Abstract

Microscopic variations in melanin composition can be mapped through linear and nonlinear optical responses. Though instrumentation to measure linear attenuation is simple and inexpensive, the nonlinear response provides more degrees of freedom with which to spectroscopically resolve pigments. The objective of this study is to assess differences in imaging melanin contrast by comparing hyperspectral (linear) versus pump-probe (nonlinear) microscopy of unstained histology sections of pigmented lesions. The images and analysis we have presented here show that pump-probe uncovers a greater variation in pigment composition, compared with hyperspectral microscopy, and that the two methods yield complimentary biochemical information.

© 2017 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Line-scanning hyperspectral imaging based on structured illumination optical sectioning

Yu John Hsu, Chih-Chiang Chen, Chien-Hsiang Huang, Chia-Hua Yeh, Li-Ying Liu, and Szu-Yu Chen
Biomed. Opt. Express 8(6) 3005-3016 (2017)

Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential

Francisco E. Robles, Sanghamitra Deb, Jesse W. Wilson, Christina S. Gainey, M. Angelica Selim, Paul J. Mosca, Douglas S. Tyler, Martin C. Fischer, and Warren S. Warren
Biomed. Opt. Express 6(9) 3631-3645 (2015)

Quantification of collagen organization in histopathology samples using liquid crystal based polarization microscopy

Adib Keikhosravi, Yuming Liu, Cole Drifka, Kaitlin M. Woo, Amitabh Verma, Rudolf Oldenbourg, and Kevin W. Eliceiri
Biomed. Opt. Express 8(9) 4243-4256 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009).
    [Crossref] [PubMed]
  2. Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The Regulation of Skin Pigmentation,” J. Biol. Chem. 282(38), 27557–27561 (2007).
    [Crossref] [PubMed]
  3. M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
    [Crossref] [PubMed]
  4. A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
    [Crossref] [PubMed]
  5. L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
    [Crossref] [PubMed]
  6. T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
    [Crossref] [PubMed]
  7. T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
    [Crossref] [PubMed]
  8. J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
    [Crossref] [PubMed]
  9. F. E. Robles, S. Deb, J. W. Wilson, C. S. Gainey, M. A. Selim, P. J. Mosca, D. S. Tyler, M. C. Fischer, and W. S. Warren, “Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential,” Biomed. Opt. Express 6(9), 3631–3645 (2015).
    [Crossref] [PubMed]
  10. Z. Volent, G. Johnsen, and F. Sigernes, “Microscopic hyperspectral imaging used as a bio-optical taxonomic tool for micro- and macroalgae,” Appl. Opt. 48(21), 4170–4176 (2009).
    [Crossref] [PubMed]
  11. M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
    [Crossref] [PubMed]
  12. M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
    [Crossref] [PubMed]
  13. F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
    [Crossref] [PubMed]
  14. A. Samokhvalov, Y. Liu, and J. D. Simon, “Characterization of the Fe(III)-binding Site in Sepia Eumelanin by Resonance Raman Confocal Microspectroscopy,” Photochem. Photobiol. 80(1), 84–88 (2004).
    [Crossref] [PubMed]

2016 (2)

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (3)

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

2013 (1)

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref] [PubMed]

2011 (2)

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

2009 (2)

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009).
[Crossref] [PubMed]

Z. Volent, G. Johnsen, and F. Sigernes, “Microscopic hyperspectral imaging used as a bio-optical taxonomic tool for micro- and macroalgae,” Appl. Opt. 48(21), 4170–4176 (2009).
[Crossref] [PubMed]

2007 (1)

Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The Regulation of Skin Pigmentation,” J. Biol. Chem. 282(38), 27557–27561 (2007).
[Crossref] [PubMed]

2006 (1)

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

2004 (1)

A. Samokhvalov, Y. Liu, and J. D. Simon, “Characterization of the Fe(III)-binding Site in Sepia Eumelanin by Resonance Raman Confocal Microspectroscopy,” Photochem. Photobiol. 80(1), 84–88 (2004).
[Crossref] [PubMed]

Bono, A.

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009).
[Crossref] [PubMed]

Brenner, M.

Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The Regulation of Skin Pigmentation,” J. Biol. Chem. 282(38), 27557–27561 (2007).
[Crossref] [PubMed]

Calderbank, R.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

Carrara, M.

