approach for a wide-field microscope,” J. Vis. Exp. 51993(90), e51993 (2014).
    [PubMed]
  11. F. O. Fahrbach and A. Rohrbach, “A line scanned light-sheet microscope with phase shaped self-reconstructing beams,” Opt. Express 18(23), 24229–24244 (2010).
    [Crossref] [PubMed]
  12. F. Cutrale and E. Gratton, “Inclined selective plane illumination microscopy adaptor for conventional microscopes,” Microsc. Res. Tech. 75(11), 1461–1466 (2012).
    [Crossref] [PubMed]
  13. M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
    [Crossref] [PubMed]
  14. M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
    [Crossref] [PubMed]
  15. R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
    [Crossref] [PubMed]
  16. V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
    [Crossref] [PubMed]
  17. R. Arimoto and J. M. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216(1), 49–51 (2004).
    [Crossref] [PubMed]
  18. E. J. Gualda, H. Pereira, T. Vale, M. F. Estrada, C. Brito, and N. Moreno, “SPIM-fluid: open source light-sheet based platform for high-throughput imaging,” Biomed. Opt. Express 6(11), 4447–4456 (2015).
    [Crossref] [PubMed]
  19. T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
    [Crossref] [PubMed]
  20. P. N. Hedde and E. Gratton, “Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens,” Microsc. Res. Tech., online ahead of print (2016).
  21. K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
    [Crossref] [PubMed]
  22. K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
    [Crossref] [PubMed]
  23. S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
    [Crossref] [PubMed]
  24. M. I. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” in Trends in Colloid and Interface Science VI, C. Helm, M. Lösche, and H. Möhwald, eds. (Steinkopff, Darmstadt, 1992), pp. 127–131.
  25. S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
    [Crossref] [PubMed]
  26. A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
    [Crossref] [PubMed]
  27. A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
    [Crossref] [PubMed]
  28. A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
    [Crossref] [PubMed]
  29. F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
    [Crossref] [PubMed]
  30. Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
    [Crossref] [PubMed]
  31. L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
    [Crossref] [PubMed]
  32. K. Mitra and J. Lippincott-Schwartz, “Analysis of mitochondrial dynamics and functions using imaging approaches,” Curr. Protoc. Cell Biol. Chapter 4, Unit 4 25 21–21 (2010).
  33. J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nat. Rev. Mol. Cell Biol. 8(8), 622–632 (2007).
    [Crossref] [PubMed]
  34. D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
    [Crossref] [PubMed]
  35. I. F. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151(2), 182–195 (2005).
    [Crossref] [PubMed]
  36. M. Westerfield, The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio). 4th ed. (Univ. of Oregon Press, 2000).

2016 (5)

Z. Guan, J. Lee, H. Jiang, S. Dong, N. Jen, T. Hsiai, C. M. Ho, and P. Fei, “Compact plane illumination plugin device to enable light sheet fluorescence imaging of multi-cellular organisms on an inverted wide-field microscope,” Biomed. Opt. Express 7(1), 194–208 (2016).
[Crossref] [PubMed]

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

2015 (8)

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

E. J. Gualda, H. Pereira, T. Vale, M. F. Estrada, C. Brito, and N. Moreno, “SPIM-fluid: open source light-sheet based platform for high-throughput imaging,” Biomed. Opt. Express 6(11), 4447–4456 (2015).
[Crossref] [PubMed]

R. McGorty, H. Liu, D. Kamiyama, Z. Dong, S. Guo, and B. Huang, “Open-top selective plane illumination microscope for conventionally mounted specimens,” Opt. Express 23(12), 16142–16153 (2015).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
[Crossref] [PubMed]

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(1), 7048 (2015).
[Crossref] [PubMed]

2014 (4)

T. Bruns, S. Schickinger, and H. Schneckenburger, “Single plane illumination module and micro-capillary approach for a wide-field microscope,” J. Vis. Exp. 51993(90), e51993 (2014).
[PubMed]

A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
[Crossref] [PubMed]

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

2013 (2)

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

2012 (1)

F. Cutrale and E. Gratton, “Inclined selective plane illumination microscopy adaptor for conventional microscopes,” Microsc. Res. Tech. 75(11), 1461–1466 (2012).
[Crossref] [PubMed]

2011 (2)

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

2010 (1)

2008 (1)

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

2007 (4)

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nat. Rev. Mol. Cell Biol. 8(8), 622–632 (2007).
[Crossref] [PubMed]

F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

2005 (1)

I. F. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151(2), 182–195 (2005).
[Crossref] [PubMed]

2004 (2)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

R. Arimoto and J. M. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216(1), 49–51 (2004).
[Crossref] [PubMed]

2002 (1)

S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
[Crossref] [PubMed]

Amodaj, N.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

Aravind, A.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Arimoto, R.