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009).
[Crossref] [PubMed]

Dall, C. P.

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

Deb, S.

Degan, S.

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

Fischer, M. C.

Gainey, C. S.

F. E. Robles, S. Deb, J. W. Wilson, C. S. Gainey, M. A. Selim, P. J. Mosca, D. S. Tyler, M. C. Fischer, and W. S. Warren, “Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential,” Biomed. Opt. Express 6(9), 3631–3645 (2015).
[Crossref] [PubMed]

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

Glass, K.

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

Hearing, V. J.

Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The Regulation of Skin Pigmentation,” J. Biol. Chem. 282(38), 27557–27561 (2007).
[Crossref] [PubMed]

Jin, J. Y.

Johnsen, G.

Lim, L.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Liu, Y.

A. Samokhvalov, Y. Liu, and J. D. Simon, “Characterization of the Fe(III)-binding Site in Sepia Eumelanin by Resonance Raman Confocal Microspectroscopy,” Photochem. Photobiol. 80(1), 84–88 (2004).
[Crossref] [PubMed]

Marchesini, R.

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009).
[Crossref] [PubMed]

Markey, M. K.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Matthews, T. E.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

Meredith, P.

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Migden, M. R.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Mitropoulos, T.

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

Mosca, P. J.

Nichols, B.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Piletic, I. R.

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Powell, B. J.

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Rajaram, N.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Reichenberg, J. S.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Robles, F. E.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

F. E. Robles, S. Deb, J. W. Wilson, C. S. Gainey, M. A. Selim, P. J. Mosca, D. S. Tyler, M. C. Fischer, and W. S. Warren, “Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential,” Biomed. Opt. Express 6(9), 3631–3645 (2015).
[Crossref] [PubMed]

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref] [PubMed]

Ross, M. I.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Samokhvalov, A.

A. Samokhvalov, Y. Liu, and J. D. Simon, “Characterization of the Fe(III)-binding Site in Sepia Eumelanin by Resonance Raman Confocal Microspectroscopy,” Photochem. Photobiol. 80(1), 84–88 (2004).
[Crossref] [PubMed]

Selim, M. A.

Sigernes, F.

Simon, J. D.

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

A. Samokhvalov, Y. Liu, and J. D. Simon, “Characterization of the Fe(III)-binding Site in Sepia Eumelanin by Resonance Raman Confocal Microspectroscopy,” Photochem. Photobiol. 80(1), 84–88 (2004).
[Crossref] [PubMed]

Simpson, M. J.

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

Thompson, A.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

Tran, M. L.

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

Tunnell, J. W.

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

Tyler, D. S.

Volent, Z.

Warren, W. S.

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

F. E. Robles, S. Deb, J. W. Wilson, C. S. Gainey, M. A. Selim, P. J. Mosca, D. S. Tyler, M. C. Fischer, and W. S. Warren, “Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential,” Biomed. Opt. Express 6(9), 3631–3645 (2015).
[Crossref] [PubMed]

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Wilson, J. W.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

F. E. Robles, S. Deb, J. W. Wilson, C. S. Gainey, M. A. Selim, P. J. Mosca, D. S. Tyler, M. C. Fischer, and W. S. Warren, “Pump-probe imaging of pigmented cutaneous melanoma primary lesions gives insight into metastatic potential,” Biomed. Opt. Express 6(9), 3631–3645 (2015).
[Crossref] [PubMed]

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

Yamaguchi, Y.

Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The Regulation of Skin Pigmentation,” J. Biol. Chem. 282(38), 27557–27561 (2007).
[Crossref] [PubMed]

Zhang, J. Y.

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

T. E. Matthews, J. W. Wilson, S. Degan, M. J. Simpson, J. Y. Jin, J. Y. Zhang, and W. S. Warren, “In vivo and ex vivo epi-mode pump-probe imaging of melanin and microvasculature,” Biomed. Opt. Express 2(6), 1576–1583 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (2)

Biophys. J. (1)

M. L. Tran, B. J. Powell, and P. Meredith, “Chemical and Structural Disorder in Eumelanins: A Possible Explanation for Broadband Absorbance,” Biophys. J. 90(3), 743–752 (2006).
[Crossref] [PubMed]