R. Arimoto and J. M. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216(1), 49–51 (2004).
[Crossref] [PubMed]

Astrada, S.

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

Bagatolli, L. A.

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
[Crossref] [PubMed]

Ban, N.

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

Bandyopadhyay, D.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Bao, Z.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Basu, S.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Bauer, M.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Betzig, E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Bollati-Fogolín, M.

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

Bouchard, M. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Bright, N. A.

J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nat. Rev. Mol. Cell Biol. 8(8), 622–632 (2007).
[Crossref] [PubMed]

Brito, C.

Briva, A.

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

Bruno, R. M.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Bruns, S.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Bruns, T.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

T. Bruns, S. Schickinger, and H. Schneckenburger, “Single plane illumination module and micro-capillary approach for a wide-field microscope,” J. Vis. Exp. 51993(90), e51993 (2014).
[PubMed]

Cang, H.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Carling, D.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Chan, C.

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Chapman, A. R.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Chennell, G.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Christensen, R.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Colón-Ramos, D.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Cutrale, F.

F. Cutrale and E. Gratton, “Inclined selective plane illumination microscopy adaptor for conventional microscopes,” Microsc. Res. Tech. 75(11), 1461–1466 (2012).
[Crossref] [PubMed]

Cyphersmith, A.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Danuser, G.

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

Davidson, M. W.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Dean, K. M.

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

Del Bene, F.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Dong, S.

Dong, Z.

Du, Z.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Dunsby, C.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Edelstein, A. D.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

Elkins, K.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Estrada, M. F.

Fahrbach, F. O.

Fei, P.

Findlan, R.

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Fiolka, R.

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

Fitzpatrick, J. A.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Galbraith, C. G.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galbraith, J. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Galland, R.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Gao, L.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Gebhardt, J. C.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Ghitani, A.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Gitai, Z.

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
[Crossref] [PubMed]

Gratton, E.

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
[Crossref] [PubMed]

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(1), 7048 (2015).
[Crossref] [PubMed]

F. Cutrale and E. Gratton, “Inclined selective plane illumination microscopy adaptor for conventional microscopes,” Microsc. Res. Tech. 75(11), 1461–1466 (2012).
[Crossref] [PubMed]

S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
[Crossref] [PubMed]

Grenci, G.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Grueber, W. B.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Gualda, E. J.

Guan, Z.

Guo, S.

Hazlett, T. L.

S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
[Crossref] [PubMed]

Hedde, P. N.

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(1), 7048 (2015).
[Crossref] [PubMed]

P. N. Hedde and E. Gratton, “Active focus stabilization for upright selective plane illumination microscopy,” Opt. Express 23(11), 14707–14714 (2015).
[Crossref] [PubMed]

Hillman, E. M.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Ho, C. M.

Hsiai, T.

Hu, Y. S.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Huang, B.

Huisken, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Imamoto, N.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Inagaki, N.

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

Jen, N.

Jiang, H.

Kamiyama, D.

Kidambi, S.

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Kim, M. K.

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

Kim, Y. J.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Koumoutsakos, P.

I. F. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151(2), 182–195 (2005).
[Crossref] [PubMed]

Kubin, D.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Kuchma, S. L.

A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
[Crossref] [PubMed]

Kumar, S.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Lacefield, C.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Lana, T.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Lee, I.

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Lee, J.

Li, Y.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Liu, H.

Luzio, J. P.

J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nat. Rev. Mol. Cell Biol. 8(8), 622–632 (2007).
[Crossref] [PubMed]

Maioli, V.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Malacrida, L.

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

Maniatis, T.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Mann, R. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Matsumura, Y.

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

McGorty, R.

Mendes, C. S.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Mettlen, M.

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

Meyer, H.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

Milkie, D. E.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Moreno, N.

Murray, J. M.

R. Arimoto and J. M. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216(1), 49–51 (2004).
[Crossref] [PubMed]

O’Toole, G. A.

A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
[Crossref] [PubMed]

Pampaloni, F.

F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Payne, C. K.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Pereira, H.

Pinkard, H.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

Planchon, T. A.

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Pryor, P. R.

J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nat. Rev. Mol. Cell Biol. 8(8), 622–632 (2007).
[Crossref] [PubMed]

Reis, C. R.

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

Reynaud, E. G.

F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Rohrbach, A.

Rondeau, G.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Roudot, P.

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

Roy, R.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Sakai, H.

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

Sakata-Sogawa, K.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Sanchez, S. A.

S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
[Crossref] [PubMed]

Santella, A.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Sardini, A.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Sasaki, M.

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

Sbalzarini, I. F.

I. F. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151(2), 182–195 (2005).
[Crossref] [PubMed]

Schickinger, S.

T. Bruns, S. Schickinger, and H. Schneckenburger, “Single plane illumination module and micro-capillary approach for a wide-field microscope,” J. Vis. Exp. 51993(90), e51993 (2014).
[PubMed]

Schneckenburger, H.

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

T. Bruns, S. Schickinger, and H. Schneckenburger, “Single plane illumination module and micro-capillary approach for a wide-field microscope,” J. Vis. Exp. 51993(90), e51993 (2014).
[PubMed]

Schroeder, S. A.

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Shen, Y.

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

Shroff, H.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Sibarita, J. B.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Siryaporn, A.

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
[Crossref] [PubMed]

Sparks, H.

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Stakic, M.

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(1), 7048 (2015).
[Crossref] [PubMed]

Stelzer, E. H.

F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Stone, H. A.

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

Studer, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Stuurman, N.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

Suter, D. M.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Swoger, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Tokunaga, M.

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

Tse, K.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Tsuchida, M. A.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

Udpa, N.

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Vale, R. D.

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

Vale, T.

Verma, I. M.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Viasnoff, V.

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

Voleti, V.

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Welf, E. S.

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

Wittbrodt, J.

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Xie, X. S.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Zapata, J. A.

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Zhao, Z. W.

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

Zhu, Q.

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

L. Malacrida, S. Astrada, A. Briva, M. Bollati-Fogolín, E. Gratton, and L. A. Bagatolli, “Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures,” Biochim. Biophys. Acta 1858(11), 2625–2635 (2016).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

Biophys. J. (3)

K. M. Dean, P. Roudot, E. S. Welf, G. Danuser, and R. Fiolka, “Deconvolution-free Subcellular Imaging with Axially Swept Light Sheet Microscopy,” Biophys. J. 108(12), 2807–2815 (2015).
[Crossref] [PubMed]

K. M. Dean, P. Roudot, C. R. Reis, E. S. Welf, M. Mettlen, and R. Fiolka, “Diagonally Scanned Light-Sheet Microscopy for Fast Volumetric Imaging of Adherent Cells,” Biophys. J. 110(6), 1456–1465 (2016).
[Crossref] [PubMed]

S. A. Sanchez, L. A. Bagatolli, E. Gratton, and T. L. Hazlett, “A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles,” Biophys. J. 82(4), 2232–2243 (2002).
[Crossref] [PubMed]

Curr. Biol. (1)

A. Siryaporn, M. K. Kim, Y. Shen, H. A. Stone, and Z. Gitai, “Colonization, competition, and dispersal of pathogens in fluid flow networks,” Curr. Biol. 25(9), 1201–1207 (2015).
[Crossref] [PubMed]

FEBS Lett. (1)

Y. Matsumura, H. Sakai, M. Sasaki, N. Ban, and N. Inagaki, “ABCA3-mediated choline-phospholipids uptake into intracellular vesicles in A549 cells,” FEBS Lett. 581(17), 3139–3144 (2007).
[Crossref] [PubMed]

J. Biol. Methods (1)

A. D. Edelstein, M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale, and N. Stuurman, “Advanced methods of microscope control using μManager software,” J. Biol. Methods 1(2), 10 (2014).
[Crossref] [PubMed]