J. Biol. Chem. (1)

Y. Yamaguchi, M. Brenner, and V. J. Hearing, “The Regulation of Skin Pigmentation,” J. Biol. Chem. 282(38), 27557–27561 (2007).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

L. Lim, B. Nichols, M. R. Migden, N. Rajaram, J. S. Reichenberg, M. K. Markey, M. I. Ross, and J. W. Tunnell, “Clinical study of noninvasive in vivo melanoma and nonmelanoma skin cancers using multimodal spectral diagnosis,” J. Biomed. Opt. 19(11), 117003 (2014).
[Crossref] [PubMed]

R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt. 14(1), 014027 (2009).
[Crossref] [PubMed]

J. W. Wilson, S. Degan, C. S. Gainey, T. Mitropoulos, M. J. Simpson, J. Y. Zhang, and W. S. Warren, “Comparing in vivo pump-probe and multiphoton fluorescence microscopy of melanoma and pigmented lesions,” J. Biomed. Opt. 20(5), 051012 (2014).
[Crossref] [PubMed]

F. E. Robles, J. W. Wilson, and W. S. Warren, “Quantifying melanin spatial distribution using pump-probe microscopy and a 2-D morphological autocorrelation transformation for melanoma diagnosis,” J. Biomed. Opt. 18(12), 120502 (2013).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

M. J. Simpson, J. W. Wilson, F. E. Robles, C. P. Dall, K. Glass, J. D. Simon, and W. S. Warren, “Near-Infrared Excited State Dynamics of Melanins: The Effects of Iron Content, Photo-Damage, Chemical Oxidation, and Aggregate Size,” J. Phys. Chem. A 118(6), 993–1003 (2014).
[Crossref] [PubMed]

Photochem. Photobiol. (1)

A. Samokhvalov, Y. Liu, and J. D. Simon, “Characterization of the Fe(III)-binding Site in Sepia Eumelanin by Resonance Raman Confocal Microspectroscopy,” Photochem. Photobiol. 80(1), 84–88 (2004).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

M. C. Fischer, J. W. Wilson, F. E. Robles, and W. S. Warren, “Invited Review Article: Pump-probe microscopy,” Rev. Sci. Instrum. 87(3), 031101 (2016).
[Crossref] [PubMed]

Sci. Rep. (1)

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref] [PubMed]

Sci. Transl. Med. (1)

T. E. Matthews, I. R. Piletic, M. A. Selim, M. J. Simpson, and W. S. Warren, “Pump-probe imaging differentiates melanoma from melanocytic nevi,” Sci. Transl. Med. 3(71), 71ra15 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Principal components from hyperspectral images and their variances (inset). (b) Two-dimensional histogram of angles, along with proposed assignments for regions of ( θ,ϕ ) space.

Fig. 2
Fig. 2

Representative false-color images rendered from angular projection PC analysis of both hyperspectral (top) and pump-probe images (bottom, with confocal reflectance overlaid in grayscale): (a, b) invasive cutaneous melanoma, (c, d) normal. Scale bars 100 µm. Dashed boxes: hyperspectral image field of view.

Fig. 3
Fig. 3

Invasive cutaneous melanoma. (a, c) False-color images. Scale bars 100 µm Dashed box: hyperspectral image field of view. (b, d) pigment histograms and representative hyperspectral and pump-probe response curves. In the histograms, markers * and ** indicate points in principal component space at the extrema of the distributions. Corresponding spectra and pump-probe responses are labeled by * and **.

Fig. 4
Fig. 4

False-color images rendered from angular projection PC analysis of hyperspectral (top) and pump-probe images (bottom). For legend, see Table 1. Scale bars 100 µm.

Fig. 5
Fig. 5

Conjuctival combined nevus. (a, c) False-color images. Scale bars 100 µm. (b, d) pigment histograms and representative hyperspectral and pump-probe response curves. In the histograms, markers * and ** indicate points in principal component space at the extrema of the distributions. Corresponding spectra and pump-probe responses are labeled by * and **.

Fig. 6
Fig. 6

Parameters from hyperspectral vs. pump-probe images. The linear correlation coefficient, r, is given for each scatter plot. (a,b) structural/morphological parameters; (c,d) pigment composition and heterogeneity parameters. See text for full description.

Tables (1)

Tables Icon

Table 1 List of specimens

Metrics