J. Microsc. (2)

T. Bruns, M. Bauer, S. Bruns, H. Meyer, D. Kubin, and H. Schneckenburger, “Miniaturized modules for light sheet microscopy with low chromatic aberration,” J. Microsc. 264(3), 261–267 (2016).
[Crossref] [PubMed]

R. Arimoto and J. M. Murray, “A common aberration with water-immersion objective lenses,” J. Microsc. 216(1), 49–51 (2004).
[Crossref] [PubMed]

J. Struct. Biol. (1)

I. F. Sbalzarini and P. Koumoutsakos, “Feature point tracking and trajectory analysis for video imaging in cell biology,” J. Struct. Biol. 151(2), 182–195 (2005).
[Crossref] [PubMed]

J. Vis. Exp. (1)

T. Bruns, S. Schickinger, and H. Schneckenburger, “Single plane illumination module and micro-capillary approach for a wide-field microscope,” J. Vis. Exp. 51993(90), e51993 (2014).
[PubMed]

Microsc. Res. Tech. (1)

F. Cutrale and E. Gratton, “Inclined selective plane illumination microscopy adaptor for conventional microscopes,” Microsc. Res. Tech. 75(11), 1461–1466 (2012).
[Crossref] [PubMed]

Nat. Methods (4)

M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, “Highly inclined thin illumination enables clear single-molecule imaging in cells,” Nat. Methods 5(2), 159–161 (2008).
[Crossref] [PubMed]

J. C. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie, “Single-molecule imaging of transcription factor binding to DNA in live mammalian cells,” Nat. Methods 10(5), 421–426 (2013).
[Crossref] [PubMed]

R. Galland, G. Grenci, A. Aravind, V. Viasnoff, V. Studer, and J. B. Sibarita, “3D high- and super-resolution imaging using single-objective SPIM,” Nat. Methods 12(7), 641–644 (2015).
[Crossref] [PubMed]

T. A. Planchon, L. Gao, D. E. Milkie, M. W. Davidson, J. A. Galbraith, C. G. Galbraith, and E. Betzig, “Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination,” Nat. Methods 8(5), 417–423 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

M. B. Bouchard, V. Voleti, C. S. Mendes, C. Lacefield, W. B. Grueber, R. S. Mann, R. M. Bruno, and E. M. Hillman, “Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms,” Nat. Photonics 9(2), 113–119 (2015).
[Crossref] [PubMed]

Nat. Rev. Mol. Cell Biol. (2)

J. P. Luzio, P. R. Pryor, and N. A. Bright, “Lysosomes: fusion and function,” Nat. Rev. Mol. Cell Biol. 8(8), 622–632 (2007).
[Crossref] [PubMed]

F. Pampaloni, E. G. Reynaud, and E. H. Stelzer, “The third dimension bridges the gap between cell culture and live tissue,” Nat. Rev. Mol. Cell Biol. 8(10), 839–845 (2007).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Nanoscopy (1)

Y. S. Hu, Q. Zhu, K. Elkins, K. Tse, Y. Li, J. A. Fitzpatrick, I. M. Verma, and H. Cang, “Light-sheet Bayesian microscopy enables deep-cell super-resolution imaging of heterochromatin in live human embryonic stem cells,” Opt. Nanoscopy 2(1), 7 (2013).
[Crossref] [PubMed]

PLoS One (1)

D. Bandyopadhyay, A. Cyphersmith, J. A. Zapata, Y. J. Kim, and C. K. Payne, “Lysosome transport as a function of lysosome diameter,” PLoS One 9(1), e86847 (2014).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. Siryaporn, S. L. Kuchma, G. A. O’Toole, and Z. Gitai, “Surface attachment induces Pseudomonas aeruginosa virulence,” Proc. Natl. Acad. Sci. U.S.A. 111(47), 16860–16865 (2014).
[Crossref] [PubMed]

Y. Wu, A. Ghitani, R. Christensen, A. Santella, Z. Du, G. Rondeau, Z. Bao, D. Colón-Ramos, and H. Shroff, “Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17708–17713 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

P. N. Hedde, M. Stakic, and E. Gratton, “Rapid measurement of molecular transport and interaction inside living cells using single plane illumination,” Sci. Rep. 4(1), 7048 (2015).
[Crossref] [PubMed]

V. Maioli, G. Chennell, H. Sparks, T. Lana, S. Kumar, D. Carling, A. Sardini, and C. Dunsby, “Time-lapse 3-D measurements of a glucose biosensor in multicellular spheroids by light sheet fluorescence microscopy in commercial 96-well plates,” Sci. Rep. 6(1), 37777 (2016).
[Crossref] [PubMed]

Science (1)

J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. Stelzer, “Optical sectioning deep inside live embryos by selective plane illumination microscopy,” Science 305(5686), 1007–1009 (2004).
[Crossref] [PubMed]

Tissue Eng. (1)

S. Kidambi, N. Udpa, S. A. Schroeder, R. Findlan, I. Lee, and C. Chan, “Cell adhesion on polyelectrolyte multilayer coated polydimethylsiloxane surfaces with varying topographies,” Tissue Eng. 13(8), 2105–2117 (2007).
[Crossref] [PubMed]

Other (4)

P. N. Hedde and E. Gratton, “Selective plane illumination microscopy with a light sheet of uniform thickness formed by an electrically tunable lens,” Microsc. Res. Tech., online ahead of print (2016).

M. I. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” in Trends in Colloid and Interface Science VI, C. Helm, M. Lösche, and H. Möhwald, eds. (Steinkopff, Darmstadt, 1992), pp. 127–131.

M. Westerfield, The Zebrafish Book: A Guide for the Laboratory use of Zebrafish (Danio rerio). 4th ed. (Univ. of Oregon Press, 2000).

K. Mitra and J. Lippincott-Schwartz, “Analysis of mitochondrial dynamics and functions using imaging approaches,” Curr. Protoc. Cell Biol. Chapter 4, Unit 4 25 21–21 (2010).

Supplementary Material (9)

NameDescription
» Visualization 1       Domains on Giant Unilamellar Vesicle
» Visualization 2       CHO-K1 Cells Expressing EGFP
» Visualization 3       Fluorescent Beads under Flow in Fluidic Device
» Visualization 4       Bacteria Biofilm under Flow
» Visualization 5       A549 Cell Expressing ABCA3-EGFP
» Visualization 6       Mitochondria Labeled with TMRE in A549 Cells
» Visualization 7       Lysosomes in A549 Cells Labeled with LysoTracker Red
» Visualization 8       Z Stack of Fluorescently Labeled 24 HPF Zebrafish Embryo
» Visualization 9       Microcirculation in 36 HPF Zebrafish Embryo

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the sideSPIM system and the two window sample chamber. (A) Schematic of the optical components involved in the side illumination unit (see main text for a detailed description). (B) Photograph of the sideSPIM system. (C) Photograph of the sample chamber mounted in the sideSPIM setup showing the organization of excitation and emission lenses. (D) 3D drawing of the two window sample chamber. (E) Photograph of the finished two window chamber.

Fig. 2
Fig. 2

Refractive index matching. (A) Inside a solution or hydrogel, a sample can be imaged without further modifications. (B) Close to the bottom of the chamber, a mismatch in refractive index occurs distorting the light sheet. (C) A distortion of the light sheet can be avoided by raising the sample on a support with a refractive index similar to the surrounding medium. (D) Simplified light path inside the chamber without (top) and with a mismatch in refractive index (bottom), the insets show the corresponding diffraction patterns at the focus. (E) Graph of the intensity profile of the beam at the focus along x direction for index mismatches of 0-0.5% (NA 0.3, 1 mm depth, 500 nm light). (F) Beam waist (e−2) at the focus and Strehl ratio plotted as a function of the refractive index mismatch, the inset shows the diffraction pattern at 0.3% mismatch, the maximum intensity has shifted from the focus to the periphery of the light sheet as indicated by the arrows.

Fig. 3
Fig. 3

(A-L) Light sheet characterization with and without index matching in a 100 nM solution of Rhodamine 110. (B) Fluorescence image of a single xy plane inside the Rhodamine solution without scanning and no resin in the sample well as illustrated in (A). (C) For each vertical line of pixels a Gaussian was fitted to the intensity distribution, the minimum beam waist was 1.43 µm, the confocal parameter was 12.0 µm. (E) Fluorescence image of a single xy plane inside the Rhodamine solution at a distance of 1 µm from the resin (MY-133 V2000) without scanning as illustrated in (D). (F) The minimum beam waist was 1.53 µm, the confocal parameter was 10.9 µm. (H) Fluorescence image of a single xy plane at the Rhodamine solution/resin interface without scanning as illustrated in (G). (I) The minimum beam waist was 1.49 µm, the confocal parameter was 11.8 µm. (K) Fluorescence image of a single xz plane extracted from a z stack of the Rhodamine solution/resin interface as illustrated in (J). (L) The minimum beam waist calculated from the intensity derivative was 1.46 µm, the confocal parameter was 11.0 µm. (M-X) Light sheet characterization using 100 nm green fluorescent beads. Single xy (M) and yz (N) plane of a stack of fluorescence images of 100 nm beads embedded in a 1% agarose hydrogel. The xy (O) and yz (Q) cross sections of the PSF of an exemplary bead (marked by the crosshair in M,N) were fitted with a Gaussian distribution (P,R) to obtain the radial and the axial waist. Single xy (S) and yz (T) plane of a stack of fluorescence images of 100 nm beads embedded in a 1% agarose hydrogel placed on top of the 1 mm thick resin (MY-133 V2000). The xy (U) and yz (W) cross sections of the PSF of a representative bead (marked by the crosshair in S,T) were fitted with a Gaussian distribution (V,X) to obtain the radial and axial waist.

Fig. 4
Fig. 4

3D imaging of specimen on top of a transparent support with the sideSPIM system. A) Rendered fluorescence image of a GUV composed of DOPC labeled with DiIC18 on top of a coated resin (MY-133 V2000). B) Rendered fluorescence image of a GUV composed of a ternary mixture 1:1:1 (DOPC, DPPC, and Cholesterol) with liquid order/liquid disorder coexistence labeled with DiIC18 on top of a coated resin (MY-133 V2000). C) 3D reconstruction of a CHO-K1 cell expressing EGFP on top of a coated resin (MY-134). D) 3D reconstruction of a biofilm of AFS64 bacteria expressing EGFP on top of 1% agarose.

Fig. 5
Fig. 5

Cells in collagen hydrogels. (A) 3D reconstruction of an image stack of A549 cells expressing ABCA3-EGFP. (B) 3D rendering of a stack of fluorescence images of the mitochondria of a A549 cell labeled with TMRE. (C) 3D reconstruction of an image stack of lysosomes in A549 cells labeled with Lysotracker Red. (D) 3D trajectories of the lysosomes shown in panel C followed over 2,100 s that could be followed in a minimum of 50 consecutive stacks. (E) MSD of those tracks with a velocity >0 µms−1. (F) Histogram of the velocities of the tracks shown in panel E.

Fig. 6
Fig. 6

Fluorescence images of a zebrafish embryo labeled with Nile Red. (A-C) Single sections of an image stack of the tail section of a 36 hpf embryo. (A) xy view, (B) yz view, (C) xz view, the yellow lines indicate the position of the corresponding views. (D) Single section of an area with microcirculation, the track of a single erythrocyte is shown in red.

Tables (1)

Tables Icon

Table 1 Refractive Index of Common Compounds

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ( x,y )=k n L Δ( x,y )+k n M ( x )[ Δ 0 Δ( x,y ) ],
U L ( x,y )= t 0 ( x,y ) e ik Δ 0 n M ( x ) e ik[ n L n M ( x ) ]Δ( x,y ) ,
Δ( x,y )= Δ 0 x 2 + y 2 2 ( 1 R 1 1 R 2 ),
1 f( x ) =[ n L n M ( x ) ]( 1 R 1 1 R 2 ).
U L ( x,y )= t 0 ( x,y )exp( ik Δ 0 n L )exp( ik x 2 + y 2 2f( x ) ).
U z ( x z , y z )= exp( ikz ) iλz exp( ik x z 2 + y z 2 2z ) dx dy U L ( x,y )exp( ik x 2 + y 2 2z )exp( ik x x z +y y z z ),
U z ( x z , y z )= exp( ikz ) iλz exp( ik x z 2 + y z 2 2z )exp( ik Δ 0 n L ) dx dy t 0 ( x,y )exp( ik x 2 + y 2 2f( x ) )exp( ik x 2 + y 2 2z )exp( ik x x z +y y z z ).